Cryptography and Embedded Systems
Security

Xiaolu Hou
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
SLOVAK UNIVERSITY OF TECHNOLOGY, SLOVAKIA

Jakub Breier
TTCONTROL GMBH, VIENNA, AUSTRIA

2024

This is the authors’ copy. The published version (ISBN: 978-3-031-62205-2) can be found at:
https://link.springer.com/book/10.1007/978-3-031-62205-2

https://link.springer.com/book/10.1007/978-3-031-62205-2

For our Aurel

Foreword

R

In an era defined by interconnectedness, the importance of security is undeniable. Across billions
of devices and computing systems, cryptographic algorithms and protocols stand as sentinels, safe-
guarding the confidentiality, integrity, and non-repudiation of transactions. However, even with the
remarkable capabilities of cryptographic algorithms, the systems they safeguard are not necessarily
immune to vulnerabilities. These vulnerabilities frequently emerge during the transition from theory
to practical implementations, underscoring the pivotal role of cryptographic engineering in achiev-
ing comprehensive security measures. The present book serves to nicely bridge this gap and provide
practitioners and researchers interested in the world of embedded security a wide perspective of
secure implementations of cryptographic algorithms.

While strong cryptographic algorithms are an important starting point in the design of secured
systems, they also need to be efficiently implemented for real-life practical applications. While in
the early days they were implemented largely on general-purpose computers, it was gradually felt
necessary to realize them on hardware and embedded platforms. This shift was an outcome of mul-
tiple factors. The complexity of cryptographic algorithms and their real-time requirements to ensure
practical applications motivated researchers to implement the ciphers on hardware and embedded
platforms. Moreover, because of the various attacks on software platforms, designing security sys-
tems relying on hardware root-of-trusts became a popular design choice. Further, the growth of em-
bedded applications and thereof the advent of Cyber-Physical-Systems (CPS) and Internet-of-Things
(IoT), obviated the integration of cryptographic algorithms into special-purpose devices. However,
great care needs to be taken in such implementations, as apart from the classic design objectives, like
power, energy, throughput, and area, designers also need to tackle side-channel information leak-
ages which can be exploited by attackers with physical access to the devices. Common side-channel
attacks based on power/electromagnetic analysis and fault analysis have become one of the biggest
threats in deploying crypto algorithms on embedded devices. The ubiquitousness of such devices
and easy physical access by adversaries offer novel attack surfaces which can cripple the best of
crypto-algorithms if suitable countermeasures are not implemented along with.

The contribution of this book is to address these aspects of secured crypto-design and provide a
vivid description to develop an end-to-end understanding. The designs of cryptographic algorithms
and their analysis are often based on mathematical and statistical tools. The book starts with a nice
summary of important mathematical principles, which are needed to comprehend the cipher con-
structions and their attack analysis. Subsequently, the book provides a summary of both classical
and modern cryptosystems. The following chapters also stress on implementations of these mod-
ern cryptosystems, before delving into various forms of physical attacks on the implementations.
The book discusses techniques for side-channel analysis of both symmetric-key and public-key cryp-
tosystems, along with suitable countermeasures. The book then presents a contemporary summary
of various forms of fault attacks on cryptosystems, and countermeasures against them. The book con-
cludes with practical aspects of physical attacks, providing much-needed details of physical set-ups,
useful to develop practical set-ups for hardware security research.

Engaging and informative, this book is fine reading for anyone fascinated by the intricate realm of

ii

iii

embedded security and cryptographic engineering. It offers a compelling glimpse into the workings
of attacks on cryptosystems in embedded devices and provides actionable strategies for mitigation.
Enjoy the journey into the captivating world of security engineering!

Kharagpur, India Debdeep Mukopadhyay

April 2024

Starting my doctoral studies several decades ago, I found myself immensely interested in the
area of physical side channels and the resulting attacks, which at the time disrupted the way in
which cryptographers approached designing and analyzing ciphers. This was a fortunate encounter
for me: today my research is still driven by the challenge of efficiently detecting, quantifying, and as
far as possible mitigating physical side channels.

Research in the area of side channels has developed and grown, not only in volume but also in
maturity. In the early days, researchers playfully discovered how to tap into side channels, as well
as how to extract more information from available side channels, and to make side channels harder
to exploit. There was little emphasis on the development of a methodology. Countermeasures were
(re)invented, and applied to different types of cryptosystems, acknowledging, but not systematizing
that different discoveries were in fact related.

Only when, together with two colleagues, I wrote the first comprehensive research book on power
analysis attacks, a clearer picture emerged of the factors that contribute to the success of attacks and
how we can mitigate leakage. Other researchers pushed our initial attempts further, and today, we
have sound theories for many aspects of side-channel attacks and countermeasures. Similarly, the
area of fault attacks has seen significant progress over the past two decades.

This book here provides a contemporary summary of techniques for attacks and countermea-
sures. There are many good examples provided: I encourage all readers of this book to pay particular
attention to these and implement and extend as many as possible. The best way to understand the
foundational aspects of any field is by active learning: do as much as you can yourself!

Birmingham, United Kingdom Elisabeth Oswald

April 2024

Preface

R

Cryptography is an indispensable tool used to protect information in computing systems. Billions of
people all over the world use it in their daily lives without even noticing there is some cryptographic
algorithm running behind the scenes. Cryptographic computations can be found in any form of
electronic communication, electronic passports, security tokens, payment systems, etc.

Cryptographic algorithms in use nowadays are considered secure in theory. But in the real world,
these algorithms are implemented on physical devices in the form of integrated circuits. These cir-
cuits have their physical properties, such as power consumption dependent on the processed data,
emanation of electromagnetic waves, and susceptibility to computational errors due to environmen-
tal influences. To evaluate the security level of cryptographic implementations, it is necessary to
include the physical security assessment.

There are various physical attack methods, e.g. fault attacks, side-channel attacks, hardware
trojans, etc. Side-channel attacks can be divided into different specific attacks, depending on the
exploited information, e.g. electromagnetic/power analysis, timing analysis, cache attacks. In this
book, we will be focusing on fault attacks and electromagnetic/power analysis attacks on crypto-
graphic implementations.

We assume the readers have basic knowledge of real numbers, rational numbers, integers, and
complex numbers, which will be denoted by R, Q, Z, and C respectively in this book. We also assume
the readers have completed a course in linear algebra.

This book is primarily aimed at graduate students who take a course on hardware security and/or
cryptography. However, it provides useful resources for anyone willing to explore the exciting world
of physical attacks — designers, implementers, evaluators, as well as academic scholars.

Bratislava, Slovakia Xiaolu Hou
Vienna, Austria Jakub Breier
April 2024

iv

Acknowledgment

R

We would like to thank Debdeep Mukhopadhyay and Elisabeth Oswald for writing a nice and moti-
vating foreword for this book.

Our thanks also go to Mladen Kovacevi¢, Romain Poussier, and Dirmanto Jap for proofreading
an earlier version of the book and for their detailed and constructive comments.

We would also like to acknowledge the editorial team of Springer Nature, especially Bakiyalak-
shmi R M, and Charles Glaser.

For the unwavering support and encouragement from our parents and especially our son, Aurel,
who turned our writing process into a wild adventure.

This project has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie grant agreement
No. 945478.

Contents

R

1 Mathematical and Statistical Background

1.1 Preliminaries. e e e e e e e e
11T Sets . . o . o o e e e e e
1.1.2 Functions e e e e e e e e e e e e
1.1.3 Integers e
1.2 Abstract Algebra e
121 Groups v oo e
122 Rings e
1.23 Felds e e e e e
1.3 Linear Algebra. e
1.3.1 Matrices o . e e e e e e e e e
1.3.2 VectorSpaces e
1.4 Modular Arithmetic. e e
14.1 Solving Linear Congruences
1.5 PolynomialRings L
151 Bytes e
1.6 Coding Theory e
1.7 Probability Theory
171 o—algebras
1.7.2 Probabilities e e
1.7.3 Random Variables e
1.8 Statistics o e e e e e e
1.8.1 Important Distributions
1.8.2 Estimating Mean and Difference of Means of Normal Distributions
1.8.3 HypothesisTesting
19 FurtherReading e
Introduction to Cryptography
2.1 Cryptographic Primitives o
21.1 HashFunctions e
212 Cryptosystems
2.1.3 Security of Cryptosystems oo
22 ClassicalCiphers e
221 ShiftCipher
222 AffineCipher e
223 SubstitutionCipher. L L
224 VigenereCipher. e
225 HillGCipher
2.2.6 Cryptanalysis of Classical Ciphers
227 One-timePad e
23 EncryptionModes.
24 FurtherReading e

vi

vii

3 Modern Cryptographic Algorithms and their Implementations
3.1 Symmetric Block Ciphers o

3.2

3.3
34
3.5

3.1.1
3.1.2
3.1.3

DES . . e
AES . . e
PRESENT

Implementations of Symmetric Block Ciphers

3.2.1
322
3.2.3
RSA

Implementing Sboxes Lo
Implementing Permutations. o oo
Bitsliced Implementations o o oo L

RSA Signatures
Implementations of RSA Cipher and RSA Signatures

3.5.1
3.5.2

Implementing Modular Exponentiation
Implementing Modular Multiplication

36 FurtherReading

4 Side-Channel Analysis Attacks and Countermeasures
Experimental Setting

41

4.2

4.3

44

4.5

4.6

411

Attack Methods e

Side-channel Leakages

421
422
423
424

Distribution of the Leakage,
Estimating Leakage Distributions
Leakage Assessment o
Signal-to-NoiseRatio

Side-Channel Analysis Attacks on Symmetric Block Ciphers

43.1
432
433

Non-profiled Differential Power Analysis Attacks
Profiled Differential Power Analysis
Side-Channel Assisted Differential Plaintext Attack

Side-Channel Analysis Attacks on RSA and RSA Signatures

441
442

Simple Power Analysis o
Differential Power Analysis L L.

Countermeasures Against Side-channel Analysis Attacks

451 Hiding e
452 Maskingand Blinding o oo
Further Reading
461 AlassistedSCA

5 Fault Attacks and Countermeasures
5.1 Fault Attacks on Symmetric Block Ciphers, ...

52

53

54

511
512
513
514

Differential Fault Analysis,
Statistical Fault Analysis
Persistent Fault Analysis o o
Implementation Specific Fault Attack

Fault Countermeasures for Symmetric Block Ciphers

5.2.1
522

Encoding-based Countermeasure
Infective Countermeasure v i v i e e e e e e

Fault Attacks on RSA and RSA Signatures

53.1
53.2
533
53.4

Bellcore Attack
Attack on the Square and Multiply Algorithm
AttackonthePublicKey. L
Safe Error Attack

Fault Countermeasures for RSA and RSA Signatures

54.1
54.2
543
5.4.4

Shamir’s Countermeasure v i v i it e e e e e e e
Infective Countermeasure i e e e e
Countermeasure for Attacks on the Square and Multiply Algorithm
Countermeasures Against the Safe Error Attack

o n =

rr

55 FurtherReading

Practical Aspects of Physical Attacks

6.1 Side-Channel Attacks e
6.1.1 Originsof Leakage,
6.12 MeasurementSetup Lo Lo L

6.2 FaultAttacks. e
6.2.1 FaultInjection Techniques

6.3 IndustryStandards
6.3.1 Common Criteria o o v vt e
6.32 FIPST40-3 o

Proofs

Al Matrices e

A.2 Invertible Matrices for the Stochastic Leakage Model

Long Division
DES Sbox
Algebraic Normal Forms for PRESENT Sbox Output Bits

Encoding-based Countermeasure for Symmetric Block Ciphers

313

314

316

318

1.1
1.2
1.3
1.4

2.1
2.2

2.3

24
25
2.6

3.1
3.2

3.3
34

3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1

4.2

List of Tables
R

Correspondence between decimal and hexadecimal (base b = 16) numerals.
Addition and multiplication in Fy[z]/(f(z)), where f(z) =2? +z+1.
Addition and multiplication in Fo[z]/(g(z)), where g(xz) =2°.
Values of z, (see Equation 1.43) with corresponding o.

Converting English letters to elementsin Zgg.
Examples of methods for converting message symbols to bytes. The second column
in each table is the binary representation of the byte value and the third column is the
corresponding hexadecimal representation.
Shift cipher with k£ = 5. The second row represents the ciphertexts for the letters in the
Arstrow. . . . e
Definition of o, a key for substitution cipher.
Definition of 01, where o € Sog is a key for substitution cipher shown in Table 2.4. . .
Probabilities of each letter in a standard English text [BP82].

Initial permutation (IP) and final permutation (IP~!) in DES algorithm.
Expansion function Epgs : F3? — F3® in DES round function. The 1st bit of the output
is given by the 32nd bit of the input. The 2nd bit of the output is given by the 1st bit of
theinput. L
SBigs in DES found function. L
Permutation function Ppgs : F3? — F32 in DES round function. The 1st bit of the
output is given by the 16th bit of the input. The 2nd bit of the output comes from the
Tthbitof theinput.
Left and right part of the intermediate values in DES key schedule after PC1. The 1st
bit of the left part comes from the 57th bit of the master key (input to PC1)..
Number of key bits rotated per round in DES key schedule.
PC2in DESkeyschedule.
Specifications of Rijndael design, where blue-colored values are adopted by AES. . . .
AESSboX. e
Inverse of AESSbox. e
PRESENT Sbox. o o o e e e e
PRESENT pLayer. e
The Boolean function ¢, takes input « and outputs the Oth bit of SBpresent(). The
second last row lists the output of ¢ for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal formof po.

Difference distribution table for PRESENT Sbox (Table 3.11). The columns correspond
to input difference § and the rows correspond to output difference A. The row for
A = 0isomitted sinceitisempty. L L oo oL
In the first column, we list the possible values of a such that the following entries of
AES Sbox DDT are nonempty (0E - «, 4F), (09-a,8F), (0D-«,21), (OB-a,9F).
The corresponding hypotheses for koo @ 4C, k11 @ AA, koo @ 10, kzs @ 90 are listed in
the second, third and fourth column respectively. The correct value of « is marked in
blue. Detailed analysis are shown in Example 4.3.15.

ix

94

4.3

44

4.5

51
52

5.3
54

55

5.6

C1
D.1

D.2

D.3

E.1l

E2

Possible values of o and the corresponding key hypotheses for ko, k11, k22, k33, the
main diagonal of the AES master key. The correct key bytes are marked in blue. De-
tailed analysis are shown in Example4.3.15..
Relation between the output bits of Sboxes from the Quotient group Q;j’ and the input
bits of Sboxes from the corresponding Remainder group Rj*!. For example, the Oth
input bit of SBé-ﬂl in Rj"*! comes from the 1st output bit of SB}; in Qj%.
An example of T2, which specifies the output mask mqy sp for each input mask mj, sg
of PRESENT Sbox [SBM18] such that all possible values of m;, ® my, appear

Part of the difference distribution table for SBlq (Table33).
Part of the difference distribution table for AES Sbox (Table 3.9) corresponding to out-
put differences 0C, 69, 8C,and ED.o
Fault distribution tables for fault models (a) stuck-at-0, (b) bit flip, (c) random fault.

Fault distribution tables for fault models (a) stuck-at-0 with probability 0.5, (b) random-
AND with §, where ¢ follows a uniform distribution.
Lookup table for carrying out XOR between a, b (a,b € F2) using 01 as the codeword
forOand 10 asthecodeword for 1.
Lookup table for error-correcting code based computation of AND between a,b (a,b €
[F2), using the 3—repetition code { 000,111 }. 000 is the codeword for 0 and 111 is the
codeword for 1. L e e e

Sboxes in DES (Section 3.1.1) round function.

The Boolean function ¢; takes input & and outputs the 1st bit of SBprgsent(2). The
second last row lists the output of ¢, for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal formof ;.
The Boolean function ¢5 takes input « and outputs the 2nd bit of SBprpsent(). The
second last row lists the output of 5 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal formof 2.
The Boolean function ¢3 takes input & and outputs the 3rd bit of SBprespnt (). The
second last row lists the output of ¢3 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal formofps.

Table T5g, estimated signals for each integer between 00 and FF with Hamming weight
6, computed with the stochastic leakage model obtained in Code-SCA Step 6 from Sec-
tion 4.5.1.1. The first (resp. second) column contains the hexadecimal (resp. binary)
representations of the integers. The last column lists the corresponding estimated sig-

Sorted version of T5g from Table E.1 such that the estimated signals (values in the last
column) are in ascending order. The hexadecimal (resp. binary) representations of the
corresponding integers are in the first (resp. second) column. Words highlighted in
blue constitute the chosen binary code with Algorithm 4.5.

205

231

232

246

254
255

256

264

266
315

316

317

317

318

319

1.1
1.2
1.3

14
1.5

1.6
2.1

2.2
23
24
25
2.6
2.7
2.8

3.1
3.2
3.3
34
3.5
3.6

3.7
3.8

3.9
3.10

4.1

4.2

4.3

44

List of Figures

R

Probability density function of the standard normal random variable. 51
Probability density function of a normal random variable. 53
Probability density function f(z) for Z ~ N(0,1). P(Z > z,) = «, a corresponds to

theareaunder f(z)forz > zq.. o . L L 57
Probability density function for X ~xg. P(X > xZg) =o 57
Probability density functions for 7,, ~ ¢, (n = 2,5,10) and for the standard normal

random variable Z. 58
Probability density function for 75, P(T5 > ta5) = . . . o oo o v v v v i oo oot 58
Categorization of cryptographic primitives. The ones highlighted in blue color will be

discussed inthisbook. 70
ECBmode forencryption. 85
ECB mode for decryption 86
Original picture and encrypted picture with ECB and CBC modes. 86
CBCmode forencryption. 86
CBCmode fordecryption. 87
OFBmode forencryption. 87
OFB mode for decryption. 87
An illustration of Feistel cipher encryption algorithm. 90
An illustration of SPN cipher encryption algorithm. 91
An illustration of DES encryption algorithm. 93
Function fin DESround function. 94
DESkeyschedule.. 95
AES round function for round ¢, 1 <1 <Nr—1. SB, SR, MC and AK stand for SubBytes,

ShiftRows, MixColumns, and AddRoundKey respectively. 96
Key schedule for AES-128. 102
An illustration of PRESENT encryption algorithm. 103
Tworounds of PRESENT. i 104
PRESENT-80 key schedule. 104

Side-channel measurement setup used for the experiments: a laptop, the ChipWhisperer-
Lite measurement board (black), and the CW308 UFO board (red) with the mounted
ARM Cortex-M4 target board (blue). Note that the benchtop oscilloscope in the back

was only used for the initial analysis — all the measurements were done by the Chip-
Whisperer. 142
Power trace of the first 5 rounds of PRESENT encryption. A sequence of nop instruc-

tions was executed before and after the cipher computation to clearly distinguish the
operations. e 143
The averaged trace for 5000 traces from the Fixed dataset A (see section 4.1). The blue,
pink, and green parts of the trace correspond to addRoundKey, sBoxLayer, and pLayer,

respectively. 144
The averaged trace for 1000 plaintexts with the Oth bit equal to 0. The computation
corresponds to one round of PRESENT with a fixed round key.. 144

xi

xii

4.5
4.6
4.7
4.8
49
4.10
411

412

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

The averaged trace for 1000 plaintexts with the Oth bit equal to 1. The computation
corresponds to one round of PRESENT with a fixed round key..
The difference between traces from Figures4.4and 45.
Part of five random traces from the Fixed dataset A (see Section4.1).
Histogram of leakages at time sample ¢ = 3520 across 5000 traces from the Fixed dataset
Ao e
Histogram of leakages at time sample ¢ = 2368 across 5000 traces from the Fixed dataset
Ao
Histogram of leakages at time sample t = 392 across 5000 traces from the Random
plaintext dataset.
Histogram of leakages at time sample t = 392 across 10000 traces from the Random
dataset.
t-values (Equation 4.17) for all time samples 1,2, ..., 3600 computed with Fixed dataset
A and Fixed dataset B. The signal is given by the plaintext value and the fixed versus
fixed setting is chosen. Blue dashed lines correspond to the threshold 4.5 and —4.5. . .
t-values (Equation 4.17) for all time samples 1,2,...,3600 computed with 50 traces
from Fixed dataset A and 50 traces from Fixed dataset B. The signal is given by the plain-
text value and the fixed versus fixed setting is chosen. Blue dashed lines correspond
to the threshold 4.5and —4.5. L oo
t-values (Equation 4.18) for all time samples 1,2, ..., 3600 computed with Fixed dataset
A and Random plaintext dataset. The signal is given by the plaintext value and the fixed
versus random setting is chosen. Blue dashed lines correspond to the threshold 4.5
and —4.5. . . L e
t-values (Equation 4.18) for all time samples 1,2,...,3600 computed with 50 traces
from Fixed dataset A and 50 traces from Random plaintext dataset. The signal is given by
the plaintext value and the fixed versus random setting is chosen. Blue dashed lines
correspond to the threshold 4.5and —4.5.
t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. T; contains M; = 634 traces and T3 contains My = 651 traces. The
signal is given by the Oth Sbox output and the fixed versus fixed setting is chosen.
Blue dashed lines correspond to the threshold 4.5and —4.5.
t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. Both T1 and T contain 50 traces (i.e. M; = My = 50). The signal is
given by the Oth Sbox output and the fixed versus fixed setting is chosen. Blue dashed
lines correspond to the threshold 4.5and —4.5.
t-values (Equation 4.18) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. T contains M7 = 634 traces and T9 contains My = 10000 traces. The
signal is given by the Oth Sbox output and the fixed versus random setting is chosen.
Blue dashed lines correspond to the threshold 4.5and —4.5.
t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. Both T; and 7> contain 50 traces (i.e. M; = My = 50). The signal
is given by the Oth Sbox output and the fixed versus random setting is chosen. Blue
dashed lines correspond to the threshold 4.5and —4.5.
Sample variance of the signal for each time sample, computed using Random dataset.
The signal is given by the exact value of the Oth Sbox output.
SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the Oth Sboxoutput.
Sample variance of the noise for each time sample, computed using Random dataset.
The signal is given by the exact value of the Oth Sbox output.
Sample variance of the signal for each time sample, computed using Random dataset.
The signal is given by the Hamming weight of the Oth Sbox output.
SNR for each time sample, computed using Random dataset. The signal is given by the
Hamming weight of the Oth Sboxoutput.
Sample variance of the noise for each time sample, computed using Random dataset.
The signal is given by the Hamming weight of the Oth Sbox output.

145
145
146

159

159

160

160

161

164

xiii

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

441

4.42

443

4.44

Sample variance of the signal for each time sample, computed using Random dataset.

The signal is given by the Oth bit of the Oth Sbox output.. 167
SNR for each time sample, computed using Random dataset. The signal is given by the

Oth bit of the Oth Sboxoutput., 167
Sample variance of the noise for each time sample, computed using Random dataset.

The signal is given by the Oth bit of the Oth Sbox output.. 168
Sample correlation coefficients r; ; (¢ = 1,2, ..., 16) for all time samplest = 1,2, ..., 3600.
Computed following Equation 4.21 with the identity leakage model and the Random
plaintext dataset. The blue line corresponds to the correct key hypothesis ki = 9. . . . 171
Sample correlation coefficients ;¢ ; (corresponds to the correct key hypothesis 9) for all

time samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 171
Sample correlation coefficients r; (corresponds to a wrong key hypothesis 0) for all

time samples ¢t = 1,2,...,3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 172
Sample correlation coefficients r5; (corresponds to a wrong key hypothesis 4) for all

time samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 172
Sample correlation coefficients r14; (corresponds to a wrong key hypothesis D) for all

time samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 173
Sample correlation coefficients r; . (¢ = 1,2, ..., 16) for all time samplest = 1,2, ..., 3600.
Computed following Equation 4.21 with the Hamming leakage model and the Random
plaintext dataset. The blue line corresponds to the correct key hypothesis kjg = 9. . . . 173
Sample correlation coefficients 71 ; (corresponds to the correct key hypothesis 9) for all
timesamplest = 1,2, ...,3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 174
Sample correlation coefficients r; (corresponds to a wrong key hypothesis 0) for all

time samplest = 1,2,...,3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 174
Sample correlation coefficients 75 ; (corresponds to a wrong key hypothesis 4) for all
timesamplest = 1,2, ...,3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 175
Sample correlation coefficients r14; (corresponds to a wrong key hypothesis D) for all

time samplest = 1,2, ...,3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 175

Sample correlation coefficients r%%l (¢t =1,2,...,16) for POI = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset.
The blue line corresponds to the correct key hypothesis k1o =9. 177

Sample correlation coefficients r%fbl (¢t =1,2,...,16) for POI = 392. Computed fol-
lowing Equation 4.23 with the Hamming weight leakage model and the Random plain-
text dataset. The blue line corresponds to the correct key hypothesis k1g = 9. 178

Sample correlation coefficients r%}’OI (¢ = 1,2,...,16) for POI = 392. Computed
following Equation 4.23 with the stochastic leakage model and the Random plaintext
dataset. The blue line corresponds to the correct key hypothesis kjg = 9. 180
Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of v, the Oth Sbox output. Three POlIs (time samples 392, 218, 1328) were chosen.
The blue line corresponds to the correct key hypothesis k1= 9. 183
Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by wt (v),
the Hamming weight of the Oth Sbox output. Three POIs (time samples 392, 1309, 1304)
were chosen. The blue line corresponds to the correct key hypothesis kjg = 9. 184
SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 1st Sboxoutput. 184

Xiv

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of the 1st Sbox output. One POI (time samples 404) was chosen. The blue line
corresponds to the correct key hypothesis 8.
Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of the 1st Sbox output. One POI (time samples 464) was chosen. The blue line
corresponds to the correct key hypothesis 3.

Sample correlation coefficients TZ{V{J’OI (¢t =1,2,...,16) for POI = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset
arranged in reverse order. The blue line corresponds to the correct key hypothesis

Sample correlation coefficients r%fm (¢ =1,2,...,16) for POI = 392. Computed fol-
lowing Equation 4.23 with the Hamming weight leakage model and the Random plain-
text dataset arranged in reverse order. The blue line corresponds to the correct key
hypothesis FL0 = 9 o o e e
Estimations of success rate computed following Algorithm 4.1 for profiled DPA attacks
based on the stochastic leakage model, the identity leakage model, and the Hamming
weight leakage model using the Random plaintext dataset as attack traces.
Estimations of guessing entropy computed following Algorithm 4.1 for profiled DPA
attacks based on the stochastic leakage model, the identity leakage model and the
Hamming weight leakage model using the Random plaintext dataset as attack traces. . .
Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attacks using the Random plaintext dataset as attack traces and the Random dataset as
profiling traces.
Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks using the Random plaintext dataset as attack traces and the Random dataset
asprofiling traces. L L e
Estimations of success rate computed following Algorithm 4.1 for leakage model based
and template-based DPA attacks with the Random plaintext dataset as attack traces.
Estimations of guessing entropy computed following Algorithm 4.1 for leakage model
based template-based DPA attacks with the Random plaintext dataset as attack traces.

A possible sequence of XOR differences between the cipher states of two encryptions,
where colored squares correspond to active bytes. AK, SB, SR, and MC stand for Ad-
dRoundKey, SubBytes, ShiftRows and MxiColumns respectively.
An example of how the XOR differences between the cipher states can change after
each round operation of PRESENT. The output differences of the four active Sboxes in
round 1 are 1. The output difference of the single active Sbox in round 2isalso 1. . . .
[ustration of how active bytes change for all four differential patterns that start with
ASp = 1000010000100001 and converge in round 1. Blue squares correspond to ac-
tive bytes. AK, SB, SR, and MC stand for AddRoundKey, SubBytes, ShiftRows and
MxiColumns respectively.
An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ASy given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 1. The output difference of
the single active Sboxinround 2is 4.. o L oo oL
An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ASy given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 4. The output difference of
the single active Sboxinround 2is 1.. L Lo L o L oL

186

189

189

193

195

XV

4.60

4.61

4.62
4.63

4.64

4.65

4.66
4.67
4.68
4.69
4.70
4.71

4.72

473

4.74

4.75

4.76

4.77

4.78

4.79

An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ASy given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 4. The output difference of

the single active Sboxinround 2is 4.. oL 199
[llustration of how active bytes change from round 1 to round 3 of AES computation,

for differential patterns that start with ASy = 1000010000100001. 200
The difference between the averaged traces of plaintext pairs. 200

Zoom in to the SubBytes computation (pink area) in Figure 4.62. The difference be-
tween the averaged traces of plaintext pair from Equations 4.47, 4.48, 4.49, and 4.50
are in red, blue, green and yellow respectively. They correspond to a single active col-
umn at the first, second, third, and fourth positions respectively during the SubBytes
operationinround 3. L L 201
The difference between the averaged traces of Sy and Sj; from Equation 4.51 (in red),
plaintext pair from Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53
(in green). The averaged trace for Sy is in gray. With this gray plot, similar to Figure 4.3
we can find the rough time interval for the sBoxLayer operation in round 3, which is
coloredinpink. e 202
Zoom in to the sBoxLayer computation (pink area) in Figure 4.64. The difference be-
tween the averaged traces of Sy and S, from Equation 4.51 (in red), plaintext pair from
Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53 (in green). They

correspond to active Sboxes SBY; SB3; SB3, SB3, SBY, before pLayer of round 3. 203
Anillustration of differential values for the differential pattern ASy = 1000010000100001
and AS; = 1000000000000000. o v it 203

The possible differential patterns for AES encryption for four different values of ASy. 207
The possible differential patterns for PRESENT encryption, ASy = 00000000FFFF0000.208
The possible differential patterns for PRESENT encryption, ASy = 0000FFFF00000000.208
The possible differential patterns for PRESENT encryption, ASy = FFFF000000000000.209
One trace corresponding to the computation of Algorithm 4.2. We can see ten similar
patterns. 211
Highlighted two types of patterns from Figure 4.71. One pattern with a single cluster
of peaks (colored in green) and one with more than one cluster of peaks (colored in

blue). e e e e e 211
One trace corresponding to the computation of Algorithm 4.4. We can see 18 similar
patterns. e 214
Sample correlation coefficients r; (Equation 4.63) for time samples t = 1,2,...,9500.
We can see asequence of 18 patterns. oo L. 215

Sample correlation coefficients from Figure 4.73 (in red) with one power trace from
Figure 4.74 in gray. We can see that the 18 patterns corresponding to sample correlation
coefficients and those corresponding to leakages coincide. 216
There are mainly two types of patterns in Figure 4.74: one with a lower peak; and one
with a higher peak as well as a small high peak at the end of the pattern. In this figure,

they are highlighted in green and blue respectively. 216
An example of a trace from dataset T;, obtained in Code-SCA Step 3, which corre-
sponds to MOV instruction surrounded by NOPs. 218
SNR values for each time sample computed with dataset T obtained in Code-SCA
Step 3. The highest pointisour POI =430. 219

Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black
line corresponds to unprotected intermediate values. The blue line corresponds to
encoded intermediate values with the binary code C(g16) (Equation 4.71), where all
codewords have Hamming weight6. 222

XVi

4.80

4.81

4.82

4.83

4.84

4.85

4.86

4.87

4.88

4.89

4.90

491

51
52

5.3

54

Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The
black line corresponds to unprotected intermediate values. The blue line corresponds
to encoded intermediate values with the binary code C (g 15) (Equation 4.71), where all
codewords have Hamming weight6.
Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black
line corresponds to unprotected intermediate values. The other lines correspond to
encoded intermediate values with (8, 16)—binary codes obtained following Code-SCA
Step 1 — Code-SCA Step 7, where we have set wg =2,3,4,5,6.
Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The
black line corresponds to unprotected intermediate values. The other lines correspond
to encoded intermediate values with (8, 16)—binary codes obtained following Code-
SCA Step 1 — Code-SCA Step 7, where we have set wg = 2,3,4,5,6.
One trace corresponding to the computation of Algorithm 4.8. We can see ten similar
patterns. L e
One trace corresponding to the computation of Algorithm 4.9. We can see 21 similar
patterns. Each of them corresponds to one execution of MonPro..
Sample correlation coefficients computed following attack steps from Section 4.4.2
with 10, 000 traces for the computation of Algorithm 4.9. The trace from Figure 4.84 is
gray in the background. We can see that there are 21 patterns in the sample correlation
coefficient plot that coincide with those from Figure 4.84 — each corresponds to one
execution Of MONPTO. . . v v v v v v it
There are mainly two types of patterns in the sample correlation coefficient plot from
Figure 4.85 — one with a higher peak cluster (colored in blue) and one with a lower
peak cluster (colored in green). Among the blue-colored patterns, we further divide
them into two types — one with a high peak at the end (in lighter blue) and one without
this peak (indarkerblue). o
An illustration of the relation between Sbox outputs in a Quotient group to Sbox inputs
in the corresponding Remainder group. Sboxes in Quotient groups Q0%, Q1%, Q2¢, Q3"
and their corresponding Remainder groups R0**!, R1iT!, R2+1 R3*+1! are in ,
blue, ,red colorsrespectively. o o o
t-values (Equation 4.17) for all time samples 1,2,...,3600 computed with 50 traces
from Masked fixed dataset A and 50 traces from Masked fixed dataset B. The signal is
given by the plaintext value and the fixed versus fixed setting is chosen. Blue dashed
lines correspond to the threshold 4.5and —4.5.
SNR computed with Masked random dataset. The signal is given by the exact value of
the OthSboxoutput..
Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random
plaintext dataset (inred) L L
Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random
plaintext dataset (inred).. L

Anillustrationof DFA. L
Visual illustration of how the fault propagates when a fault is injected at the beginning
of one AES round (not the last round) in byte sgo. Blue squares correspond to bytes
that can be affected by thefault. o 0 o L.
Visual illustration of how the fault propagates when a fault is injected at the beginning
of one AES round in bytes (a) S00, S11, (b) S00, S11, S22, and (C) S00, S11, S22, S33- Blue
squares correspond to bytes that can be affected by the fault.
Visual illustration of fault propagation in the 9th round of AES when the fault was
injected in the diagonal sqo, s11, 22, s33 of the AES cipher state at the end of round 7. .

231

235

251

Xvii

55

5.6

6.1

6.2

6.3

6.4
6.5

6.6

6.7

6.8

6.9
6.10

Fault propagation for random byte fault injected in the “diagonals” of the cipher state

attheendofround 7. 255
[lustration of fault propagation for a fault injected in the first byte of Sg (the cipher
stateattheend of round 8). 259
Power consumption types in CMOS circuits. The main type considered for SCA is the
switchingpower. 300
Switching of the CMOS circuit, showing: (a) the charging path from Vpp to Cp; (b) the
discharging path C7, to GN D of the capacitiveload. 301
Digital sampling of a continuous signal with 10 samples of (a) low-frequency signal,
(b) high-frequency signal. L o 302
Depiction of a voltage glitchonasmartcard. 303
Depiction of (a) laser fault injection on an AVR microcontroller mounted on Arduino
UNO board and (b) zoomed infrared image of thechip. 304
Depiction of a chemical decapsulation by using fuming nitricacid. 305

Absorption depth in silicon. The most common laser wavelengths for testing inte-
grated circuits are highlighted — 532 nm (green), 808 nm (near-infrared), and 1064

(near-infrared). L e 305
Depiction of a pulsed electromagnetic fault injection on an AVR microcontroller mounted

on Arduino UNOboard. 306
A depiction of a generic design of an electromagnetic fault injection probe. 307

Different ways of spatial arrangement of aggressor rows (black) and target/victim
rows (red/pink) inDRAM. 308

1.1
1.2

3.1
3.2
3.3
34

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

3.15

3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2

43
44

4.5
4.6

4.7

4.8

List of Algorithms

Euclidean algorithm. L 7
Extended Euclidean algorithm. 7
KeyExpansion — AES-128 key schedule. 101
A lookup table implementation of PRESENT Sbox in pseudocode. 105
A more efficient lookup table implementation of PRESENT Sbox in pseudocode. 105
A lookup table implementation combining two PRESENT Sboxes in parallel in pseu-

docode. e 105
An implementation that combines sBoxLayer and pLayer for PRESENT. 108
Bitsliced implementation of round i of PRESENT, 1 <¢<31. 112
Right-to-left square and multiply algorithm for computing modular exponentiation . . 117
Left-to-right square and multiply algorithm for computing modular exponentiation. . . 117
Montgomery powering ladder for computing modular exponentiation. 119
Standard multiplication. L L Lo 123
Blakely’s method for computing modular multiplication. 124
Blakely’s method for computing modular multiplication by takingw =1. 125
Right-to-left square and multiply algorithm with Blakely’s method for modular multi-

plication. L 126
Left-to-right square and multiply algorithm with Blakely’s method for modular multi-

plication. L 127
Montgomery powering ladder with Blakely’s method for computing modular multipli-

cation. e 129
MonPro, Montgomery product algorithm. 131
MonPro, Montgomery product algorithm. 132
Montgomery’s method for computing modular multiplication. 135
Montgomery right-to-left square and multiply algorithm. 136
Montgomery left-to-right square and multiply algorithm. 136
Montgomery powering ladder with Montgomery’s method for modular multiplication. 138
Computation of estimations for guessing entropy and successrate. 188
Left-to-right square and multiply algorithm for computing modular exponentiation (see

Algorithm 3.8) with parameters from Equation4.59.. 210
MonPro, Montgomery product algorithm with parameters from Equation 4.59. 213
Montgomery left-to-right square and multiply algorithm with parameters from Equa-

tion 4.59. MonPro is given by Algorithm4.3. L. 213
Finding the optimal code for encoding countermeasure against SCA. 221
Right-to-left square and multiply-always algorithm for computing modular exponenti-

ation. A hiding-based countermeasure against SCA attacks. 224
Left-to-right square and multiply-always algorithm for computing modular exponenti-

ation. A hiding-based countermeasure against SCA attacks. 225

Protected implementation of Algorithm 4.2. Left-to-right square and multiply-always
algorithm for computing modular exponentiation (see Algorithm 3.8) with parameters
from Equation4.59.. 225

Xix

49

4.10

5.1
52
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

513

Montgomery left-to-right square and multiply-always algorithm with parameters from

Equation 4.59. MonPro is given by Algorithm4.3. 226
Masked implementation of PRESENT. 234
Part of an implementation for PRESENT encryption that combines sBoxLayer and pLayer

in AVR assembly [PV13, AV13]. A pseudo-code can be found in Algorithm 3.5 261
A simple program to demonstrate protection against single instruction skip attacks. . . 263
Infective Countermeasure for AES-128. L. 267
Computation of AES round in the infective Countermeasure for AES-128 from Algo-
rithm 5.3, . e 269
Computation of redundant AES round in the infective Countermeasure for AES-128
from Algorithm 5.3. L 269
Computation of the dummy round in the infective Countermeasure for AES-128 from
Algorithm 53.. 269
Computing RSA signature with the right-to-left square and multiply algorithm. 274
RSA signature computation with Montgomery powering ladder and Blakely’s method 279
An algorithm involving computing modular multiplication with Blakely’s method. . . 281
RSA signature signing computation with the right-to-left square and multiply algo-
rithm and Blakely’smethod. 281
Modified Algorithm 5.9 to counter the safe error attack. 292
RSA signature computation with Montgomery powering ladder and Blakely’s method
(Algorithm 5.8), protected against the safe error attack from Section 5.3.4. 293

RSA signature signing computation with the right-to-left square and multiply algo-
rithm and Blakely’s method (Algorithm 5.10), protected against the safe error attack
from Section 5.3.4.2. e 294

Chapter 1

Mathematical and Statistical Background

IB~

Abstract

To study attacks on cryptographic algorithms, we need to first understand the com-
putations that are carried out in each step of those algorithms. To achieve this, we
need knowledge of certain math concepts. In this chapter, we will introduce the nec-
essary mathematical background for the rest of the book, including abstract algebra,
linear algebra, coding theory, and probability theory.

Keywords: abstract algebra, modular arithmetic, linear algebra, coding theory, prob-
ability theory, hypothesis testing

To study attacks on cryptographic algorithms, we need to first understand the computations that
are carried out in each step of those algorithms. To achieve this, we need knowledge of certain math
concepts. In this chapter, we will introduce the necessary mathematical background for the rest of the
book, including abstract algebra, linear algebra, coding theory, and probability theory. In Section 1.8,
we will also provide statistical tools that will be useful for Chapter 4.

1.1 Preliminaries

Before we start with math, let us first introduce the basic notations.

1.1.1 Sets

By a set, we refer to a collection of objects without repetition. We will normally use a capital letter to
denote a set. For example, A = { 0,1, 2 } is a set consisting of three numbers, and B = { o, A, } isa
set consisting of three shapes. The objects in a set S are called elements of S. If an element a is in a set
S, we write a € S. If an element a is not in S, we write a € S. When there is no element in a set, we
call it an empty set and denote it by (). The total number of elements in a set .S is called the cardinality
of S, denoted by |S]|.

Now let us look at two sets, S and 7. We say S is a subset of T, denoted by S C T, if any element
of S is also an element of 7. Namely, S C T if for any s € S, s € T. Two sets are said to be equal if
they contain the same elements. In other words, S =Tif S C T'and T" C S. The power set of a set S,
denoted by 29 is the set of all subsets of S. We note that by definition, S € 25 € 2% and ® C S for
any set S.

Example 1.1.1. Let 7= {0,1,2,3 } and S = { 2,3 }, then
e SCTandT ¢ S.
e 2c5,0¢4565.
o |S|=2,|T|=4.
e 25=1{0,5,{2},{3}}.

The union of two sets A, B, denoted A U B, is the set that contains all elements from A or B.
AUB:={z | z€ Aorz e B}.
The intersection of A, B, denoted A N B, is the set that contains elements in both A and B.
ANB:={z | zr€Aandz € B}.
Example 1.1.2. Let A={0,1,2}and B={2,3,4},then AUB ={0,1,2,3,4}and ANB={2}.
Similarly, the union and the intersection of n sets A1, As, ..., A, are defined as follows:
LnJAi :={a | a€ A, forsomei}, ﬁAi ={a | a€ A;foralli}.
i=1 i=1
The difference between set A and set B is the set of all elements of A that are not in B:
A—B:={a | acAa¢g¢B}. (1.1)
The complement of a set A in a set S is the difference between S and A4,
A =S—-A={s | seS,s¢gA}.
The Cartesian product of A and B is the set of ordered pairs (a,b) such thata € Aand b € B,
AxB:={(a,b) | ac A,be B}.

The Cartesian product of n sets can be defined similarly,
HAi :={(a1,a2,...,ayn) | a; € A;foralli}.
i=1

Example 1.1.3. Let A ={2,4,6}, B={1,3,5},and S = AU B. Then A — B = A; the complement
of Ain S'is B, and

Ax B = { (27 1)a (27 3)7 (27 5)7 (4a 1)7 (47 3)7 (47 5)7 (67 1)7 (67 3)7 (67 5) } .
We note that in general, A x B # B x A. In Example 1.1.3,

BxA={(1,2),(3,2),(5,2),(1,4),(3,4),(5,4),(1,6),(3,6),(5,6) } # A x B.

1.1.2 Functions

Functions (also called maps) will be used a lot in the rest of the book. Here we provide the formal
definition.

Definition 1.1.1. A function/map f : S — T is a rule that assigns each element s € S a unique element
tel.

e Sis called the domain of f.
e Tis called the codomain of f.
e If f(s) =t, thent is called the image of s, and s is called a preimage of t.

e Forany AC T,
FTHA) :={seS | f(s)eA}

is called the preimage of A under f.

Example 1.1.4. Define

fR — R

r — 22

where R is the set of real numbers. Then f has domain R and codomain R.
Let A= {1} CR, the preimage of A under f is given by

FHA) = {11}

1 is the image of —1 and —1 is a preimage of 1. 1 is another preimage of 1.
Let B={—-1}CR,then f~1(B)=0.

We note that the image of an element s € S is unique, and preimages of t € 7' may not exist. Even
if a preimage of ¢t € T exists, it may not be unique. In case every ¢ € T has a preimage, we say that f
is surjective. In case such a preimage is also unique, we say that f is bijective.

Definition 1.1.2. e A function f : § — T is called onto or surjective, if given any ¢ € T, there exists
s € S,such thatt = f(s).

e A function f : S — T is said to be one-to-one (written 1-1) or injective if for any s, s € S such
that s; # s, we have f(s1) # f(s2).

* fis called 1-1 correspondence or bijective if f is 1-1 and onto.

Example 1.1.5. * Define f

f:R — RZO

r — 22

then f is surjective as for any y € R>g, we can find a preimage x of y by calculating z = /y.
But f is not injective, since f(—1) = f(1) = 1.

¢ Define g
g:R — R
T — X
It can be easily seen that g is bijective.

As mentioned above, if f : S — T is not surjective, there exists ¢ € T such that f~1(¢) = 0. If f is
not injective, there are at least two s1, s € S such that s; # sp and f(s1) = f(s2) = t, which means
f71(t) is not a unique element. However, when f is bijective, f ! : T — S is a function - it assigns to
each t € T'a unique element s € S. In such a case, f ~1is called the inverse of f.

Example 1.1.6. Define f

f*R — R

r = s

Then the inverse of f exists and is given by
'R - R

When the domain of one function is the codomain of another function, we can define the compo-
sition of those two functions.

Definition 1.1.3. For two functions f : T'— U, g : S — T, the composition of f and g, denoted by fog,
is the function

fog:S — U
s = flg(s)).

Example 1.1.7. Suppose we have f

f —
r — 22
and g
g — R
r — 2

Then the composition of f and g is given by
fog:R — R
r = (2%)? =",

For a function whose domain and codomain are the same, say f : S — S, we can define fo fo---of
in a similar way. For simplicity, we write f" for the composition of n copies of f. When f : § — S'is
bijective, f~! is a function. And we write f~" for the composition of n copies of f~!.

Example 1.1.8. Define

f — R
r — 22
then
ff:R —- R
r = a2

1.1.3 Integers

We deal with integers every day. We would write one hundred and twenty-three as 123 because
123 =1x100+2x 10+ 3 x 1.

Such a representation of an integer is called a base—10 representation. In general, for any integer
b > 2, we can have a base—b representation for a positive integer.

Theorem 1.1.1. Let b > 2 be an integer. Then any n € Z, n > 0 can be expressed uniquely in the form
-1
n=>y ab, (1.2)
i=0

where 0 <a; <b(0<i</¥),ar—1 #0,and ¢ > 1. ap_jas_5...ajao is called a base—0b representation for
n. £ is called the length of n in base—b representation.

The proof can be found in e.g. [Kos02, page 81]. To emphasize the base b, we sometimes put b
as a subscript for the representation. When b = 2, a base—2 representation is also called a binary
representation, ¢ is also called the bit length of n and ay is said to be the least significant bit (LSB) of n,
ag—1 is said to be the most significant bit of n. When b = 16, a base—16 representation is also called a
hexadecimal representation.

The correspondence between decimal numerals and hexadecimal (base b = 16) numerals is listed
in Table 1.1.

Basel0|O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Base 16 | 0 2 3 4 5 6 7 8 9 A B C D E F

Table 1.1: Correspondence between decimal and hexadecimal (base b = 16) numerals.

Example 1.1.9.
310 = 112 = 316.
419 = 1009 = 444.
6019 = 1111002 = 3Cqs.

We have learned in primary school that when we divide 6 by 4 we get quotient 1 and remainder 2.
Such a computation can be done thanks to the following theorem. The proof involves well-ordering
principles of integers, which will not be covered in this book. Interested readers are referred to
e.g. [Her96, page 22].

Theorem 1.1.2. If m,n € Z, n > 0, then there exist ¢, € Z,such that 0 <r <nandn = gm +r.
q is called the quotient and r is called the remainder.

Definition 1.1.4. Given m,n € Z, if m # 0 and n = am for some integer a, we say that m divides n,
written m|n. We call m a divisor of n and n a multiple of m. If m does not divide n, we write m { n.

Example 1.1.10. 3|6, —2|4, 1|8, 5/5.
°* 719,416.
* All the positive divisors of 4 are 1,2, 4.
¢ All the positive divisors of 6 are 1, 2, 3, 6.

We can see that there are some common divisors between 4 and 6. The largest of them will be of
importance to us. Formally, we can define the greatest common divisor between two integers that
are not both zero.

Definition 1.1.5. Take m,n € Z, m # 0 or n # 0, the greatest common divisor of m and n, denoted
ged(m,n), is given by d € Z such that

e d>0,
* d|m, d|n, and
e if ¢|m and ¢|n, then c|d.

Example 1.1.11. ¢ Continuing Example 1.1.10, common divisors of 4 and 6 are 1 and 2. So gcd (4, 6) =
2.

e All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3. So ged(2,3) =
1.

It can be proven that the greatest common divisor of two integers (not both zero) always exists
and it is unique. The proof of the theorem can be found in e.g. [Her96, page 23].

Theorem 1.1.3 (Bézout’s identity). For any m,n € Z, such that m # 0 or n # 0, gecd(m, n) exists and
is unique. Moreover, there exist s, ¢ € Z such that gcd(m,n) = sm + tn.

The equation ged(m, n) = sm + tn is usually called the Bézout’s identity. We note that the choices
of s,t are not unique. Indeed, if gcd(m,n) = sm + tn, then ged(m, n) = (s + n)m + (t — m)n.

Example 1.1.12.

ged(4,6) = 2=(—1)x4+1x6.
ged(2,3) = 1=(—4)x2+3x3.

Next, we prove some simple but useful results.
Lemma 1.1.1. For any m,n,a € Z, we have

(1) 1|n for all n.

(2) If m # 0, then m|0.

(3) If m|n and n|a, then m|a.

(4) If m|1, thenm = £1.

(5) If m|n and n|m, then m = £n.

(6) If m|n and m|a, then m|(un + va), Yu,v € Z.!
(7) If ajmn and ged(a, m) = 1, then a|n.

(8) If m|a, n|a and ged(m, n) = 1, then mn|a.

Proof. Proofs of (1)—(4) easily follow from the definitions.

To prove (5), as m|n and n|m, by Definition 1.1.4, there are integers c;, ¢z such that n = mc; and
m = con. This gives n = ncjcp and we have c¢ica = 1. Since all the divisors of 1 are 1, we have
61262:101‘01262:—1.

To prove (6), since m|n, m|q, there are integers c;, ¢z such that n = mc; and ¢ = mca. Then

un + vq = ucym + veam = (ucy + veg)m

is a multiple of m.

To prove (7), we note that by Bézout’s identity, there exist s,t € Z such that as + mt = 1. Multi-
plying both sides by n, we get asn + mnt = n. Since alasn and a|mnt, we have a|n.

Finally, we prove (8). Since m|a, a = mk for some k € Z. We have n|mk. Now because gcd(m,n) =
1, by (7), nlk and so k = nk’ for some k' € Z. Thus a = mnk’ is divisible by mn. d

In general, to find gcd(m, n), it would be too time-consuming to list all the divisors of m and n.
The following theorem allows us to simplify the computation.

Theorem 1.1.4 (Euclid’s division). Given m,n € Z, take ¢, r such that n = gm + r. Then ged(m, n) =
ged(m, r).

Proof. We first note that we can find ¢, r by Theorem 1.1.2. By Lemma 1.1.1 (6), gcd(m, n)|n — gm, i.e.
ged(m, n)|r. Similarly we have ged(m, r)|gm + r, i.e. gcd(m, r)|n.

By Definition 1.1.5, ged(m, n)| ged(m,) and ged(m, r)| gcd(m, n). By Lemma 1.1.1 (5), ged(m, r) =

+ gcd(m, n). By Definition 1.1.5, gcd(m,r) > 0 and ged(m,n) > 0. We have gcd(m,n) = ged(m,r).

O

Thus, to find ged(m, n), we can compute Euclid’s division repeatedly until we get r = 0.

Example 1.1.13. We can calculate ged (120, 35) as follows:

120 =35 x 3+ 15 ged(120,35) = ged(35, 15),
35=15x2+4+5 gcd(35,15) = ged(15,5),
15=5x 3 ged(15,5) = 5 = ged(120,35) = 5.

The procedure is called the Euclidean algorithm and the details are provided in Algorithm 1.1. By
Theorem 1.1.4, ged(m, n) = ged(m, r) after each loop from line 1. In the end, we get gcd(m, n).

Furthermore, with the intermediate results we have from the Euclidean algorithm, we can also
find a pair of s, t such that gcd(m, n) = sm + tn (Bézout’s identity).

Example 1.1.14. Continuing Example 1.1.13, we can find integers s, t such that ged (120, 35) = 120s +

35t as follows:
5=35—-15x%x2, 15=120-35 x 3,
= 5=35—(120—-35%x3) x2=120 x (—2) + 35 x 7.

Such a procedure is called the extended Euclidean algorithm.

IThe notation V stands for “for all”.

Algorithm 1.1: Euclidean algorithm.

Input: m, n// mnecZ, m#0
Output: ged(m,n)
1 while m # 0 do

2 r :n%m/ / remainder of m divided by m
3 n=m

4 m=r

5 return r

Example 1.1.15. We can calculate gcd(160, 21) using the Euclidean algorithm

160 = 21 x 7+ 13 ged(160,21) = ged(21,13),
21=13x 1+8 ged(21,13) = ged(13,8),
13=8x1+5 ged(13,8) = ged(8,5),
8=5x1+3 ged(8,5) = ged(5, 3),
5=3x1+2 ged(5,3) = ged(3,2),
3=2x1+1 ged(3,2) = ged(2,1),

9=1x2 ged(2,1) = 1 = ged(160,21) = 1

By the extended Euclidean algorithm, we can also find integers s, ¢ such that gcd (160, 21) = s160+t35

1=3-2, 2=5-3,
3=8-5 5=13-38,
8=21-13, 13=160—21 x 1.

We have

1 = 3-(5-3)=3x2-5=8x2-5x3=8x2—-(13—-8)x3
= 8x5-13x3=21x5-13x8=21x5—(160—21x7) x8
= (—8) x 160+ 61 x 21.

An algorithmic description of the extended Euclidean algorithm is shown in Algorithm 1.2. By
Definition 1.1.5, m # 0 or n # 0. If m = 0, ged(m,n) = n. If n = 0, gcd(m,n) = m. Both cases are
trivial, hence in the algorithm, we assume n # 0 and m # 0. We also note that we can just compute
the coefficient s and then compute ¢ using s.

Algorithm 1.2: Extended Euclidean algorithm.

Input m, n// mmnecZ, n#0, m#0
Output: s, ¢ such that gcd(m7 n) =sm+tn
15s=0,8s=1,r=m,rr=n
2 while r # 0 do
// quotient of rr divided by r
3 qg=rr/r
4 tmp=r
// remainder of rr divided by r
r=rr%r
rr =1tmp
tmp = s
§=85—q*s
§s = tmp

© 0 NN S G

// rr=ged(m,n)
10 t = (rr—ss*n)/m
11 return ss,t

Definition 1.1.6. * For m,n € Z such that m # 0 or n # 0, m and n are said to be relatively
prime/ coprime if gcd(m,n) = 1.

e Givenp € Z, p > 1. pis said to be prime (or a prime number) if for any m € Z, either m is a
multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p, m) = 1).
e Givenn € Zn > 1. If nis not prime, it is said to be composite (or a composite number).

Example 1.1.16. ¢ 4and 9 are relatively prime.
¢ 8and 6 are not coprime.
* 2,3,5,7 are prime numbers.

* 6,9,21 are not prime numbers.

We have the following lemma concerning prime numbers.
Lemma 1.1.2. For p € Z a prime number, if p| []?"_; a;, where a; € Z, then pla; for some i (1 < i < n).
Proof. If pla;, then we are done. Otherwise, gcd(p,a1) = 1, by Lemma 1.1.1 (7), we have p|[[;", a;.

We can repeat the argument and conclude that p|a; for some i. O

It can be proven that an integer n > 1 is either a prime number or a product of prime numbers
(see e.g. [Her96, page 26]). Then, we have the Fundamental Theorem of Arithmetic which says that
this product is unique up to permutation.

Theorem 1.1.5 (The Fundamental Theorem of Arithmetic). For any n € Z, n > 1, n can be written in

the form
k
n=]]rf
i=1

where the exponents e; are positive integers, pi, p2, . .., pr are prime numbers that are pairwise dis-
tinct and unique up to permutation.

Proof. We prove by contradiction. Assume the theorem is false. Let n € Z (n > 1) be the smallest
integer with two distinct factorizations. We can write

k ¢
€4 d;
n=[Ir" =114
i=1 j=1

Since p1 | H§:1 q;lj, by Lemma 1.1.2, pi|g; for some j. Without loss of generality, we assume p1|q;.

Since p; and ¢; are prime numbers, we have p; = ¢;. Then the integer n’ = Hf:g Pt =]_[5:2 q;lj has
two distinct factorizations and n’ < n, contradicts the minimality of n.]

Example 1.1.17. 20 = 22 x 5,135 = 33 x 5.

1.2 Abstract Algebra

In this section, we discuss the basics of abstract algebra and get to know a few abstract structures.
Most of us are already familiar with examples of such structures, probably just not by the name.
Those structures will become useful when we discuss modern cryptographic algorithms.

1.2.1 Groups

First, we define a group.

Definition 1.2.1. A group (G, -) is a non-empty set G with a binary operation - satisfying the following
conditions:

* G is closed under - (closure property), Vgi,92 € G, g1 - g2 € G.
e -isassociative, Vg1, 92,93 € G, g1 - (92 - 93) = (91 - 92) - g3-
* Je € GG, an identity element, such thatVg € G,e-g=g-e = g.2

2The notation 3 stands for “there exist”.

* Every g € Ghasaninverse g ! € Gsuchthatg- gl =g ! g=e.
When it is clear from the context, we omit - and say that G is a group.
Example 1.2.1. There are many examples of groups that we are familiar with.
* (Z,+), the set of integers with addition, is a group. The identity element is 0.
e Similarly, (Q,+) and (C, 4) are groups.
e (Q, x)is not a group. Because 0 € Q does not have an inverse with respect to multiplication.
e But (Q\ {0}, x)is a group. The identity element is 1.

Next, we give an example of formally proving that a set with a binary operation is a group. Let
G = R be the set of positive real numbers and let - be the multiplication of real numbers, denoted
x. We will show that (R, x) is a group.

1. R* is closed under x: for any ai,as € R, a1 x az € Rand a; x az > 0, hence a1 x as € R™.

2. x is associative: Vay,as,a3 € RY, a1 X (a2 x az) = (a1 X a2) x as.

W

. 1is the identity element in R*: Va € R*, 1 xa=a x 1 = a.

I

. Take any a € R™, é € Rand % > 0, so é € RT. Moreover,

axXx —=—-—xa=1
a a

hencea™! =1 € RT.
By definition, we have proved that (R, x) is a group.

Definition 1.2.2. Let (G, -) be a group. If - is commutative, i.e.

V91,92 € G, 0192 = 92 01,
then the group is called abelian.
The name abelian is in honor of the great mathematician Niels Henrik Abel (1802-1829).

Example 1.2.2. The groups we have seen so far, (Z,+), (R*, x), (Q\{0}, x), (Q,+), and (C, +) are
all abelian groups.

Example 1.2.3. Let us consider the set of 2 x 2 matrices with coefficients in R. We denote this
set by May2(R). Recall that matrix addition, denoted by +, is defined component-wise. For any

agp aio boo b10) .
, in M R),
<6L01 all) <b()1 511> 2x2(R)

<a00 aw) n (boo blO) _ (aoo +boo aio+ b10>
aol an bo bu ao1 +bor ai +bi1)’
(Max2(R), +) is an abelian group: closure, associativity and commutativity of + are easy to show. The

identity element is the zero matrix <0 0) . The inverse of any matrix (Goo Glo) is <_a00 —a10> ,
0 0 aol a1l —a@o1 —a11

which is also in My 2(R). Section 1.3.1 presents a more general discussion on matrices.
Example 1.2.4. Let Fy := { 0,1 }. We define logical XOR, denoted &, in F as follows:
000=0, 021=1@0=1, 1®1=0.

Closure, associativity, and commutativity can be directly seen from the definition. The identity ele-
ment is 0 and the inverse of 1 is 1. Hence (I3, &) is an abelian group.

10

Example 1.2.5. Let £ = { a,b }, a # b. Define addition in E as follows:
at+a=a, a+b=b+a=0b b+b=ua.

Closure, associativity, and commutativity can be directly seen from the definition. The identity ele-
ment is a and the inverse of b is b. Hence (£, +) is an abelian group.

Next, we will see a group that is not abelian. To introduce this group, we start by defining per-
mutations.

Definition 1.2.3. A permutation of a set S is a bijective functiono : S — S.

Example 1.2.6. ® LetS={0,1,2}. Defineo : S — S as follows:
0—1, 1—=2, 2~0.

Then ¢ is a permutation of S.

e LetS={o0,A,0}. Definer:S — S as follows:
o— A, A0 Oo.
Then 7 is a permutation of S.

We note that what matters for a permutation is how many objects we have, not the objects’ nature.

We can label a set of n objects with 1,2,...,n. In Example 1.2.6, we can label o as 0, A as 1, and [J as
2. Then o and 7 are the same permutation.
Now, we take a set S of n elements. Labeling the elements allows us to consider S = {1,...,n }.

Let S,, denote the set of all permutations of S. And let o denote the composition of functions (see
Definition 1.1.3). Then

Lemma 1.2.1. (5, 0) is a group.

The proof is easy. We leave it as an exercise for the readers.
We note that the identity element in the group is the identity functiono : § — S, o(s) = sVs € S.
Any o € S, is bijective (see Definition 1.1.2), the inverse of ¢ in S,, is then given by o~ .

Definition 1.2.4. (.S, o) is called the symmetric group of degree n.

Example 1.2.7. Let n = 2 and S = { 1,2 }. There are only two ways to permute two elements. So
Sy ={ 01,00}, whereo;: S — 5,1~ 1,2 2istheidentity,and o2 : S — S, 1 — 2,2+ 1.

Example 1.2.8 (A group that is not abelian). Letn = 3 and S = { 1,2,3 }. There are 3! = 6 ways of
permuting three elements. In particular, we have the following two permutations

01:95—>81—22—33—1;, 09:5—>51—3,2—23—1.
We note that o1 o 09 # 04 0 01 since
o1009(1) =1, butoyooy(l) =2.
Hence, S5 is not abelian.

We can extend o and o9 in Example 1.2.8 to permuting n elements by keeping the other n — 3
elements unchanged. Thus S, is not abelian for any n > 3.

Definition 1.2.5. The order of a group (G, -) is the number of elements in G, or the cardinality of the
set G, |G|. A group G is said to be finite if |G| < oo and infinite if |G| = oo.

Example 1.2.9. e We have seen a few infinite groups, for example, (Z, +) and (R, x).

e We have also seen two finite groups, |S2| = 2, | S3| = 6.

11

e LetS=1{1,2,...,n }. Topermute the elements in S, there are n choices for the image of 1, n—1
choices for the image of 2, etc. Thus |S,,| = n!, and S,, is a finite group.

Definition 1.2.6. Let (G, -) be a group with identity element e. The order of an element g € G, denoted
ord (g), is the smallest positive integer k such that

g-9-g=4g"=e
—

k times
When such a k does not exist, we define ord (g) = oc.
Example 1.2.10. * In (Z,+), the identity element is 0, ord (1) = oc.
¢ Continuing Example 1.2.7, o is the identity. And 03:5—S5,1+— 1,2+ 2. Hence ord (03) = 2.

Definition 1.2.7. A group G is called cyclic if it is generated by one element, i.e. if there exists an
element g € G such that

G = { & ‘ ke } .
Example 1.2.11. We have seen in Example 1.2.7, S; = { 01, 02 }, where o, is the identity element. In

Example 1.2.10, we discussed that 03 = 0. Hence Sy = { 02,03 } is a cyclic group.

We now state a very useful theorem about the order of a group and the order of an element in
the group. The proof follows from a famous theorem (Lagrange Theorem) named after Joseph-Louis
Lagrange (1736-1813). Details can be found in e.g. [Her96, page 59].

Theorem 1.2.1. Let (G, -) be a finite group with identity element e. For any g € G, ord (g) divides |G|,
in particular, g‘G‘ =e.

A direct corollary is as follows.
Corollary 1.2.1. Let G be a group. If |G| is a prime number, then G is cyclic.

Proof. Let e denote the identity element in G. Take any element g € G such that g # e. By Theo-
rem 1.2.1, ord (¢) divides |G|. Since |G| is prime and g is not the identity element, ord (¢) = |G]|.

We claim that
G={9.¢d . .4}

Otherwise, we would have ¢° = ¢/ for some 1 < 7,5 < |G|, where i # j.

Without loss of generality, we assume i > j. Multiplying both sides of ¢° = ¢/ by g7/, we get
g =e.

By Definition 1.2.6, since 0 < i — j < ord(g), we must have i = j. A contradiction. Hence
G={9.99%...9%}. O
1.2.2 Rings

Next, we move to another abstract structure, rings.

Definition 1.2.8. A set R together with two binary operations + and -, (R, +,), is a ring if (R, +) is
an abelian group, and for any a, b, ¢ € R, the following conditions are satisfied:

e Ris closed under - (closure), a - b € R.

e .isassociative, (a-b)-c=a- (b-c).

e The distributive laws holds: a- (b+¢) =a-b+a-cand (b+c¢)-a=b-a+c-a.

¢ The identity element for - exists, which is different from the identity element for +.
Definition 1.2.9. If a- b =b-a forall a,b € R, R is a commutative ring.

Remark 1.2.1. ¢ For most cases, we will denote the identity element for + as 0 and the identity
element for - as 1.

12

¢ We normally refer to the operation + as addition, and 0 as the additive identity. Similarly, we
refer to the operation - as multiplication and 1 as the multiplicative identity.

¢ The inverse of an element a € R with respect to + is called the additive inverse of a, usually
denoted by —a.

* The last condition in Definition 1.2.8 implies that a set consisting of only 0 is not a ring.
e For simplicity, we sometimes write ab instead of a - b.

e When the operations in (R, +, -) are clear from the context, we omit them and write R.

Example 1.2.12. We have seen that (Z, +) is an abelian group and the identity element is 0. It can be
easily shown that (Z, +, x) is a commutative ring. The identity element for x is 1.

Similarly (Q, +, x), (R, 4+, x) and (C, +, x) are all commutative rings with 0 as the additive iden-
tity and 1 as the multiplicative identity.

Example 1.2.13. In Example 1.2.3, we have shown that (Mzx2(R), +) is an abelian group. We recall

matrix multiplication, denoted by x, for 2 x 2 matrices: for any (ZOO Zlo) , (ZOO 210) in Maya(R),
01 Q11 01 011

(aoo alO) o (boo b10> _ (aooboo + a10bor agobio + alobn)
apt a1 bor bu ao1boo + a11bor ao1bio +aibii)
(Max2(R), +, x) is a ring: associativity and distributive laws are easy to show. The identity element

for x is the 2 x 2 identity matrix (O (1)> We note that (Max2(R), +, x) is not a commutative ring.

b o) G 0= o) (0o a)=(o)

Example 1.2.14. In Example 1.2.4 we have shown that (Fy, @) is an abelian group. Let us define logical
AND, denoted &, in Fy as follows:

For example,

0&£0=0, 1&0=0&1=0, 1&1=1.

Closure of Fy with respect to &, associativity and commutativity of &, and the distributive laws are
easy to see from the definitions. The identity element for & is 1. (F2, @, &) is a commutative ring.

Example 1.2.15. In Example 1.2.5 we showed that (E, +) is an abelian group. Define multiplication
in E as follows:
a-a=a, a-b=b-a=a, b-b=0.

Closure of E with respect to -, associativity of -, commutativity of -, and the distributive laws are easy
to see from the definitions. The identity element for - is b. Thus (£, +, -) is a commutative ring.

Definition 1.2.10. Let (R, +,) be a ring with additive identity 0 and multiplicative identity 1. Let
a,b€ R.Ifa# 0and b # 0but a-b =0, then a and b are called zero divisors. If a-b=0b-a =1, a (also
b) is said to be invertible and it is called a unit.

Example 1.2.16. e There are no zero divisors in (Z, +, x), (Q, +, x), (R, +, x) or (C, +, x).
e Any nonzero element in (Z, +, x), (Q, +, X), (R, +, x) or (C, +, x) is a unit.
Example 1.2.17. As shown in Examples 1.2.3 and 1.2.13, (Max2(R),+, x) is a ring. The additive

. .. . {00 .
identity is <0 0). Since
1 0y /0 0\ (0 O
0 o/\1 0/ \o o)’
e 10 00 ..
by Definition 1.2.10, <O O) and (1 O> are zero divisors.

Definition 1.2.11. An integral domain is a commutative ring with no zero divisors.

Example 1.2.18. (Z,+, x), (Q, +, x), (R, +, x) and (C, +, x) are all integral domains.

13

1.2.3 Fields

Definition 1.2.12. A field is a commutative ring in which every nonzero element is invertible.

By definition, for any a € F, there exists b € F' such thata-b = b-a = 1. Then b is called the
multiplicative inverse of a. It is easy to show that the multiplicative inverse of an element a is unique:
let b, ¢ € F be such that

ab =ac = 1.

Multiplying by b on the left, we get

bab = bac =b=b=c=0.
We will denote the multiplicative inverse of a nonzero element a € F by a™ L.
Lemma 1.2.2. A field is an integral domain.

Proof. Let F be a field. Suppose there are zero divisors in F'. By Definition 1.2.10, there exist a,b € F
such thata # 0,b # 0,and a - b = 0. Since F is a field, by the above discussion, a~! € F. Multiplying
both sides of a - b= 0by a™!, we get

alia-b=1-b=0=b=0,
a contradiction. 0
Example 1.2.19. * (Q,+, %), (R,4, x) and (C, +, x) are all fields.
* (Z,+, x) is not a field. For example, 2 € Z is not invertible and 2 # 0.
For the rest of this subsection, let I be a field with addition 4 and multiplication -.
Definition 1.2.13. A field with finitely many elements is called a finite field.

Example 1.2.20. In Example 1.2.14 we have shown that (Fq, ®, &) is a commutative ring. The only
nonzero element is 1, which has inverse 1 with respective to &. Thus (F, @, &) is a finite field.

Example 1.2.21. In Example 1.2.15 we have shown that (E, +, -) is a commutative ring with additive
identity a and multiplicative identity b. The only nonzero element, i.e. the element not equal to the
additive identity, is b. b has multiplicative inverse b since b - b = b. Hence (E, +, -) is a finite field.

For an element a € F' and an integer p, we define

p
p@a:Za.
i=1

Definition 1.2.14. The characteristic of a field F is the smallest positive integer p such thatp ©®1 =0,
where 1 is the multiplicative identity of F. If no such p exists, we define the characteristic of the field
to be 0.

Example 1.2.22. ¢ The characteristics of R, Q, and C are 0.

* The characteristic of the field F in Example 1.2.20 is 2 since

201=1®1=0.

* The characteristic of the field E in Example 1.2.21 is 2 since
20b=b+b=a.

Theorem 1.2.2. The characteristic of a field is either 0 or a prime number.

14

Proof. First, we note that the characteristic of a field is not equal to 1 since 1 ®1 =1 # 0.
Suppose the characteristic p = mn is not a prime, where m,n € Zand 1 < m,n < p. Leta =n© 1,
b=m ® 1. Then

i=1 j=1

where the last part follows from Lemma 1.2.2. As n,m are both strictly smaller than p, we have a
contradiction.]

Definition 1.2.15. Let E, F' be two fields with F' C E. F is called a subfield of E if the addition and
multiplication of £/, when restricted to F), are the same as those in F'.

Example 1.2.23. Q is a subfield of R and R is a subfield of C.

Definition 1.2.16. Let (F,+p, r), (E,+E, -r) be two fields. F' is said to be isomorphic to E, written
F = F if there is a bijective function f : F' — E such that for any a,b € F,

(1) fla+rb) = f(a) +& f(b), and
2) fla-pb) = fla) & fb)
The function f is called a field isomorphism.

A function f : ' — E that satisfies condition (1) in Definition 1.2.16 is said to preserve the addition.
Similarly, a function g : F* — E that satisfies condition (2) in Definition 1.2.16 is said to preserve the
multiplication.

Example 1.2.24. Let us consider the fields (F3, ®, &) from Example 1.2.20 and (£, +, -) from Exam-
ple 1.2.21. Define f : F — E, such that

It is easy to see that f is bijective. Also, it can be shown that f preserves both addition and multipli-
cation. For example,

fAe0)=f(1)=qa, fI)+f0)=a+tb=a= f(180)=f(1)+ f(0).
Thus f is a field isomorphism and Fy = E.

In fact, it can be shown that any finite field with two elements is always isomorphic to Fo. The
next theorem says that, in general, there is only one finite field up to isomorphism. The proof can be
found in e.g. [Her96, page 224].

Theorem 1.2.3. e Let K be a finite field of characteristic p. Then K contains p” elements.

* For any prime p and any positive integer n, there exists, up to isomorphism, a unique field with
p" elements.

Remark 1.2.2. * We will use F;,» to denote the unique finite field with p" elements.

* Let K be a finite field with characteristic p and multiplicative identity 1. Then K contains
1,2,...,p — 1,0, the p multiples of 1. Thus, K contains a subfield isomorphic to I,,.

Furthermore, we define the notion of bit formally.

Definition 1.2.17. * Variables that range over IF; are called Boolean variables or bits.
* Addition of two bits is defined to be logical XOR , also called exclusive or.
¢ Multiplication of two bits is defined to be logical AND.

* When the value of a bit is changed, we say the bit is flipped.

15

1.3 Linear Algebra

The most readers are probably very familiar with linear algebra. However, when we learned about
matrices in high school we focused on the case when the underlying abstract structure is a field. In
Section 1.3.1 we will see the general case when the underlying abstract structure is a commutative
ring. Then in Section 1.3.2 we recap concepts for vector spaces.

1.3.1 Matrices

Let R be a commutative ring with additive identity 0 and multiplicative identity 1 throughout this
subsection.

Definition 1.3.1. A matrix with coefficients in R is a rectangular array where each entry is an element
of R.

Matrix A as shown in Equation 1.3 is said to have m rows, n columns and is of size m x n. The

transpose of A, denoted AT, is the n x m matrix obtained by interchanging the rows and columns of
A.

aopo ap(n—1) apo A(m—1)0
a a1 (n— a Ap—
= 10 . 1(n—1) ’ AT — 01 ‘ (m—1)1 . (1.3)
Am—-1)0 -+ A(m—-1)(n-1) ap(n—-1) -+ A(m-1)(n—1)
The ith row of A is
(aiO air .. ai(n—l)))
and the jth column of A is
CL(]]‘
aj
A(m—1);

where a;; denotes the entry in the ith row and jth column. If a;; = 0 for ¢ # j, A is said to be a
diagonal matrix. An n—dimensional identity matrix, denoted I,,, is a diagonal matrix whose diagonal
entries are 1,i.e. a;; = 1fori =10,1,...,n— 1. A 1 x n matrix is called a row vector. Ann x 1 matrix is
called a column vector. An n x n matrix is called a square matrix (i.e. a matrix with the same number
of rows and columns).

Example 1.3.1. Let R = Z.

o A= (g _12) is a 2 x 2 matrix with coefficients in Z. agg = 9 and ag; = 1.

100
‘IQZ<1 O)andlg,: 010
0 0 1

01

0

We define the addition of two m x n matrices component-wise:

. (5 _0 1) is a diagonal matrix.

ap .- Gn—1) boo .- bom-1)
aio e A1 (n—1 bl() e bl n—1
' (n—1) n (n—1)
A(m—-1)0 -+ G(m—-1)(n—-1) b(m—l)O S b(m—l)(n—l)
(1.4)
aoo + boo e ag(n—1) + bon-1)
a1o + bio e a1(n-1) T b1(n-1)

Am=1)0 T Om=1)0 -+ Am-1)(n-1) T Om-1)(n-1)

16

Example 1.3.2. Let R = Z. Below is an example of addition between two 2 x 2 matrices with coeffi-

cients in Z:
2 3\ (4 -2)_(6 1
1 -1 0 =5/ \1 -6/
Definition 1.3.2. The scalar product of a 1 x n row vector v = (vg,v1,...,v,—1) withan n x 1 column
vector w = (wp, wy,. .., w,_1)' is given by
wo
wy n—1
V-W:(Uo v o... Unfl) . :Zviwi.
: i=0
Wn—1

Example 1.3.3. Let R = Z. The scalar product of (2 3) and (4 O)T is
4
(2 3) (0> =2x4+3x0=8+40=8.

We define the multiplication of an m x n matrix A with an n x r matrix B as follows:

ano e ao(n_l) boo e bO(r—l) Co0 e CO(r—l)
AB - aip ... Aipo1) bio - bip—1) _ €10 ... Ciro1) |
Am-1)0 - - Am-1)(n-1)) \bmn-10 - - bm-1)r-1) Clm—-1)0 -+ Clm—1)(r—1)

where ¢;; is the scalar product of the ith row of A and the jth column of B:

n—1

cij =Y awby, i=01,...,m—1,j=01.r—1
k=0

Example 1.3.4. Let R = Z. Below is an example for multiplication of two 2 x 2 matrices with coeffi-

cients in Z:
2 3 4 =2\ (8 —19
1 -1 0 -5/ \4 3)

Definition 1.3.3. An n x n square matrix A is said to be invertible if there exists an n x n matrix B
such that
AB =BA =1,.

B is called the inverse of A. We will use A~! to denote this matrix.

Example 1.3.5. Let R = Z. We have

2 1 1 -1y (1 —=1\/2 1\ (1 0

1 1/\-1 2/ \-1 2 1 1/ \0o 1/)°

. 2 1\ . . . o . 1 -1

Hence, the 2 x 2 matrix A = 1 1)1s invertible and its inverse A~ = 1 92)
Theorem 1.3.1. Let n be a positive integer. We define M,,«,,(R) to be the set of n x n square ma-
trices with coefficients in R. Then M,,»,(R) together with addition and multiplication defined in
Equations 1.4 and 1.5 is a ring. It is not a commutative ring when n > 2.

Proof. In Examples 1.2.3 and 1.2.13 we have shown that Ma.2(R) is a ring. Proof for the general case
is similar.

The closure of M,,»,, (R) with respect to both operations is easy to see. Associativity and distribu-
tive laws for addition and multiplication follow from the corresponding properties of R.

The additive identity is the zero matrix of size n x n. The additive inverse of a matrix A with
coefficients a;; (0 < 4,5 < n — 1) is given by —A with coefficients —a;j, (0 < 4,5 < n — 1). The
multiplicative identity is I,,.

17

When n = 1, M; 1 (R) is a commutative ring because R is commutative.
When n > 2, let

—_
)
@)

0

0 0
0 0 0

o
o
o

@)
(=]
O e
—_
@)
e

Then
0 O 0 0 O 0
0 0 0 0 0 0
0O 0 ... 0 1 0 ... 0
Hence AB # BA and M,,x,,(R) is not commutative for n > 2 O

In general, not every matrix is invertible. To find the inverse of an invertible matrix, we will need
the following definition.

Definition 1.3.4. Let n be a positive integer. For any A € M,,x,(R), the determinant of A, denoted
det(A), is defined as follows.

e Ifn=1,A=(a),det(A) :=a.

e If n > 1, let A;; denote the matrix obtained from A by deleting the ith row and the jth column.

Fix an iy,
n—1

det(A) =) (—1)"Ma;,; det(Ajy;). (1.6)
j=0

We note that, the value of det(A) is independent of the choice of iy in Equation 1.6 (see Ap-
pendix A.1). Similarly, det(A) can also be found by fixing a jp and computing

n—1

det(A) = Z(—l)iJrjOaijo det(AijO).
=0

Example 1.3.6. Let n = 2, for any A € May2(R), we can write A = <a00 a01>‘ Take ig =0,

aijp ail
n—1 1
det(A) = Z(—l)z0+]ai0j det ZOJ Z a()] det A()j) = agoa11 — Ap1G10-
=0 =0

Theorem 1.3.2. A matrix A € M,, <, (R) is invertible in Mnxn(R) if and only if det(A) is a unit in R.

When det(A) is a unitin R, if n = 1 and A = (a), then A~ = (a7 !). If n > 1, we define the adjoint
matrix of A as follows:

(—1)0+0 dCt(AQ()) (—1)0+1 dCt(Alo) . (_1)0+(n71) dCt(A(n_l)O)
adjA = f : & :

(_1)(n71)+0 det(AO(n—l)) (_1)(n71)+1 det(Al(n—l)) . (_1)(n71)+(n71) det(A(n—l)(n—l))
where the (i, j)—entry of adj4 is given by (—1)"*/ det(4;;). Then

A7 = (det(A))tadjA.

The proof can be found in e.g. [Hun12, page 353].

Example 1.3.7. Let n = 2, by Example 1.3.6 and Theorem 1.3.2, a matrix A = (ZOO 201) from
10 Q11

Max2(R) is invertible if and only if agpai1 — apiaio is a unit in R. When agoa11 — ap1a1o is a unit in R,
the adjoint matrix of A is given by
adjA = < @ —am) .
—a10 Qoo

18

And the inverse of matrix A is given by
Ail = (aOOCLll — a01a10)71 (11 —a01> . (17)
—ai oo

2 3
4 7
unit in Z. By Theorem 1.3.2, A is not invertible in Myx2(Z). However, if we consider R = Q, 2is a
unit in Q. By Theorem 1.3.2, A is invertible in M2 (Q) and we can compute AL using Equation 1.7:

1L/7 =3 3.5 —1.5
_1_7 o
A _2<—4 2)‘(—2 1>‘

Let F' be a field with additive identity 0 and multiplicative identity 1.

Example 1.3.8. Let R = Z. By Example 1.3.6, A = () has determinant 14 — 12 = 2. 2 isnot a

1.3.2 Vector Spaces

Definition 1.3.5 (Vector space). A nonempty set V, together with two binary operations — vector
addition (denoted by +) and scalar multiplication by elements of F, which is a map with domain V' x F
and codomain V, is called a vector space over F if, (V,+) is an abelian group and for any v,w € V
and any a,b € F, we have

1. a(v +w) = av + aw.
2. (a+b)v =av + bv.
3. a(bv) = (ab)v.
4. 1v = v, where 1 is the multiplicative identity of F'.
Elements of V are called vectors and elements of F' are called scalars.

Remark 1.3.1. It is easy to see that, if 0 is the additive identity in F, and v any vector in V, then
Ov = 0 is the additive identity in V' (or the identity for vector addition).

Example 1.3.9. The set of complex numbers C = { x + iy | x,y € R} is a vector space over R. Note
that for any a1 + b17, ag + b2i € C, vector addition is defined as

(a1 + bli) + (CLQ + bzi) = (a1 + ag) + (b1 + bQ)i.
And for any a € R, scalar multiplication by elements of R is defined as
a(ay + bii) = aay + abyi.

The identity element for vector addition is 0. Furthermore, for any a + bi € C, its inverse with respect
to vector addition is given by —a — bi.

Let F" = { (vo,v1,...,vn—1) | v; € F'Vi} be the set of n—tuples over F. Define vector addition

and scalar multiplication by elements of F' component-wise: for any v = (vo,v1,...,0p—1) € F",
w = (wg, w1,...,Wy—1) € F",and any a € F,

v+ w = (vg + wo, V1 + Wi, ..., Vp—1+ Wnp_1), (1.8)

av := (avy, avi,...,a0,_1). (1.9)

Theorem 1.3.3. Together with vector addition and scalar multiplication by elements of F' defined in
Equations 1.8 and 1.9 respectively, F"* = { (vo,v1,...,vn—1) | v; € F Vi } is a vector space over F.

Proof. Take any v = (vo,v1,...,Vp—1),w = (wo, w1, ...,wy—1) from F" and any a,b € F.

By Equation 1.8, it is easy to see that F" is closed under vector addition. The associativity
and commutativity of vector addition follow from that for addition in F. The identity element
for vector addition is (0,0,...,0), where 0 is the additive identity in F. The inverse of v € F" is
(—vg, —v1,...,—vp—1), where —v; is the additive inverse of v; in F'. Thus F" with vector addition is
an abelian group.

By definition of scalar multiplication by elements of F' (Equation 1.9), av € F™". Properties 1 and
2 in Definition 1.3.5 follow from distributive law in F. Property 3 follows from the associativity of
multiplication in F'. Property 4 follows from the definition of multiplicative identity in F. O

19

Example 1.3.10. Let I’ = F», the unique finite field with two elements (see Example 1.2.20 and The-
orem 1.2.3). Let n be a positive integer, it follows from Theorem 1.3.3 that [} is a vector space over
Fo.

The identity element for vector addition is (0,0,...,0). For any v = (vo,v1,...,vp—1) € F3, the
inverse of v with respect to vector addition is (—vg, —v1, ..., —vp_1) = v.

Recall that variables ranging over 5 are called bits (see Definition 1.2.17). We have shown that
(F2, @, &) is a finite field (see Example 1.2.20), where & is logical XOR (see Example 1.2.4), and & is
logical AND (see Example 1.2.14).

Definition 1.3.6. Vector addition in F¥ is called bitwise XOR, also denoted @. Similarly, we define bit-
wise AND between any two vectors v = (vo, v1,...,Up—1), W = (wo, w1, . .., w,—_1) from F as follows:

v& w = (vg & wo,v1 & wi, ..., v & Wp—1).
Remark 1.3.2. Another useful binary operation, logical OR, denoted V, on I3 is defined as follows:
0OvV0=0, 1v0=1, 0vli=1 1v1=1L.
It can also be extended to F3 in a bitwise manner and we get bitwise OR.
For simplicity, we sometimes write vv; ... v,—; instead of (v, v1,...,vp—1).
Example 1.3.11. Let n = 3, take 111,101 € F3, 111 @ 101 = 010, 111 & 101 = 101, 111 v 101 = 111.

Definition 1.3.7. A vector in F3 is called an n-bit binary string. A 4—bit binary string is called a nibble.
An 8—bit binary string is called a byte.

Example 1.3.12. e 1010,0011 € F % are two nibbles. Furthermore,

1010 & 0011 = 1001, 1010 & 0011 = 0010.

¢ (00101100 is a byte.

Remark 1.3.3. By Theorem 1.1.1, a byte can be considered as a base—2 representation/binary repre-
sentation of an integer (see Theorem 1.1.1). By Equation 1.2, the value of this integer is between 0
and 255 or between 0016 and FF6 with base—16 representation/hexadecimal representation.

For the rest of this section, let V' be a vector space over F.

Definition 1.3.8. A nonempty subset U C V is called a subspace of V' if U is a vector space over F
under the same operations (vector addition and scalar multiplication by elements of F') in V.

Remark 1.3.4. To show U C V is a subspace of V, by Definitions 1.3.5, 1.2.1 and 1.2.2, we need to
prove the following;:

1. (U, +) is an abelian group.

(a) U is closed under + (closure property): Vu,v € U,u +v € U.
(b) + is associative: Vu,v,w € U, u + (v+w) = (u +v) + w.
(c) The identity element for vector addition in V is also in U.

(d) For v € U, its additive inverse in V is also in U.
2. Scalar multiplication by elements of I is a function with domain U x F and codomain U.

3. For any v,w € U and any a,b € F, we have

(@) a(v+w) = av + aw.

(b) (a+b)v = av + bv.

© a(bw) = (ab)o.

(d) 1v = v, where 1 is the multiplicative identity in F'.

20

We note that 1-(b) and 3 follow from the corresponding properties of V. Thus, to prove U is a sub-
space of V, we need to prove 1-(a), 1-(c), 1-(d) and 2.

In case F' = [F5, by Example 1.3.10, 1-(d) is true by default. Furthermore, 2 is also true as there are
only two elements in [F5: 0 and 1. To show U is a subspace when F' = [, it suffices to prove 1-(a) and
1-(c).

Definition 1.3.9. A linear combination of v1,vo,...,v, € V is a vector of the form a1v, + agvo + -+ - +
a,v,, where a; € I'Vi.

Lemma 1.3.1. For any v, vs,...,v, € V (r > 1), U := {av1 +agva+---+av, | a; € F}isa
subspace of V.

Proof. By Remark 1.3.4, we will prove 1-(a), 1-(c), 1-(d) and 2.
Take any v = Zaivi eU.

=1

1-(a). For any u = Z biv, € U,
i=1

r

r r
vV+u= Zaivi +Zbivi = Z(az +bi)vi eU
=1 =1

=1

1-(c). Let a; = 0 € F, then (see Remark 1.3.1)

'
0= Zaivi eU.
i=1

1-(d). The inverse of v with respect to vector addition is given by

r

u = Z(fai)vi

i=1
because v + u = 0. Furthermore, since —a; € F', we have u € U.

2. Foranya € F,

T

azr:aivi = Z(aai)'vi eU.
i=1

=1

Definition 1.3.10. Let S = { vy, v9,...,v, } CV,
<S> ::{a101+a202+“'+arvr ’ a; EF}

is called the (linear) span of S over F. For any subspace U C V, and a subset S of U, if U = (S), S is
called a generating set for U.

We note that if S is a subspace of V, then (S) = S.
Example 1.3.13. Let V = F3,and S = { 001,100 }, then (S) = { 000,001,100, 101 }
Definition 1.3.11. A set of vectors { vy, va,...,v, } CV are linearly independent over F if
T
Zaivi =0=—=a; =0Vi.
i=1
Otherwise, they are said to be linearly dependent over F'.
Example 1.3.14. ¢ Let F =T, V =F3. 001 and 100 are linearly independent.

e Forany S C V,if 0 € S, then the vectors in S are linearly dependent.

21

e Let F=R, V=R3(0,1,0) and (0,0,1) are linearly independent.
(0,1,0),(2,3,0),(1,0,0) are linearly dependent since for example, we have
3.(0,1,0) + (1) - (2,3,0) + 2 (1,0,0) = (0,0,0).

Definition 1.3.12. Let B be a nonempty subset of V. If V' = (B) and vectors in B are linearly inde-
pendent, then B is called a basis for V over F.

Remark 1.3.5. Suppose B is a basis for V and B = { v1,v2,...,v, }. Then any element v € V has a
unique representation as a linear combination of vectors in B:

r r r
v = Zaivi = Zbivr — Z(az — bi)’Uz‘ =0=—a; =b;.
=1 =1 =1

Example1.3.15. ¢ Let F =R,V =R? and B = { (1,0,0),(0,1,0),(0,0,1) }. It is easy to see that
vectors in B are linearly independent. For any v = (v, v1,v2) € R3, we have

v =19(1,0,0) +v1(0,1,0) + v2(0,0,1).
Thus, B is a generating set of V. By definition, B is a basis for V' over R.

o Let ' = Fy,and V = F3, similarly, we can show { (1,0,0), (0,1,0), (0,0,1) } is a basis for V over
F.

Example 1.3.16. Let V = " and B = { vg, v1,...,Vn_1 }, Where
v; = (UZ'(), Vily - - - 7Ui(n71))7 vy =1 and Vij = 0 for i 75 _]

It is easy to see that vectors in B are linearly independent. For any u = (ug,u1,...,up—1) € V, we

can write
n—1
u= g UpVy.
0=0

Thus, B is a generating set of V. By definition, B is a basis for V over F.

Lemma 1.3.2. Let By, By be subsets of V. If V' = (B;) and vectors in By are linearly independent,
then |Bl| > ‘BQ|

Proof. Suppose By = { vi1,v2,...,v,, } and By = { wy, w2, ..., w,, }. Since V = (By),
T1
w1 = Zajvj
j=1

for some a; € F. Moreover, at least one of a; # 0 as vectors in B are linearly independent. Without
loss of generality, let us assume a; # 0, then
" a; 1
j
v = — g —vj + —wi,
1] a1 1

a
j=2 1

and we have { wi,vs,...,v,, } spans V. Then, we can write

T1
wo = bjwi + E ijj,
J=2

where b; € F and at least one of b; # 0 for 2 < j < r, otherwise w is a linear combination of w;.
Suppose by # 0, We have

b b; 1
Vo = _71,w1 — Z J’Uj + —wa,

bo — by bo
Jj=3
which means { wy, w2, v3,...,v,, }spans V.
We can continue in this manner, if < 73, we will deduce that { w;, w2 ..., w,, } spans V and

wy, +1 can be written as a linear combination of { w1, w2 ..., w,, }, a contradiction.]

22

We have the following direct corollary.
Corollary 1.3.1. If B; and B are bases of V, then |B;| = | Ba|.
Proof. By Lemma 1.3.2, |B;| < |Bz| and |Ba| < |By]. O

Definition 1.3.13. The dimension of V over F, denoted dim(V), is given by the cardinality of B, |B|,
where B is a basis of V over F.

Example 1.3.17. Continuing Example 1.3.16, dim(F")r = n.
Lemma 1.3.3. Let F' = Fy, if dim(V)p, = k, then |V| = 2*.

Proof. Let B = { v1,va,...,v; } beabasis for V. We have discussed in Remark 1.3.5 thatevery w € V'
has a unique representation as a linear combination of vectors in B. In other words,

k
V= { }E:advi
=1

where there are two choices for each a;.]

aiEFg,lgiSk},

Example 1.3.18. Let F' = F5, S = { 0010, 1000 } and V = (S). It is easy to see that vectors in S are
linearly independent. By Definition 1.3.13, dim(V')r, = 2. By Lemma 1.3.3, |V| = 4. We can verify
that V = { 0000, 0010, 1000, 1010 }.

For any v = (v, v2,...,vp—1) € F§ and w = (wp, wa, ..., w,—1) € Fy, we can consider v as a row
vector and w as a column vector and compute the scalar product (see Definition 1.3.2) between v and
w:

n—1
V-w = Z V;W;.
i=0
We note for any u = (ug, u1, ..., up—1) € Fy
n—1 n—1 n—1
(v+w) u= Z(UZ + w;)u; = Z%’Ui + Zwiui =v-u+w-u. (1.10)
=0 =0 =0
Definition 1.3.14. ® For any v, w € [}, v and w are said to be orthogonal if v - w = 0.

* Let S C F} be nonempty. The orthogonal complement, denoted S+, of S is given by

St={v |veFlv-s=0VseS}.

o If S = (), we define S+ = F3.
By definition, it is easy to see that (S)+ = S+.
Lemma 1.3.4. Forany S C V, S+ is a subspace of F3.

Proof. By Remark 1.3.4, we will prove 1-(a) and 1-(c).
1-(a). Take any v, u € S+ and any s € S, by Equation 1.10, we have

(v+w) - s=v-s+u-s=0,

hence v +w € S+.
1-(c). 0- s = 0 for any s € S. Hence 0 € S*. O

23

1.4 Modular Arithmetic

In this section, let n > 1 be an integer.

We are interested in the set { 0,1,2...,n — 1 }. It can be considered as the set of possible remain-
ders when dividing by n (see Theorem 1.1.2). We will also associate each integer with one element in
the set —namely the remainder of this integer divided by n. Here we would like to provide a rigorous
definition for this association. First, we introduce the notion of equivalence relations.

Definition 1.4.1. A relation ~ on a set S is called an equivalence relation if Va, b, c € S, the following
conditions are satisfied.

* a ~ a (reflexivity).
* Ifa ~ b, then b ~ a (symmetry).
e Ifa ~band b ~ ¢, then a ~ ¢ (transitivity)
Let us define a relation ~ on the set Z as follows:
a~b ifandonlyif n|(b—a). (1.11)
We can see that this is an equivalence relation on Z.
* Ya € Z,0 = a— aand n|0, hence a ~ a (reflexivity).
e If n|(a —b), then n|(b — a), we have a ~ b implies b ~ a (symmetry).
e If n|(a — b) and n|(b — ¢), then
n|((a—0b) + (b—c)) = n|(a — ¢).
Thus a ~ band b ~ ¢ implies a ~ c (transitivity).

Definition 1.4.2. Take a,b € Z. If a ~ b, i.e. n|(b — a), then we say that a is congruent to b modulo n,
written a = b mod n. n is called the modulus.

By the above definitions, saying a is congruent to b modulo n is equivalent to saying that the remain-
der of a divided by n is the same as the remainder of b divided by n.

Definition 1.4.3. If ~ is an equivalence relation on a set S, then the equivalence class of an element
a € S, denoted @, is defined by
a:={b|beSb~a}.

Theorem 1.4.1. If ~ is an equivalence relation on a set .S, then ~ partitions .S into disjoint equivalence
classes. That is,

S=Ja, and a(\b=0ifa#b.

Proof. lItis easy to see that S = | Ja.
To prove the second part. We show that the following equivalent claim is true:

ifﬁﬂg #£ (), thena = b.

Let c be an element of @[b. By Definition 1.4.3, ¢ ~ a and ¢ ~ b. By symmetry (Definition 1.4.1),
a ~ c. By transitivity (Definition 1.4.1), a ~ b. Hence a € b. Now for any d € @, d ~ a. By transitivity
(Definition 1.4.1), d ~ b. Then by Definition 1.4.3, d € b. We have a C b.

Similarly, we can prove b C a. Hence @ = b. O

Definition 1.4.4. For any a € Z, the congruence class of a modulo n, denoted @, is defined to be the
equivalence class of a with respect to the equivalence relation ~ defined in Equation 1.11.

We note that the set a consists of all integers of the form a + nk for some k € Z.

24

Lemma 1.4.1. Let Z,, denote the set of all congruence classes of a € Z modulo n. Then
Zn={01,...,n—1}.
Proof. By Theorem 1.1.2, given any b € Z, we can find ¢, r € Z such that
0<r<nandb=qgn-—+r=—b~r.

By Theorem 1.4.1, we have b = 7. Hence the set { 0,1,...,n — I } contains all the congruence classes
of integers modulo n, possibly with some repetitions.

If 71 = 7y for some 0 < 71,73 < n, then n|(r; — r2). Since 0 < 71,75 < n, we have r; = 9. Thus
0,1,...,n — 1 are all distinct. O

Remark 1.4.1. @ = b if and only if a = b mod n.

We define the addition operation on the set Z,, as follows:
G+b=a+0. (1.12)

Ifa = a’ and b = b/, we have n|(a’ — a) and n|(b' — b), therefore

nl((d" —a) + (' = b)) = n|((d' +bV) = (a+b) = (a+b) ~(d +V)=a+b=d + V.
Thus the addition in Equation 1.12 is well-defined.
Example 1.4.2. ® Letn=17,3+2=05.

e Letn=4,2+2=4=0.

Proposition 1.4.1. (Z,,+), the set Z,, together with addition defined in Equation 1.12, is an abelian
group.

Proof. For any a, beZ,a+becZ, HenceZ, is closed under +. The associativity follows from the
associativity of the addition of integers. The identity element is 0 and the inverse of @ is n — a:

a+n—a=n—a+a=n=0.
The commutative property follows from that for integer addition. O

Remark 1.4.2. The proof also shows that the additive inverse of an elementa € Z,, isn —a = —a and
the identity element is 0.

Example 1.4.3. ¢ Letn =5, theinverseof 1in (Z5,+)is5—1=14.
e Letn = 8, the inverse of 2 in (Zg, +) is8 — 2 = 6.
Lemma 1.4.2. (Z,,+) is a cyclic group.

Proof. Recall that the identity element in (Z,,, +) is 0. It is easy to see that 1 has order n (see Defini-
tion 1.2.6):

=

+
+

=
=
[SUI N

1+

1+1+...1 = n—1
———

n—1 times
1+414...1 =
~———

n times

3|
I
ol

25

We define multiplication on Z, as follows
@-b=ab. (1.13)
If / = @and I/ = b, then we can write @’ = a + sn, b’ = b + tn for some integers s, t. We have
a't! = ab+ n(at + sb+ st) = a'b' ~ ab.
Hence o’/ = ab and the multiplication in Equation 1.13 is well-defined.

Example 1.4.4. Letn =5,
—2.13=3-3=9=4.

Theorem 1.4.2. (Z,,+,-), the set Z,, together with addition defined in Equation 1.12 and multipli-
cation defined in Equation 1.13 is a commutative ring. It is an integral domain if and only if n is
prime.

Proof. In Proposition 1.4.1 we have shown that (Z,, +) is an abelian group.

Take any a, beZ, ab € Z,. Hence Z,, is closed under -. Associativity, commutativity of multipli-
cation, and distributive laws follow from that for the integers. The identity element for multiplication
is 1. We have proved that (Z,,, +,) is a commutative ring.

If n is not a prime, let m be a prime that divides n. Then d = n/m is an integer and d # 0. We
have

m-d=n=0.
By Definition 1.2.10, d,m are zero divisors in Z,. By Definition 1.2.11, Z,, is not an integral domain.

Let n be a prime. Suppose there are a,b € Z,, such thata # 0, b # 0, and @ - b = 0. By definition,
we have n|ab. By Lemma 1.1.2, n|a or n|b, which gives @ = 0 or b = 0, a contradiction. O

For simplicity, we write a instead of @ and to make sure there is no confusion with a € Z we
would specify that a € Z,,. In particular, Z,, = {0,1,2,...,n — 1 }. Furthermore, to emphasize that
multiplication or addition is done in Z,,, we write ab mod n or a + b mod n.

Example 1.4.5. Let n = 5, we write

4x2mod5=8mod5=3, or 4x2=8=3modb5.
Lemma 1.4.3. For any a € Z,, a # 0, a has a multiplicative inverse, denoted a~! mod n, if and only
if ged(a,n) = 1.

Proof. By Bézout's identity (Theorem 1.1.3), gcd(a, n) = sa + tn for some s, t € Z.

«=Ifgcd(a,n) = 1, then sa+tn = 1,i.e. n|(1—sa). By definition, sa = 1 mod n, thusa~! mod n =
s.

= On the other hand, if a has a multiplicative inverse, then there exists s € Z, such that
as mod n = 1, which gives n|(as—1). Hence there is some ¢t € Z such that 1 = as+tn. By Lemma 1.1.1
(6), gcd(a,n)|1. As ged(a,n) > 0, we have ged(a,n) = 1. O

Remark 1.4.3. Recall that by the extended Euclidean algorithm (Algorithm 1.2), we can find integers
s,t such that gcd(a,n) = sa + tn for any a,n € Z. In particular, when gecd(a,n) = 1, we can find s, ¢
such that 1 = as + tn, which gives as mod n = 1. Thus, we can find a 'modn = smodn by the
extended Euclidean algorithm.

Example 1.4.6. We calculated in Example 1.1.15 that ged(160,21) = 1 and 1 = (—8) x 160 + 61 x 21.
We have 217! mod 160 = 61.

Example 1.4.7. Let

By the extended Euclidean algorithm,
T=5x14+2 5=2x2+1,
1=5-2x2=5—-(7T-5)x2=5x3—-7x2.

We have
plmodg=5"1mod7=3, ¢ '!modp=7"'mod5=-2mod5=3.

26

Example 1.4.8. Let

By the extended Euclidean algorithm,

47=7x6+5, 7T=5x142, 5=2x2+1,

1 = 5-2x2=5—-(7T-5)x2=5x3—-7Tx2=(47T—-Tx6)x3—-Tx2
= 47x3 -7 x20.

We have
ptmodg=7"'mod47 = —-20mod 47 =27, ¢ 'modp=47"'mod 7 =3.
Corollary 1.4.1. Z, is a field if and only if n is prime.

Proof. By Theorem 1.4.2, Z,, is a commutative ring. By Definition 1.2.12 and Lemma 1.4.3, Z,, is a field
if and only if for any a € Z, such that a # 0, we have gcd(a,n) = 1, which is true if and only if n is a
prime.]

Corollary 1.4.2. For any a € Z,, if gcd(a,n) =1, thentheset { ab | b € Z,, } = Zy,.

Proof. 1t is clear from the definition that { ab | b € Z,, } C Z,. As there are n distinct values for b,
it suffices to prove that ab; # aby mod n for by, by € Z, with by # by. We will prove the claim by
contradiction.
Assume
aby = aby mod n (1.14)

and b; # be. By Lemma 1.4.3, a~! exists. Multiply both sides of Equation 1.14 by a~! we get b; =
by mod n, a contradiction. O

We note that when p is prime, Z, is the unique finite field IF,, up to isomorphism (see Theorem 1.2.3
and Remark 1.2.2).
Lemma 1.4.3 leads us to the following definition.

Definition 1.4.5. Let Z; denote the set of congruence classes in Z,, which have multiplicative in-
verses:

Z),:={a | a€Zpged(a,n)=1}.

The Euler’s totient function, ¢, is a function defined on the set of integers bigger than 1 such that p(n)
gives the cardinality of Z;:

p(n) = |Zy,].
Example 1.4.9. o Letn=3,Z5={1,2},¢(3) =2.
e Letn=4,2;={1,3},p4) = 2.
* Letn = pbe a prime number, Z} = Z, —{0}° ={1,2,...,p—1},0(p) =p— 1.

Lemma 1.4.4. (Z},-), the set Z}, together with the multiplication defined in Z,, (Equation 1.13), is an
abelian group.

Proof. For any a,b € Z}, a~',b~! € Z}. We note that (ab)(b~a™1) = 1, hence ab has an inverse in
Zy, and ab € Zj, (closure). The associativity follows from that for multiplications in Z. The identity
element is 1 and Lemma 1.4.3 proves that every element has an inverse in Z. O

Recall by the Fundamental Theorem of Arithmetic (Theorem 1.1.5), every integer n > 1 is either
a prime or can be written as a product of primes in a unique way. We have the following result
concerning Euler’s totient function. The proof can be found in e.g. [Sie88, page 247].

3Recall the difference between sets defined in Equation 1.1.

27

Theorem 1.4.3. Foranyn € Z, n > 1,
k k 1
if n= pri, then ¢(n) = nH (1 -) , (1.15)
i=1 i=1
where p; are distinct primes.

Example 1.4.10. ® Letn = 10. 10 = 2 x 5. We can count the elements in Z;(that are coprime to
10 (labelled in red color):
Z1o=40,1,2,3,4,5,6,7,8,9 }.

There are four of them. By Equation 1.15, we also have

@(10):10x<1—;>x<1—;>:4.

Let n = 120. 120 = 23 x 3 x 5. We have

<p(120)—120><<1—;> x(l—é)x(l—é)—?ﬂ.

* Letn = pg, where p and ¢ are two distinct primes. Then

¢(n) = pq (1— ;) (1 - ;) =(—-1(¢—-1).

Let n = p*, where pis a prime and k € Z, k > 1. Then

o) = p" (1 - ;) =p" - 1).

In particular, if p = 2,
p(2") =27

Theorem 1.4.4 (Euler’s Theorem). For any a € Z, a*™ = 1 mod n if gcd(a,n) = 1.

Proof. By definition, |Z; | = ¢(n). If gcd(a,n) = 1, then a € Z;,. The result follows from Theorem 1.2.1.
O

Example 1.4.11. Let n = 4. We have calculated that ¢(4) = 2 in Example 1.4.9. And
32=9=1mod 4.
Let n = 10. we have calculated that ¢(10) = 4 in Example 1.4.10. And
3" = 81 = 1 mod 10.

Since ¢(p) = p — 1 (Example 1.4.9), a direct corollary of Euler’s Theorem is Fermat’s Little Theo-
rem.

Theorem 1.4.5 (Fermat’s Little Theorem). Let p be a prime. For any a € Z, if p { a, then a?~! =
1 mod p.

Example 1.4.12. o Letp =3.2%2 =4 =1mod 3.
e Letp=5.2 =16 =1mod 5.
Corollary 1.4.3. Let p be a prime. Then for any a, b, ¢ € Z such that b = cmod (p — 1), we have
a’ = a° mod p.

In particular,

b bmod (p—1)

a’=a mod p.

28

Proof. By Fermat'’s Little Theorem (Theorem 1.4.5),

o1 Imodp ifpta
I .
Omodp otherwise

Sinceb=cmod (p—1),b—c= (p— 1)k for some k € Z. And

ab = gtk = geq(—Dk = {ac modp ifpfa = a mod p.

Omod p otherwise

Example 1.4.13. Let p =5,a =2, b = 6. Then
26 = 96modd = 92 = 4 mod 5.

We can verify that indeed
26 = 64 = 4mod 5.

Corollary 1.4.4. Let p be a prime and b be an integer coprime to ¢(p). For any a1, az € Zy, if a1 # ao,
then a} # a4 mod p.

Proof. Suppose a1 # as and @ = a} mod p. Let ¢ = b~! mod ¢(p), then

a? = a¥ mod p, and be=1mod ¢(p).

By Corollary 1.4.3, a1 = a2 mod p. Since a1, a2 € Z,, we have a; = ag, a contradiction. O

Example 1.4.14. Let p = 7, then ¢(p) = 6. Let a; = 3, ag = 4, b = 5. Then
ad=3"=243=5mod 7, ab=4%=1024=2mod 7.

This agrees with Corollary 1.4.4. On the other hand, if we let b = 2, which is no coprime to ¢(p), we
have

a=32=9=2mod7, a}=4>=16=2mod7.
1.4.1 Solving Linear Congruences

In this part, we will discuss how to solve a system of linear congruences in Z,,.
We first consider one linear congruence equation.

Lemma 1.4.5. For any a, b € Z, the linear congruence
ar = bmod n

has at least one solution in Z if and only if ged(a, n)b.

Proof. By Definition 1.4.2, the linear congruence is equivalent to the following equation for some
keZ
ar+kn="> (1.16)

= By Lemma 1.1.1 (6), gcd(a, n)|b.

<= Assume gcd(a,n)|b, then d(b o7 is an integer. By Bézout's identity (Theorem 1.1.3), we can find

integers s, t such that as + tn = ged(a, n). Multiplying both sides by o d(a my we have
a sb +n tb =b
ged(a, n) ged(a,n)
Thus o d(a) is a solution for Equation 1.16. O

29

Example 1.4.15. Let n = 10, a = 4. Then gcd(a,n) = 2. By Lemma 1.4.5, the linear congruence
42 = 1 mod 10 has no solution. Indeed, if we try to multiply any integer by 4 and divide by 10 we
will not get an odd remainder.

On the other hand, the linear congruence 4x = 2 mod 10 has at least one solution. For example,
x = 3is asolution (4 x 3 =12 =2 mod 10).

Theorem 1.4.6. For any a, b € Z, the linear congruence
ar = bmod n

has a unique solution = € Z, if and only if ged(a,n) = 1

Proof. = Suppose gcd(a,n) > 1 and z¢ € Z, is a solution for the linear congruence. Let z; =

xo + m, then

a:clza:ro—i-(>nza:c0modn.

ged(a, n)

Since ged(a,n) > 1,
solution in Z,,.
<= Suppose gcd(a,n) = 1. Take any two solutions zg, 1 € Z,, we have az; = axo mod n. Then

m # 0mod n, and we have x1 #Z o mod n. Thus x; mod n is another

a(xg — x1) = 0 mod n = nla(zg — z1).

Since ged(n,a) = 1, n t a. By Lemma 1.1.1 (7), n|(zo — x1). As 0,21 € Zpn, 0 < 20,21 < n, we must
have xy — 21 = 0. O

Example 1.4.16. * Letn =10, a = 3. 3z = 4 mod 10 has a unique solution x = 8 € Zj.
e Letn =10,a = 4. 4x = 4 mod 10 has two solutions in Z1g: x = 1, 6.

We now know when there are solutions for a linear congruence and when the solution is unique
in Z,. Next, we will discuss the formulas to find the solution when it is unique. Also, instead of
only looking at one equation, the method can find the solution for a few equations, which are called
a system of simultaneous congruences, at the same time.

Such a problem was mentioned in an ancient Chinese math book called “Sun Zi Suan Jing”. The
question in the book asks: “There is something whose amount is unknown. If we count by threes,
2 are remaining; by fives, 3 are remaining; and by sevens, 2 are remaining. How many things are
there?” Translating to our notations, the question is

= 2mod3
3mod 5
2mod 7
= 7 (1.17)

8 8 8 8
Il

Before answering the question, we provide the solution for a more general case. Let us consider
a system of simultaneous linear congruences

al mod mq

a9 mod mso

r = apmod my, (1.18)

where m; are pairwise coprime positive integers, i.e gcd(m;, m;) = 1 for i # j.
Define

k
m =[] m, Mi:%, 1<i<k. (1.19)
i=1 i

30

Since m; are pairwise coprime, m; and M; are coprime. By Lemma 1.4.3, y; := Mi’1 mod m; exists. It
can be computed by the extended Euclidean algorithm (See Remark 1.4.3). Let

k
x = Z a;y; M; mod m. (1.20)
i=1

Since y; = Mi_1 mod m; and m;|M; for j # i, we have
a;y;M; = a; mod m;, and a;y;M; = 0mod m; if j # 1.

Then,
T = a;y; M; + Z a;y; Mj = a; mod m; for all 4.
1<j<n,j#i
Thus, z is a solution to the system of simultaneous linear congruences in Equation 1.18.
Now, we can compute a solution to Equation 1.17. We have

m1:37 m2:5a m3:77 611:2, a2:37 (13:2,
and

m=3x5x7=105, M; =35 My=21, DM;s=15.
By the extended Euclidean algorithm, we get

y1 = M;'mod3=2"mod3 =2,
Yo = M51m0d5:1_1m0d5:1,
y3 = My;'mod7=1"mod7=1.

And a solution to Equation 1.17 is given by

3
z = Y ayMimodn=2x2x35+3x1x21+2x1x 15mod 105
i=1
= 233 mod 105 = 23 mod 105.

Example 1.4.17. Let us solve the following system of simultaneous linear congruences

2mod 5

1 mod 7
5mod 11

? mod 385.

8 8 8 8
(e

Following the above procedures, we have
mi :5, m2:7, m3:11, al :2, a :1, a3:5,

m=>5x7x11=385, M; =77, My=>55 M;=35.

Then
M =77T=2mod 5, My=55=6mod7, Mz=35=2mod1l.

With the extended Euclidean algorithm, we have find
y1 =M, 'mod5=3, y=M,'mod7=6, y3=M;' mod1l=6.

And

3
r = Y ayiMymodm =2x3x77+1x6x55+5x6x 35mod 385
i=1
= 1842 mod 385 = 302.

31

We have shown how to find a solution to a system of simultaneous linear congruences. The
following theorem says that our solution is unique in Z,.

Theorem 1.4.7 (Chinese Remainder Theorem). Let m,ma, ..., my be pairwise coprime integers. For
any ai, az, . ..,ax € Z, the system of simultaneous congruences
r=armodmy, x=aymodmsy, ... x=a,modm,

has a unique solution modulo m = Hi.“:l m;.

Proof. The discussions above have shown the existence of such a solution. To prove the uniqueness,
let z1, 2 € Zy, be two solutions for the system of simultaneous congruences. Then

1 =xomodmy, x1=xomodms, ... x1=xsmodmy.
By definition, we have
ml\(xl —.I'Q), m2’($1 —372), mk](xl —172).

Since m;s are pairwise coprime, by Lemma 1.1.1 (8), we can conclude that m = Hle m; divides
r1 — T9. As 1 and x5 are from Z,,,, we must have 1 = x». O

Example 1.4.18. Let p = 3,¢ = 5,n = 15,a = 10. We would like to find the unique solution x € Z;5
such that
r=10mod 3, x=10mod 5.

We have
m =p=3, mo=qg=2>5, a =ay=a=10.

Hence

m=n=15, M; =5 My=3, y1=5"'mod3=2, y,=3'mod5=2.
And

x = ayy1 My + asys My mod n =10 x 2 x 5+ 10 x 2 x 3mod 15 = 160 mod 15 = 10.

Example 1.4.19. Take two distinct primes p, ¢, and let n = pq. By Theorem 1.4.7, for any a € Z,, there
is a unique solution = € Z, such that

r=amodp, x=amodyg. (1.21)

Since @ = amod p and a = a mod ¢, the unique solution is given by x = a € Z,. In other words,
there is no other element b € Z,, different from a that satisfies Equation 1.21.
On the other hand, following the above procedures for finding the solution, we have

mp=p, Mm2=g¢q¢, a1 =a2=a.

And
m=n=pq, Mi=q, My=p, y1=¢ 'modp, y=p 'mody.
Then
T = ayy M+ asys Mo mod n = (a(g”! mod p)g + a(p~! mod ¢)p) mod n
= (a((¢g”" mod p)g + (p~" mod ¢)p)) mod n.
By definition,

1

(q_1 mod p)g =pk1 +1, (p~ mod q)p = qks + 1,

for some integers k1, k2. Thus

pl((¢~" mod p)g + (p~' mod ¢)p — 1),

32

and

q|/((¢"! mod p)q + (p~! mod ¢)p — 1).

By Lemma 1.1.1 (8), we have
n|((¢g" mod p)g + (p~* mod ¢)p — 1) = (¢~ mod p)g + (p~! mod ¢)p = 1 mod n.

Thus

1

z = (a((¢"! mod p)g + (p~ ! mod ¢)p)) mod n = a mod n.

Corollary 1.4.5. Let p and ¢ be two distinct primes and n = pq. For any «a, b € Z, we have

b bmod ¢(

a’=a ") mod n.

Proof. Since ¢(n) = (p—1)(¢ — 1),
bmod ¢(n) =bmod (p— 1), bmod p(n)=bmod (¢ —1).

By Corollary 1.4.3,

b bmod ¢(

a=a b bmod p(n)

"modp, a’=a mod gq.

By Example 1.4.19,

b bmod ¢(

a’=a ") mod n.

Example 1.4.20. Letp=3,9g=5,a=2,0=9. Thenn =15and p(n) =2 x4 =8. And
29 = 29mod8 = 9 mpd 15.

We can check that
29 = 512 = 2 mod 15.

Corollary 1.4.6. Let p and ¢ be two distinct primes and n = pq. For any a;,as € Z, and b € Z’;(n), if

a1 # ag, then a} # a} mod n.

Proof. Suppose a} = a} mod n. Let ¢ = b~ mod ¢(n), then

at =a5¥modn, and be=1mod ¢(n).
By Corollary 1.4.5, a1 = as mod n. Since a1, a2 € Z,, we have a; = a, a contradiction. O

Example 1.4.21. Letp =5,q¢ =7, a1 =4, ag = 6. Thenn = 35 and p(n) = 4 x 6 = 24. Choose b = 5,
we have

a? =4° =9mod 35, a}=6°=6mod 35.
1.5 Polynomial Rings

In this section, we introduce another example of commutative rings — polynomial rings. Throughout
this section, let (¥, +, -) be a field with additive identity 0 and multiplicative identity 1.

Definition 1.5.1. ¢ Define
n
Flz] :== { Zaixi
i=0

An element f(z) = a,z" + ap_12"" 1 + -+ + a17 + a9 € F[x] is called a polynomial over F.

aiEF,nZO}.

e If a, # 0, we define degree of f(z), denoted deg(f(z)), to be n. Following the convention, we
define deg(0) = —oc.

Example 1.5.1. Let F' = R, then f(z) = z 4+ 1 € R[z] is a polynomial over R and deg(f(z)) = 1.

33

Take f(z) = ana™ + ap_12" 1+ - + ag, g(z) = bypx™ + byy_12™ "1 + -+ + by from F[z]. Without
loss of generality, let us assume n > m. Then we can write g(z) = byz™ + bp_12" L + -+ + by, where
b; = 0 for i > m. We define addition + ;) and multiplication X g[,] as follows:

(@) +Fp) 9(x) == cnz™ + Cno12" "t + -+ ¢o, where ¢; = a; + b;. (1.22)
And '
F(@) Xy 9(x) 1= dpa" + dp_12" ' + -+ + do, where d; = ajb;_;. (1.23)
j=0

It is easy to show the following proposition.

Proposition 1.5.1. With the addition + ;) and multiplication X p[,) defined in Equations 1.22 and 1.23,
(F[z], +pla], X Flz)) is @ commutative ring. It is called the polynomial ring over I

The identity element for + gy, is 0, the additive identity in F'. The identity element for X i, is 1,
the multiplicative identity in F'. The additive inverse of a polynomial

f(l’) = apx" + anflxn_1 +---+ap

is given by
_f(:l:) = _anmn - an—lxnil — - —Qaop,

where —a; is the additive inverse of a; in F. For simplicity, we will write f(z)g(x) and f(x) + g(z)
instead of f(z) X p[y) g(x) and f(x) + g 9(2).

Example 1.5.2. Let F' = R, R[z] is a ring. The identity element for multiplication is 1. The identity
element for addition is 0. Take f(z) = x + 1, g(z) = x in R[z],

@)+ g@) =2 +1, fla)g(a) = a?+a.

The additive inverse of f(z) is
—x —1.

Lemma 1.5.1. For any f(z), g(z) € F[z], such that f(x) # 0, g(x) # 0, we have

deg(f(z)g(x)) = deg(f(x)) + deg(g(x)).
Proof. Let m = deg(f(x)) and n = deg(g(x)). Then we can write
Zazx g(z be where a,, # 0, b, # 0.
7=0

By Equation 1.23, f(x)g(z) = d(x), where the highest power of z in d(z) is m + n and its coefficient is
ambrn, # 0. We have deg(d(x)) = m + n. O

Lemma 1.5.2. F[z] is an integral domain.

Proof. For any f(z),g(z) € F[z], such that f(z) # 0, g(x) ;é 0, we have deg(f(x)) > 0,deg(g(z)) > 0.
By Lemma 1.5.1, deg(f(x)g(z)) > 0, and hence f(z)g(z) # O

Similar to Euclid’s algorithm (Theorem 1.1.2), we have the following theorem. The proof can be
found in e.g. [Her96, page 155].

Theorem 1.5.1 (Division Algorithm). Forany f(x), g(x) € F|x], of deg(f(x)) > 1, there exists s(x),r(z) €
F[z] such that deg(r(z)) < deg(f(x)) and

g9(x) = s(x)f(x) + r(z).

r(z) is called the remainder, and s(x) is called the quotient.

34

Definition 1.5.2. Let f(z), g(x) € F[z], if f(z) # 0 and g(x) = s(z) f(z) for some s(z) € F[x], then we
say f(z) divides g(x), written f(x)|g(x).

Example 1.5.3. Let F = F5. Take g(x) = 42° + 23, f(x) = 2 € F5[x], then
g(x) = f(x)(4a? + 1)

and f(x)|g(x).

Definition 1.5.3. A polynomial f(x) € F[z] of positive degree is said to be reducible (over F) if there
exist g(x), h(z) € Fx] such that

deg(g(x)) < deg(f(z)), deg(h(z)) < deg(f(z)), and f(z) = g(x)h().
Otherwise, it is said to be irreducible (over F).
It is easy to show the following lemma from the above definitions.

Lemma 1.5.3. A polynomial f(x) € F[z] of degree n is reducible over F' if and only if it is divisible
by an irreducible polynomial of degree at most |n/2].

Remark 1.5.1. * f(x) € F[z] of degree 2 or 3 is reducible over F if and only if it has a root in F.*
o Let f(z) =Y 1 oa;x’ € F[z]. Then f(0) = ag. Thus f(z) is reducible if ay = 0.

o Let f(z) = Y i jaix’ € Fo[z]. Then f(1) = 1" qa;. If [{a; | a; #0}] is even, then f(1) = 0
and f(z) is reducible over Fs. In other words, any f(z) € Fa[z] with an even number of nonzero
terms is reducible over [Fs.

Example 1.54. ¢ h(z) = 42° + 23 € F3[z] has degree 5 and it is reducible since h(z) = z3(42% +1).
* g(x) = 22 € Fo[r] has degree 2 and it is reducible, g(z) = z - z.
Example 1.5.5. Let F' = Fy.

o All the polynomials of degree 2 are z%,2% + 1,22 + « + 1,22 + z. By Remark 1.5.1, the only
irreducible polynomial of degree 2 is z? + = + 1.

o All the degree 3 polynomials with an odd number of nonzero terms are 2, 23 +x + 1, 23 + 2% +
1,23 + 2? + . Among those, the polynomials with ag # 0 are the irreducible polynomials of
degree 3:

B 4r+1, 22+ 22+ 1.

* Degree 4 polynomials with ag # 0 and an odd number of nonzero terms are
1:4—|—x+1, :E4—|-932-|-1, x4+x3—|—1, 44 r+1

By our choice, they are not divisible by degree 1 polynomials. By Lemma 1.5.3, any of them is
reducible if and only if it is divisible by z? + z + 1, which can be verified using the Division
Algorithm (Theorem 1.5.1). For example,

rrrtl=2@ e+)+ (@3 e+t)
is not divisible by 2% + = + 1. And
1=+ +)@+ 1)
is divisible by 2% + = + 1.
Finally, we have all the degree 4 irreducible polynomials over F:

x4—|—3:—|—1, :B4—|-.1’3+1, B4+ 4+ 1.

*An element a € F is a root of f(z) if f(a) = 0.

35

We note that there are many analogies between a polynomial ring F'[z] and the ring of integers
Z. For example, a polynomial f(z) corresponds to an integer n. An irreducible polynomial p(z)
corresponds to a prime p.

For the rest of the section, let us fix a polynomial f(z) € F[z] such that f(z) # 0. Same as in
Equation 1.11, we define a relation ~ on F[z] as follows:

g(x) ~ h(zx)if f(x) | (9(x) = h(z)).

We have shown that the relation in Equation 1.11 is an equivalence relation on Z, and a similar
proof shows that ~ is an equivalence relation on F'[z]. We can also define congruence in F[z] (cf.
Definition 1.4.2).

Definition 1.5.4. For any g(x), h(z) € Flz], if g(z) ~ h(x), ie. f(z)|(g9(x) — h(x)), we say h(z) is
congruent to g(x) modulo f(z), written g(z) = h(xz) mod f(z).

The congruence class of g(z) modulo f(x) is given by

{h(z) | h(z) = g(x) mod f(z) }.
Similar proofs for Lemma 1.4.1 can be applied to prove the following lemma.

Lemma 1.5.4. Suppose f(x) has degree n, where n > 1. Let F'[z]/(f(z)) denote the set of all congru-
ence classes of g(x) € F[x] modulo f(z). Then

n—1
Fla]/(f(z)) = { > a’
1=0

can be identified with the set of all polynomials of degree less than n.

aieFfor0§i<n}

Example 1.5.6. Let f(z) = 2> + 2 + 1 € Fa[z]. By Lemma 1.5.4,

Folz]/(f(2)) ={Lz,x +1}.

Similarly, let g(z) = 2% € Fa[z]. Then

Falz]/(g(x)) = {1, 2,2 +1}.

We can see that Fo[z]/(f(z)) and Fa[z]/(g(x)) contain equivalent classes generated by the same poly-
nomials.

Naturally, for any g(x),h(z) € Flz]/(f(z)), same as in Equations 1.12 and 1.13, addition and
multiplication in F'[z]/(f(x)) are computed modulo f(z).

Example 1.5.7. Let f(z) € Fy[z] be a polynomial of degree n. For any

n—1 n—1
= Z a;x', h(z) = Z bz
i=0 i=0
from Fo[z]/(f(x)), we have
g(z) + h(xz) mod f(z Z c¢x', where c¢; =a; +0b; mod?2.

Thus the addition computations in Fa[z]/(f(z)) are the same for all f(x) of the same degree.

Example 1.5.8. Let F = Fy, f(z) = 2® + 2 + 1 € Fal], g(z) = z € Falz]/(f(x)), and h(z) = z €
Fa[z]/(f(x)). We have

g(x) + h(x) mod f(z) =z + 2z mod f(x) =

g(z)h(xz) mod f(x) = 22 mod f(z) = = + 1.

36

+ 0 1 T z+1 X 0 1 T 4+ 1
0 0 1 x z+1 0 0 0 0 0

1 1 0 rz+1 T 1 0 1 T z+1
T x z+1 0 1 x 0 T z+1 1
z+1|x+1 x 1 0 r+1]0 x+1 1 T

Table 1.2: Addition and multiplication in Fo[z]/(f(z)), where f(z) = 2% + = + 1.

+ 0 1 x z+1 X 0 1 r x+1
0 0 1 T z+1 0 0 0 0 0

1 1 0 z+1 T 1 0 1 r x+1
T x r+1 0 1 x 0 T 0 T
z+1|x+1 T 1 0 z+1]0 x+1 = 1

Table 1.3: Addition and multiplication in Fs[x]/(g(x)), where g(z) = z°.

Example 1.5.9. Let f(x) = 22 + 2 + 1, g(z) = 2% € F3[z]. The addition and multiplication computa-
tions in Fo[z]/(f(x)) and Fa[z]/(g(x)) are shown in Tables 1.2 and 1.3 respectively. We note that the
addition computations for Fa[x]/(f(x)) and Fa[x]/(g(x)) are the same as discussed in Example 1.5.7.

We also have the notion of the greatest common divisors between two nonzero polynomials in
Flz] (cf. Definition 1.1.5). Then, for any g(z) € F[z], modified version of the Euclidean algo-
rithm (Algorithm 1.1) can be applied to find the greatest common divisor for g(z) and f(z), denoted
ged(g(z), f(x)). Similarly the extended Euclidean algorithm (Algorithm 1.2) can be applied to find
the inverse of g(z) modulo f(x) when gcd(f(z),g(z)) = 1. More details are presented in [LX04,
Section 3.2].

Example 1.5.10. Let F' = Fs and f(z) = 22 + 2 + 1, g(z) = = € Fa[z]. By the Euclidean algorithm, we
have
f(@) = (x+Dg(x) +1, ged(g(z), f(z)) = ged(g(x),1) = 1.
By the extended Euclidean algorithm,
L=g(x)(z+1)+ f(z).
We have g(z)~! mod f(z) =z + 1.
Example 1.5.11. Let F' = Fy and f(z) = 2% + 2 + 1,g(z) = 2? € Fa[z]. By the Euclidean algorithm,

we have
f(x) =g(z) + (z +1), ged(g(2), f(x)) = ged(g(z), (z + 1)),
g(@) =+)@+ 1)+1, ged(gla), (&+1)) = 1.

By the extended Euclidean algorithm,
1=9(z) +(z+1)(z+1) = g(z) + (2 + 1)(f(z) + 9(2)) = g(x)x + (z + 1) f(z).
And g(z)~! mod f(z) = .

Similar proofs for Theorem 1.4.2 and Corollary 1.4.1 can be applied to show the following theo-
rem.

Theorem 1.5.2. Together with addition and multiplication modulo f(z), Flz]/(f(x)) is a commuta-
tive ring. It is a field if and only if f(z) is irreducible.

Example 1.5.12. Let F = R. By Remark 1.5.1, f(z) = 22 + 1 is irreducible over R. By Theorem 1.5.2,
R/(f(z)) is a field. By Lemma 1.5.4,

R/(f(z) ={a+bx | a,bER}.

Recall that
C={a+bi| abeR}.

It is easy to see that R/(f(z)) = C by mapping « to i (see Definition 1.2.16).

37

Example 1.5.13. In Examples 1.5.4 and 1.5.5 we have shown that g(z) = z? is reducible and f(z) =
z? 4+ x + 1 is irreducible over Fs.

By Theorem 1.5.2, Fo/(g(x)) is not a field and Fy/(f(z)) is a field. Indeed, in Examples 1.5.6
and 1.5.9, we have seen that even though Fs[z]/(f(z)) and F2[z]/(g(x)) contain equivalent classes
generated by the same elements, the multiplication computations are different in those two rings. In
particular, z is a zero divisor in Fy/(g(z)) (Table 1.3), but has inverse x + 1 in Fo/(f(z)) (Table 1.2).

We have discussed that there is only one finite field up to isomorphism (Theorem 1.2.3). The
following theorem specifies the field structures for F'[z|/(f(z)) when F' = F,, where p is a prime.

Theorem 1.5.3. Let p be a prime, and let f(z) € [F,[z] be an irreducible polynomial of deg(f(z)) = n.
Then F,[z]/(f(x)) = Fpn.

Proof. By Lemma 1.5.4,

n—1
Fplzl/(f(x)) = { > ai’
=0

aierfor0§i<n}.

There are p choices for each of the n a;s. Hence the cardinality of F),[z]/(f(«x)) is p™. The result follows
from Theorem 1.2.3. O
Example 1.5.14. Let f(x) = 22 + x + 1 € Fa[z], by Theorem 1.5.3, Fa[z]/(f(z)) & Fys.

1.5.1 Bytes

Throughout this subsection, let f(z) = 2% + 2% + 23 + x + 1 € Fy[x].
It can be shown that f(x) is irreducible over F using Lemma 1.5.3 and Example 1.5.5. Then by
Lemma 1.54,

7
Folz]/(f(2)) = { > bt
i=0

By Theorem 1.5.3, Fo[z]/(f(z)) = Fos.
We note that any

biEFQVi}.

b7x7 + bﬁ.’L‘G + b5x5 + 541‘4 + b3.%'3 + 521‘2 + bix + by € Fy [SE]/(f(.%’))

can be stored as a byte brbgbsbsbsbabiby € F3 (see Definition 1.3.7), which represents an integer be-
tween 0 (0016) and 255 (FFi6) (see Remark 1.3.3). There are 256 different values for a byte, and
[Fys| = 28 = 256. Then ¢ defined as follows

¢ :Falz]/(f(z) — T3
brx” + bex® + bsx® + baz + b3z + box® + by + by > brbgbsbabsbabiby

is a bijective function. Thus, with addition and multiplication modulo f(z) in F3[z]/(f(x)), we can
define the corresponding addition and multiplication between bytes.

Definition 1.5.5. For any two bytes v = v7vg...v1v9 and w = wrwg . .. wiwp, let g, (z) = vz’ +
0625 + - + v17 + vy and gy () = wrr” + wea® + - - + w12 + W be the corresponding polynomials
in Fo[z]/(f(x)). We define

V4w = gy(2) + gw(z) mod f(z), v X w = gy(z)gw(x) mod f(z).
In particular, by Example 1.5.7,
v+ w = cy¢q. .. c1¢g, Where ¢; = v; + w; mod 2.

Remark 1.5.2. Recall that a byte is also a vector in IE‘%, we have defined vector addition as bitwise XOR
(see Definition 1.3.6), and

Uty W = UG - - . U1l where u; = v; ® w;.

We note that a + bmod 2 = a @ b for a,b € Fy. Thus, our definition of addition between two bytes
(Definition 1.5.5) agrees with the vector addition between two vectors in F5.

38

Example 1.5.15. Take 2° + 2% + 22 + 2 + 1 € Fa[z]/(f(z)), which corresponds to 010101115 = 5746.
And 27 + 2 + 1 € Fo[z]/(f(x)), which corresponds to 100000115 = 8315. We have

5716 +8316 = (2 +a*+a2?+2+1)+ (2" + 2+ 1) mod f(x)
= 2"+ 2% 4 2% + 2% mod f(x) = 110101005 = D4 .

We note that
010101115 ¢ 100000119 = 110101004.

For multiplication, we compute

(P42t 422+ 24+ D@ "+ +1) =B+t 2% 428 420 425 a2t 23 41,

and
2 = 2*+2° + 2+ 1mod f(),
2 = 2% +a2*+2% + 2mod f(a),
U= 2" 428 4+ 2% + 2% mod f(w),
¥ = 2%+ 2%+ 2%+ 2° mod f(z).
Thus

eB e a4 a4ttt =2 2t ¥ 1 =27 4 2% + 1 mod f(2),

which gives
5716 X 8316 = 110000015 = C145g.

Example 1.5.16. In this example, we would like to compute the formula for a byte multiplied by
0216 = x. Take any g(z) = byx” + bgz® + - - - + by + by € Fo[z]/(f(2)),

g(x)z mod f(x)

= (b7ac7 + beazS + bsa® + bz + bsa® + box® + bz + bp)xz mod f(x)

= byaS + bgx” + bsa® + byx® + b3zt + box® + bra® + bpz mod f(z)

= bex” + bszS + bax® + bsxt + bax® + b2 + bozr + brzt + by + brx + by mod f(z)
= bz’ + bsa® + bya® + (b3 + by)zt 4 (by + br)a® + bya? + (b + by)z + by mod f(x).

Thus, for any byte brbg . .. b1by, multiplication by 0216 is equivalent to left shift by 1 and XOR with
000110115 = 1Byg if by = 1.

Example 1.5.17. e 5716 = 010101115, 0214 X 5716 = 10101110 = AEqs.
® 8316 = 100000115, 0216 X 831 = 000001102 € 000110119 = 000111015 = 1Dqg.
® D46 = 110101005, 021 X D416 = 101010002 & 000110119 = 101100115 = B34¢.

Example 1.5.18. Now, let us compute the multiplication of a byte by 0316 = = + 1. Take any h(z) =
bra” +bex® + -+ + by + by € Folz]/(f(x)),

h(z)(x 4+ 1) mod f(x) = h(z)z + h(z) mod f(z).

Thus, for any byte b7bg . .. b1by, multiplication by 0316 is equivalent to first multiplying by 0216 (left
shift by 1 and XOR with 000110115 = 1Bj¢ if b7 = 1) and then XOR with the byte itself (b7bs . . . b1bp).

Example 1.5.19. Continuing Example 1.5.17,
® 03164 X 5716 = AE16 P 5716 = F915.
® 0314 X 8316 = 1D1g P 83164 = 9E156.

® 0316 X D416 = B316 @ D416 = 6716.

39

Example 1.5.20. 0316 X BF16 = 011111102 ¢ 000110112 ¢ 101111119 = 110110102 = DA

We can also compute the inverse of elements in Fy[z]/(f(z)) using the extended Euclidean al-
gorithm (Algorithm 1.2) as in Example 1.5.10. Thus, enabling us to find the inverse of a byte as an
element in Fo[z]/(f(x)).

Example 1.5.21. 0316 = 000000115 = = + 1. By the Euclidean algorithm (Algorithm 1.1),
f@)y=(@+D@" +2+ 2+ 2 + 22 +2) + 1 = ged(f(z), (z + 1)) = 1.

See also Appendix B for the computation.
By the extended Euclidean algorithm,

1= f(z)— (z+ 1) (" + 2%+ 2° + 2* + 22 + 2).
We have

0314 = (r+ 1) ' mod f(x) =27 +2° + 2° + 2* + 22 + 2 = 11110110 = F635.

1.6 Coding Theory

In this section, we give a brief discussion on binary codes, which will be useful for the design of
countermeasures against side-channel attacks (Section 4.5.1.1) and fault attacks (Section 5.2.1).

Let n be a positive integer in the rest of this section. To study binary codes, we look at the vector
space [y and we refer to vectors in F} as words of length n.

Definition 1.6.1. ® w = wow; ... w,—1 € F} is called a binary word of length n.
* A nonempty set C' C [y is called a binary code of length n.
* An element of a binary code C' is called a codeword of C.
* Cardinality of C is called the size of C.
* A code of length n and size M is called a binary (n, M)—code.
Example 1.6.1. ¢ C' = {00, 11 }is a binary (2, 2)—code.
e ¢'=1{010,001,110,111 } is a binary (3, 4)—code.

Definition 1.6.2. For any v, u € F%, the Hamming distance between v and u, denoted dis (v, u), is
defined as follows

n—1 .
1 if vy i
dis (v, u) = E dis (v;, u;) , where dis (v, u;) = {O TfUA f u‘ . (1.24)
= if v; = u;

Example 1.6.2. dis (001,111) = 2. dis (00000, 10101) = 3
Lemma 1.6.1. For any v, u, w € F3, we have

1. 0 < dis (v,u) < n.

2. dis (v, u) = 0if and only if v = u.

3. dis (v, u) = dis (u, v).

4. dis (v, w) < dis (v, u) + dis (u, w) (triangle inequality).

Proof. (1)-(3) are easy to see. We provide the proof for (4). By Equation 1.24, it suffices to consider
n = 1. Take any v, w, u € Fa.
Ifv=uw,
dis (w,w) = 0 < dis (v, u) + dis (u, w) .

If v # w, dis (v, w) = 1, and dis (v, u) = 1 or dis (u, w) = 1. O

40

Definition 1.6.3. Let C' C [} be a binary code containing at least two codewords, the (minimum)
distance, denoted dis (C), is given by

dis (C) = min{ dis(c1,¢2) | e1,c2€ Cye1 # o'}
Definition 1.6.4. A binary code of length n, size M and distance d is called a binary (n, M, d)—code.
Example 1.6.3. Let C = { 0011, 1101, 1000 }, we can calculate that

dis (0011,1101) =3, dis(0011,1000) =3, dis(1101,1000) = 2.
Thus C'is a binary (4, 3,2)—code
Recall that when the value of a bit is changed we say that the bit is flipped (Definition 1.2.17).

Definition 1.6.5. A binary code C is said to be k—error-detecting for a positive integer k£ if for any
c € C, whenever at least 1 but at most £ bits of c are flipped, the resulting word is not a codeword in
C. If C'is k— error detecting but not (k+ 1) —error detecting, then we say C'is exactly k—error detecting.

Example 1.6.4. Let C' = {0011, 1101, 1000 }. Since
dis (0011,1101) = dis (0011,1000) = 3, dis (1101, 1000) = 2,

with 1—bit flip from any codeword, we cannot get another codeword. But with 2—bit flips, we can
change 1101 to 1000. Thus C' is exactly 1—error detecting.

Theorem 1.6.1. A binary (n, M, d)—code C is k—error detecting if and only if d > k£ 4 1,i.e. C'is an
exactly (d — 1)—error detecting code.

Proof. <=1fd > k+ 1, take ¢ € C'and = € F} such that 1 < dis(c,z) < k. Thenx ¢ C, and C'is
k—error detecting.

= If d < k+ 1, take ¢1, c2 € C such that dis (c;, c2) = d. Flipping d bits of ¢; we can get ¢z € C.
Hence C is not k—error detecting. O

Let us consider binary (n, M, d)—codes with M = 2 for some positive integer k. When a binary
code is used for transmitting information, every information word u € F5 is assigned a unique
codeword c(u) € C. We say that u is encoded as c(u). Suppose Alice would like to send information
u to Bob using C. Alice sends codeword c(u) to Bob. Due to transmission noise, Bob might receive a
word x € F3 not equal to c(u). Thus we need to define a decoding rule for Bob that allows him to find
u given x.

We are interested in a minimum distance decoding rule, which specifies that after receiving x, Bob
computes

¢y =argmin{dis(x,c) | ce C}, ie. dis(cg,) =min{dis(xz,c) | ceC}.
c (&

If more than one codeword is identified as ¢, there are two options. An incomplete decoding rule says
that Bob should request Alice for another transmission. Following a complete decoding rule, Bob would
then randomly select one codeword.

Example 1.6.5. Let C = {0000,0111,1110,1111 }. We use C to encode information words u € I3
with encoding designed as follows:

¢(00) = 0000, ¢(01) =0111, ¢(10) = 1110, ¢(11) = 1111.

Suppose Alice was sending information 00 with codeword 0000 to Bob. Due to an error during
the transmission, Bob received 0001. By the minimum distance decoding rule, Bob computes the
distances between 0001 and codewords in C'.

dis (0001,0000) =1, dis (0001,0111) =2, dis(0001,1110) =4, dis (0001,1111) = 3

Thus cppo1 = 0000 and Bob gets the correct information 00.

41

Definition 1.6.6. A binary code C is said to be k—error correcting if minimum distance decoding
outputs the correct codeword when k or fewer bits are flipped. If C' is k—error correcting but not
k 4 1—error correcting, then we say that C is exactly k-error correcting.

Example 1.6.6. Let C' = { 000, 111 }.

e If 000 was sent and 1 bit flip occurred, the received word { 001,010, 100 } will be decoded to
000.

e If 111 was sent and 1 bit flip occurred, the received word { 110,011, 101 } will be decoded to
111.

* If 000 was sent and 011 was received, the decoding result will be 111.
Thus C'is exactly 1—error correcting.

Theorem 1.6.2. A binary (n, M, d)—code C is k—error correcting if and only if d > 2k +1,i.e. C'isan
exactly | (d — 1)/2]—error correcting code.

Proof. <= We assume d > 2k+1. Suppose c was sent, v was received, and k or fewer bit flip occurred,
i.e. dis (c,v) < k. For any codeword ¢ € C different from c,

dis (v,c) > dis (¢,) —dis (v,¢) > 2k+1—k=k+1>dis(v,c).

Thus C is k—error correcting.

= Now suppose C'is k—error correcting and d < 2k + 1. Take ¢, ¢’ € C such that dis (¢,) = d.
By definition, C' is also k—error detecting. By Theorem 1.6.1, dis (¢, ¢') = d > k + 1. Without loss of
generality, assume c and ¢’ differ in the first d bits.

Define v € F3 as

C; 0<i<k
V; = C; k <1< d.
cG=c k>d
Then
dis (v,d) =d—k < k=dis(v,c).
If c is sent and v is received, minimum distance decoding cannot uniquely decode v to c. O

Definition 1.6.7. Let C C I3 be a binary code. C is said to be linear if it is a vector space over IFs.
Otherwise, it is said to be nonlinear.

In other words, a binary linear code C' is a subspace of F5 (see Definitions 1.3.5 and 1.3.8).

Remark 1.6.1. By Remark 1.3.4, to show a binary code C is linear, we need to prove that 0 € C' and
forany e, € C,c+ ¢ € C.

We have defined dimensions for vector spaces in Definition 1.3.13.

Definition 1.6.8. The dimension of a binary linear code C is given by dim(C)p,, the dimension of C
as a vector space over Fy. A binary linear code C of length n and dimension k is called a binary
[n, k]—linear code. If C has distance d, then it is called a binary [n, k, d|—linear code.

By Lemma 1.3.3, we can calculate the size of a linear code C using its dimension, |C| = 2dim(C)ry
Thus a binary [n, k]—linear code is also a binary (n, 2¥)—code (see Definition 1.6.1).

Example 1.6.7. e LetC ={00,11,01,10 } = F3, then dim(C)p, = 2 and C is a binary [2, 2, 1]—linear
code.

e Let C = (111) = {000,111}, then { 111 } is a basis for C' and dim(C)r, = 1. C is a binary
[3, 1, 3] —linear code.

42

Example 1.6.8 (Repetition code). Let
C=(11...11)={00...00,11...11 } C F}.

Then {11...11} is a basis for C' and C' is a binary [n,1,n]—linear code. C is called the binary
n—repetition code. By Theorems 1.6.1 and 1.6.2, C' is exactly (n — 1)—error detecting and exactly
|(n — 1)/2] —error correcting.

Example 1.6.9 (Parity-check code). Suppose we would like to encode information words
u = (uo,ul, c ,un,g) S ngl.

We add one parity-check bit and encode u using

n—2

c = (ug,ui,...,Un—2,Cn—1), Where c,_1 = E ;.
i=0

The corresponding code C consists of codewords that have an even number of 1s.

C= { (COa Cly.--,Cn-2, Cnfl)

n—2
Cho1 =Y ¢ } C F3. (1.25)

i=0
It is easy to see that 0 € C. Take v = (vg, v1, ..., Up—1), w = (Wo, w1, ..., wy—1) from C, then
n—2 n—2 n—2
v+ w = (v + wo,v1 + Wi, ..., Vp1 + Wp_1), Un—1 + Wp—1 = sz’ + Zwi = Z(’Uz + w;).
i=0 i=0 i=0

We have v + w € C. By Remark 1.6.1, C'is a linear code.

C is called the binary parity-check code of length n. By Equation 1.25, the vectors v; (0 <i < n — 1),
where v;; = 0 for j # i and vy; = 1, form a basis for C. Thus, dim(C') = n — 1. Furthermore, we note
that the minimum distance between the first n — 1 bits of codewords in C'is 1. The parity-check bit
for two codewords will be different if they differ only at one position in the first n — 1 bits. Thus, the
minimum distance of C'is 2, and C is a binary [n,n — 1, 2]—linear code. By Theorems 1.6.1 and 1.6.2,
C'is exactly 1—error detecting and cannot correct errors.

Definition 1.6.9. The dual code of a binary linear code C is the orthogonal complement of C, C*.
By Lemma 1.3.4, C* is a binary linear code. It is easy to see that (C+)+ = C.

Example 1.6.10. Let C be a binary parity-check code of length n (see Example 1.6.9). Then ¢ € C if
andonlyifc-v=0Vv € C,ie.

n—1 n—2 n—2 n—2

Z vy =0 = Z civ; + (cn_l sz> =0 Z(Cz +cp—1)v; =0

=0 =0 =0 =0
for all v; = 0,1(0 < i < n — 2), which is equivalent to ¢; = ¢,—; forall 0 < ¢ < n — 2. Thus
C+=1{00...00,11...11 } is the n—repetition code (see Example 1.6.8).
Example 1.6.11. Let C' = { 000, 111 } be the binary 3—repetition code, then

Cc+ ={000,011,101,110 }

is the binary parity-check code of length 3.

Definition 1.6.10. Let v € % be a word, the Hamming weight of v, denoted by wt (v), is given by the
number of nonzero bits in v. Or equivalently,

wt (v) = dis (v,0).

43

We note that whenn = 1, wt(v) = 1if v = 1 and wt(v) = 0if v = 0. Then, for any v =
(vo,v1,...,0p—1) from F3,

n—1
wt(v) = wt(v;). (1.26)
=0

Lemma 1.6.2. For any u,v € 3, dis (u,v) = wt(u + v).

Proof. Take any u,v € Fo,
0 ifu=w
1 ifusv, ieut+v=0

dis (u,v) = {
The lemma follows from Equation 1.26. O
Example 1.6.12. Letu = (1,0,0,1), v = (0,1,1, 1), then dis (u,v) = 3 and
wt(u+v) =wt((1,1,1,0)) = 3.
Theorem 1.6.3. Let C' be a binary linear code, define
wt(C) :=min{wt(c) | ceC, c#0}.
Then dis (C) = wt (C).

Proof. Take v,u € C, such that dis (v, u) = dis (C). By Lemma 1.6.2, wt (v 4+ u) = dis (C'). Since C'is
a vector space, v + u € C. We have dis (C') > wt (C).
Now, take w € C such that wt (C) = wt (w). We have

wt (C) = wt(w) = dis (w,0) > dis (C).
0

Definition 1.6.11. Let C be a binary liner code. A generator matrix for C' is a matrix whose rows form
a basis for C. A parity-check matrix for C is a generator matrix for C-*.

Example 1.6.13. Let C = {000,111 }, we know that C*+ = { 000,011,101,110 } (see Example 1.6.11).

Let
011
G=(1 1 1), H:(l 0 1).

Then G is a generator matrix for C and a parity-check matrix for C*. H is a generator matrix for C*
and a parity-check matrix for C.

Let C be a binary [n, k, d|—linear code. If G is a generator matrix for C' and H is a parity-check
matrix for C, then HG' = O, where O denotes a matrix with all entries equal to zero. Also, the size
of Gisk x n.

Let { v1,...,v; } be the rows of G. Then for any u = (ug, u1,. . ., ux_1) in F5,
k—1
uG = Zuwi eC.
i=0

On the other hand, by Remark 1.3.5, any ¢ € C has a unique representation of the form

k-1
c= g u;v;, where u; € Fy.
i=0

Thus, each u € IF’QC can be encoded as uG.

Example 1.6.14. It follows from Example 1.6.9 that the binary parity-check code of length n has
generator matrix (I,,—; | 1), where 1 represents a column vector of length n — 1 with each entry equal
to 1.

44

* The binary parity-check code of length 2 is given by { 00,11 }. It has a generator matrix (1 1).

* The binary parity-check code of length 3 is given by { 000,011,101,110 }. It has a generator

matrix
011
10 1)°
Theorem 1.6.4. Let C' be a binary linear code with at least two codewords, and let H be a parity-check

matrix for C. Then dis (C) is given by d such that any d — 1 columns of H are linearly independent
and H has d columns that are linearly dependent.

Proof. Take v € C such that v # 0. By definition,

vH = Z ’Ul'hi = 0,
1,0, 70

where h; denotes the ith column of H. We can see that the columns h;, where v; # 0, are linearly
dependent. Note that wt (v) = |{v; | v; #0 }|.

Thus, there exists v € C such that wt (v) = d (i.e. dis (C) < d) if and only if there are d columns
of H that are linearly dependent.

dis (C) > d if and only if there is no v € C such that wt (v) < d, which is equivalent to that any
d — 1 columns of H are linearly independent. O

Example 1.6.15. Let C' be the binary parity-check code of length n (see Example 1.6.9). We have dis-
cussed that C* is the n—repetition code (see Example 1.6.10). Since C*+ = (11...11), it has generator
matrix

H=(1 1 ... 1).

By definition, H is a parity-check matrix for C.

Any single column of H is linearly independent. H has two columns that are linearly dependent,
e.g. the first two columns. In fact, any two columns of H are linearly dependent. By Theorem 1.6.4,
dis (C') = 2, which agrees with our observation in Example 1.6.9.

Definition 1.6.12. Let C be a binary (n, M, d)—code. We define the maximum distance of C to be
maxdis(C) := max { dis (¢1,¢2) | c1,c2 € C}.
If maxdis(C') = ¢, C is called a binary (n, M, d,) —anticode.

The notion of anticode was first defined in [Far70], where an anticode refers to a 2—dimensional
array of bits such that the maximum Hamming distance between any pair of rows is at most 9, for
some integer 6 > 0. In this original definition, repeated rows are allowed. In Definition 1.6.12, an
(n, M, d, §)—anticode does not have repeated codewords.

We note that 6 > d. And any binary code is a binary anticode. However, the notion of binary
anticode captures the maximum distance of a code.

Example 1.6.16. e ' ={01,10 }is a binary (2,2, 2,2)—anticode.
e C ={001,011,111 } is a binary (3, 3, 1, 2)—anticode.
e An n—repetition code is a binary (n, 2, n, n)—anticode.

* A binary parity-check code of length n is a binary (n,2" "1, 2, n)—anticode if n is even. And it is
abinary (n,2""!,2,n — 1)—anticode if n is odd.

45

1.7 Probability Theory

This section aims to provide a rigorous introduction to probabilities, random variables, and distribu-
tions.

Probability theory studies the mathematical theory behind random experiments. A random ex-
periment is an experiment whose output cannot be predicted with certainty in advance. However, if
the experiment is repeated many times, we can see “regularity” in the average output. For example,
if we roll a die, we cannot predict the output of one roll. But if we roll it many times, we would
expect to see the number 1 in 1/6 of the outcomes assuming the die is fair.

For a given random experiment, we define sample space, denoted by (2, to be the set of all possible
outcomes. A subset A of () is called an event. If the outcome of the experiment is contained in A, then
we say that A has occurred. The empty set () denotes the event that consists of no outcomes. () is also
called the impossible event.

Example 1.7.1. ® When the random experiment is rolling a die, the sample space is
0=1{1,2,34,56}.
A=1{1,2,3} CQisanevent.
* When the random experiment is rolling two dice,
Q={(Jj) [1<i,j<6}.
One possible eventis A = { (1,2), (1,1) }.

Recall that we have defined complement, unions, and intersections of sets in Section 1.1.1. Fix a
sample space 2. Take two events, A and B. We say that AUB occurs if either A or B occurs. Similarly,
Ui, A; occurs when at least one A; occurs. A() B occurs if both A and B occur, (2, A; occurs if
all of the events A; occur. If AN B = (), then A and B cannot both occur, they are called mutually
exclusive. The complement of A, A°, contains events in {2 that are not in A.

1.7.1 o—algebras

Let 2 be a set and let A denote a set of subsets of Q. A is called a o—algebra if it has the following
properties:

e N cA.
o If Ac A, then A€ € A.

e A is closed under finite unions and intersections: if A, As,... A, € A, then | | 4; € A and
0?21 A; € A.

* Ais closed under countable unions and intersections: if Ay, Ay, -- € A, then |J,_; 4; € A and
mi:l A; e A.

The pair (€2, A) is called a measurable space, meaning that it is a space on which we can put a measure.
Example 1.7.2. e ForanysetQ, A ={0,Q}isaoc—algebra.

¢ For any set (2, the power set A = 22 isa o—algebra.

* Let us consider the random experiment to roll a die. We know Q2 = {1,2,3,4,5,6 }. Then,

A={0,9,{1},{2,3,4,5,6}}
is a o —algebra.
e If wetossacoin, Q ={ H,T}. And
A=22={0Q{H} {T}}

is a o—algebra.

46

Definition 1.7.1. Let d be a positive integer and 2 = R<. Q consists of vectors (zq,1,...,Tq_1),
where z; € R (see Theorem 1.3.3). The smallest o—algebra® containing open sets in 2 is called the
Borel oc—algebra, denoted R?. When d = 1, we write R. Any set B € R? is called a Borel set.

Example 1.7.3. Here we list some examples of Borel sets. Take any a, b, c € R such thata < ¢ < b.
* By definition, open sets (a, b) are Borel sets.

e Since a o—algebra contains the complement of a set, closed sets [a, b] are also Borel sets.

As (a,b] = (a,c) Ulc, b, and (a,c), [c,b] € R, we have (a,b] € R.

Take a singleton set { a }, we have

Thus { a } is a Borel set.

By definition, R is closed under countable unions, it follows that a set of integers is a Borel set.

1.7.2 Probabilities
Let © be a sample space and let (€2, A) be a measurable space in this subsection.

Definition 1.7.2. A probability measure defined on a measurable space (2, A) is a function P : A —
[0, 1] such that

« P(Q) =1, P(0) =0.

e Forany Ay, A, ... € A that are pairwise disjoint, i.e. A;, N A;, = () for iy # iy,

(04) -
=1 =1

This property is also called countable additivity.
P(A) is called the probability of A. (2, A, P) is called a probability space.
Example 1.7.4. Let us consider the random experiment of tossing a coin, the sample space 2 =
{H,T}. Let A=2°={0,Q{H},{T}}. Define
1 1

It is easy to see that P is a probability measure on (€2, A).

Example 1.7.5. Let Q2 be a countable set (finite or countably infinite). Let A = 2%. Then, any proba-
bility measure on (£2, A) is a function such that for any A € A,

P(A)=> P({w}), where P({w}) >0and > P({w}) =1.

weA we
For the rest of this section, let (2, A, P) be a probability space.

Lemma 1.7.1. ¢ Forany A; € A, 0 <7 < m, pairwise disjoint, we have

(04) -
=1 =1

This property is also called finite additivity.

’It is easy to show that the intersection of c—algebras is again a o —algebra. Since 2 is a c—algebra, it follows that the
smallest o —algebra containing open sets exists.

47

e Forany A, B € A such that A C B, we have P(A) < P(B).

Proof. Take A; = () for i > m, by countable additivity we have finite additivity.
Let C' = B— Abe the difference between B and A. By countable additivity of probability measure,

P(B)=P(AUC)=P(A)+ P(C).
By Definition 1.7.2, P(C) > 0. O
Definition 1.7.3. Let Q be a finite set. Let A = 2%, the power set of 2. A probability measure P on
(Q,.A) is called uniform if
1
€2
|A]|

We note that if P is a uniform probability measure on (€2, A), then forany A € A, P(A) = @l

PH{w}) ==, Ywe.

Example 1.7.6. Let Q = {1,2,3,4,5,6 } and A = 2. The uniform probability measure on (£2,A) is

given by P such that

P({i}):é, fori € Q.

LetA={1,2,3}, B={2,4}, then

Take any A, B € A such that P(B) > 0. We would like to compute the probability of A occurring
given the knowledge that B has occurred. We do not need to consider A N B¢ since B has already
occurred. Instead, we look at A N B, which occurs when both A and B occur. This leads to the
definition of the conditional probability of A given B:

p(AB) = ZAND)

“PB) where P(B) > 0. (1.27)

Example 1.7.7. Continuing Example 1.7.6,
ANB={2}, P(ANB)= %

By Equation 1.27,
_P(AnB) 1/6 1
PAB) = =p@ =13~ 2
Definition 1.7.4. Two events A, B are said to be independent if P(AN B) = P(A)P(B). Otherwise, we
say that they are dependent.

By Equation 1.27, when P(B) > 0, the condition P(A N B) = P(A)P(B) is equivalent to

P(A|B) = P(;‘(;)B) _ P(ﬁzggB) — P(A). (1.28)

That is, the probability of A occurring given the knowledge that B has occurred is the same as the
probability of A occurring without the knowledge that B has occurred.

Example 1.7.8. Continuing Example 1.7.7,

P(ANB) = % P(A)P(B) =

By Definition 1.7.4, A and B are independent. We also note that
P(A|B)=P(A) = -.

Next, we state a very useful theorem.

48

Theorem 1.7.1 (Bayes’ Theorem). If P(A) > 0 and P(B) > 0, then
P(B)P(A|B) = P(A)P(B|A).
Proof. By Equation 1.27, we have

P(B)P(A|B) = P(ANB), P(A)P(B|A) = P(ANB).

Definition 1.7.5. A set of events { £, Es,... | E; € A}, is called a partition of if
¢ they are pairwise disjoint;
e P(E;) > 0forall i
e and U; E; = .

If the set of events is finite, it is called a finite partition of 2, otherwise, it is called a countable partition
of Q2.

Example 1.7.9. Let Q = {1,2,3,4,5,6 }, A = 2, and P be the uniform probability measure on (£2,.A)
(see Example 1.7.6). Let

B =1{1,2,3}, BE,={45), E;={6}.

Then, { E1, E2, E3 } is a finite partition of 2. We can also calculate that

1 1 1
P(E)) ==, P(BE)) ==, P(BE;)=-.
(1) 27 (2) 3> (3) 6
Lemma 1.7.2. Let { E1, Es,... | E; € A} be a finite or countable partition of 2. Then, for any A € A,

we have
P(A) = ZP(A|EZ»)P(E1-).

Proof. First, we note that

A=ANQ=4() (UE) -U(aNE).

%

Since E; are pairwise disjoint, E; N A are also pairwise disjoint. We have

P(A) =P (U (AﬂE)) =3 (AﬂEi) = > P(A|E)P(Ey).

%

Example 1.7.10. Continuing Example 1.7.9,let A = { 2,4 }, then
1
P(A) =3, ANE ={2}, AnE={4}, AnB=0.

By Equation 1.27,

- 1/6 1 - 1/6 1 -
P(A|E) = 273 P(A|Ez) = 13" 3 P(A|E3) = 0.
Furthermore,
3
1 1 1 1 1
> P(A|E)P(E;) = SX5 T X3=3=PA

i=1

Now we can state a generalized version of Bayes” Theorem (Theorem 1.7.1).

49

Theorem 1.7.2. Let { E1, Es,... | E; € A }be a finite or countable partition of €. For any A € A with
P(A) > 0and any m > 1, we have

P(A|Em)P(Em)

PERI) = b A PlE)
Proof. By Bayes” Theorem (Theorem 1.7.1),
P(A|E,,)P(E,,
P(En|4) = TGS
The result then follows from Lemma 1.7.2. O

1.7.3 Random Variables

Let (2, A, P) be a probability space. A random variable X represents an unknown quantity that
varies with the outcome of a random experiment. Before the random experiment, we know all the
possible values X can take, but we do not know which one it will take until we see the outcome of
the experiment.

Definition 1.7.6. A random variable X is a function X : Q — R, such that
X 'B)={w:Xw)eB}ecA, VBeR,
where R is the Borel 0 —algebra (see Definition 1.7.1).

Example 1.7.11. * Fix A € A, the indicator function, denoted 14, for A is defined as follows:

1 wed

1g:A—-R, 1 = .
A Aw) {0 wi A

14 is a random variable.

* Consider the probability space from Example 1.7.5, any function X : Q@ — R is a random
variable. In such a case, X is called a discrete random variable.

* Let us consider the probability space discussed in Example 1.7.4. Define X : 2 — R such that
X(H) =0, X(T) = 1. Forany B € R, X ~(B) is always a subset of (2, which is contained in .A.
And X is a discrete random variable.

Let X be a random variable, and define P¥X as follows:

PX:R — [0,1]
B — P(X(B)). (1.29)

It is easy to see that PX(R) = 1 and PX(()) = 0. Take any B; € B that are pairwise disjoint. Then
X~1(B;) are also pairwise disjoint since X is a function. The countable additivity of P¥ follows from
the countable additivity of P. Thus, P¥X is a probability measure on (R, R). We say that P is induced
by X and it is called the distribution of X. The cumulative distribution function (CDF) of X, denoted F',
is defined as

F:R — [0,1]
z — PX((—o0,z]) = P(X (00, x])) (1.30)

For simplicity, we will write P(X € B) instead of P(X ~!(B)) in Equation 1.29 and P(X < z) instead
of P(X~1((—o0,z])) in Equation 1.30.

On the other hand, the next lemma says if we start from a function F' with certain properties,
there always exists a random variable that has F' as its CDF. The proof can be found in e.g. [Dur19,

page 9].

50

Lemma 1.7.3. If a function F satisfies the following conditions, then it is the distribution function of
some random variable.

* Fisnon-decreasing.

e lim F(z)=1, lim F(z)=0.

T—00 T—r—00

e [Fisright continuous, i.e. liin F(y) = F(x).
ylx

When X is a discrete random variable (see Example 1.7.11), the distribution of X is completely
determined by the following numbers:

P(X=j)= Y PHw}.

w:X (w)=j

Let T := X (Q) be the image of Q in R. The probability mass function (PMF) of X is defined to be the
function

px:T — [0,1]
x — P(X=ux).

We have the following relation between the PMF of X and the CDF of X:

Fla)= > px(a).

z<a, x€T

Example 1.7.12. Let us consider the probability space defined in Example 1.7.4. We have discussed
in Example 1.7.11 that
X:Q-R, X(H)=0, X(T)=1

is a discrete random variable. The image of X in Ris 7" = { 0,1 }. And the PMF of X is given by
1 1
px(0)=PX =0)=P({H})=5, px(1)=PX=1)=P{T}) =3
When the distribution function F'(z) = P(X < z) has the form
Fo) = [s

we say that X has probability density function (PDF) f and X is called a continuous random variable.
Example 1.7.13. Define f(z) = 1 for z € (0,1) and 0 otherwise.

F(z) = /_ ")y

is given by
0 =<0
Flz)=<¢xz 0<zxz<1.
1 z>1

It is easy to show that F' satisfies the conditions in Lemma 1.7.3. If X is a random variable that has F
as its CDEF, then we say that X induces a uniform distribution on (0, 1).

Example 1.7.14. A random variable Z that induces a standard normal distribution has probability den-

sity function
1 22
f (Z) = \/% exp | — ?)

and cumulative distribution function

51

1
-1 0 1

Figure 1.1: Probability density function of the standard normal random variable.

The standard normal distribution will be very useful in later parts of the book and we use ®(z)
instead of F'(z) to denote its CDF. Moreover, we say that Z is a standard normal random variable. Fig-
ure 1.1 shows that f(z) is a bell-shaped curve that is symmetric about 0. The symmetry is also
apparent from the formula for f(z).

Next, we would like to define expectations and variances for random variables. The exact formu-
las for discrete and continuous random variables are different, but the information carried by those
notions is the same. In particular, the expectation/mean of a random variable X is the expected average
value of X. And the variance of X is the average squared distance from the mean. By squaring the
distances, the small deviations from the mean are reduced and the big ones are enlarged. Thus the
variance measures how the values of X vary from the mean or how “spread out” the values of X are.

When X is a discrete random variable X : Q — R with PMF py and T' = X (Q2) (the image of 2 in
R) its expectation/mean is defined as

E[X]=> apx(z), (1.31)

zeT

provided the sum exists.°

Example 1.7.15. Let us consider the discrete random variable discussed in Example 1.7.4 and Exam-
ple 1.7.12. By Equation 1.31,

1 1 1
E[X]onpx(())—f-lXpX(1)=0X§+1X§=§.

When X is a continuous random variable with PDF f, its expectation/mean is defined as

E[X] = /OO xf(z)dz, (1.32)

provided the integral exists.

Example 1.7.16. Let X be a random variable that induces a uniform distribution on (0, 1) (see Exam-
ple 1.7.13), by Equation 1.32,

1

E [X] :/OO xf(x)dx:/olxdx: x;

—00

0 2

Example 1.7.17. Let Z be a random variable that induces the standard normal distribution (see Ex-
ample 1.7.14), by Equation 1.32,

E[Z] = /_sz(z)dz: V%/_Zzexp <Z22> dz = 0.

As shown in Figure 1.1, f(z) is symmetric about 0, so it is not surprising that the expected average
value of Z is 0.

*For example, if 2 is finite, or if €2 is countable and the series converges absolutely, the sum exists.

52

Let g be a function g : R — R. Then g(X) is a also a random variable.” It can be proven that if X
is a discrete random variable with PMF px, then

= 9(x)px(2)

If X is a continuous random variable with PDF f, then

menz/mguvam

The proof can be found in e.g. [Ros20, page 113].

Example 1.7.18. Define

g:R — R

r = 2.

Then the expectation of g is given by
= Z 2?px ()

when X is a discrete random variable with PMF px. And
E[X?] = / 22 f(x)da

when X is a continuous random variable with PDF f(x).

Furthermore, given two random variables X, Y such that E[|X|] < co and E[|Y|] < oo, for any
a,beR,
E[X +Y]=E[X]+E[Y], E[aX +b=aE[X]+b, E[]=0. (1.33)

The proof can be found in e.g. [Dur19, page 24]

Example 1.7.19. Let X be a random variable and let 1 := E [X]. By Equation 1.33, we have

E[(X —p)?] = E[X* +p?-2E[Xu] =E[X?] + p® — 2uE[X]
E [XQ] 4?2
= E[X?] —p? (1.34)

Equation 1.34 provides the formula for computing the variance of a random variable X. More
specifically, let X be a random variable with mean E [X] = p. If E [X?] < oo, then the variance of X is
given by

Var(X) = E [(X — p)’] =E[X?] — 1. (1.35)

Example 1.7.20. Let us consider the discrete random variable discussed in Example 1.7.4 and Exam-
ple 1.7.12. By Equation 1.35, Examples 1.7.15 and 1.7.18,

Var(X) = Xz—— Zmpx —f—Opr(O)—i—lpr(l)—}:

Example 1.7.21. Let X be a continuous random variable that induces the uniform distribution on
(0,1) (see Example 1.7.13), by Equation 1.35, Examples 1.7.16 and 1.7.18,

1

Var() = [~ a2 gy B = [t =2 1oL
ar = _OOZU xr)axr =) Xz 22—30 4—12

"To be more precise, g should be a measurable function for g(X) to be a random variable. For the definition of measurable
functions, we refer the readers to [Yeh14, page 72].

53

Figure 1.2: Probability density function of a normal random variable.

Example 1.7.22. Let Z be a random variable that induces the standard normal distribution (see Ex-
amples 1.7.14), by Equation 1.35, Examples 1.7.17 and 1.7.18,

Var(Z) =E [Z?] ~E[Z) = /_Z 2f(2)dz — 0= \/12? /_Z 22 exp <—'Z;> dz=1.

We write Z ~ N(0, 1) to indicate that Z induces the standard normal distribution with mean 0 and
variance 1.

Given two random variables X, Y such that E[|X|] < oo and E[|Y|] < co. Take any a,b € R, it
follows from Equation 1.33 that

Var(aX +b) = E[(aX +b—E[aX +b))*] =E[(aX +b— aE[X] - b)?]
= @’E[(X —E[X])?] = a®Var(X). (1.36)

In particular, we have
Var(b) =0, Var(X +b) = Var(X), Var(aX) = a*Var(X).

Example 1.7.23. Let Z ~ N(0,1) be a standard normal random variable. Take any o,y € R with
0?2 > 0. Define Y = ¢ Z + p. Then by Equations 1.33 and 1.36,

E[Y]=pu, Var(Y)=c%

It can be shown (see e.g. [Durl9, page 28]) that Y has PDF

() = ——exp (—(y_”)2). (1.37)

 oV2r 202

We say that Y induces a normal distribution with mean p and variance o2, written Y ~ N(u,0?). Y is
also called normal/a normal random variable. We note that the mean and variance fully define a normal
distribution.

f(y) is a bell-shaped curve symmetric about ; and obtains its maximum value of

1 N 0.399
oV 2 o

at y = u (see Figure 1.2).

Remark 1.7.1. On the other hand, if we let Y ~ N(u, o) be a normal random variable, then

is a standard normal random variable (for proof, see [Dur19, exercise 1.2.5]).

54

Next, let us look at the relations between two random variables. First, similar to Definition 1.7.4,
we give the definition of independent random variables.

Definition 1.7.7. Given two random variables X : Q@ — R, Y : Q — R, they are said to be independent
if forany A,B € R,
P(X €AY eB)=P(XecAP(Y €B).

If two random variables X : 2 — R, Y :) — R are independent, it can be proven that
E[XY]=E[X]E[Y] if E[|X|]]<occand E[Y]] < 0. (1.38)

The proof can be found in e.g. [Dur19, page 41].
To further analyze the relation between two random variables X and Y, we define the covariance
of X and Y to be
Cov(X,Y) = E[(X — ux)(Y — iy)] (1.39)

where p1x and p1y denote expectations for X and Y respectively. It is easy to see that
Cov(X,Y)=Cov(Y,X), Cov(X,X)= Var(X).
In case E [| X|] < oo and E[|Y'|] < oo, by Equation 1.33, We have
Cov(X,Y) = E[XY —puxY — py X + papiy]
E[XY]— pxpy — pypx + pxpy = E[XY] - E[X]|E[Y]. (1.40)

Definition 1.7.8. Let X and Y be two random variables. If Cov(X,Y’) = 0, we say that X and Y are
uncorrelated. Otherwise, we say that X and Y are correlated.

Remark 1.7.2. By Equation 1.38, if X and Y are two independent random variables such that E [| X |] <
oo and E[|Y]] < oo, then Cov(X,Y) = 0 and they are uncorrelated.

Let Z be another random variable such that E [| Z|] < oo, by Equation 1.38,
E(X+2)Y]-EX+ZIEY]=E[XY]+E[ZY]|-E[X|E[Y]-E[Z]E[Y].
Thus,
Cov(X +Z,Y) =Cov(X,Y) + Cov(X, Z).

It can be easily generalized to show that

Cov <Zn: Xi, Y) = zn: COV(XZ', Y),

i=1 =1

where X1, X»,. .., X,, are nrandom variables. Furthermore, by the symmetry of covariance (Cov(X,Y) =
Cov(Y, X)), we have

n

Cov iXi,in :ZiCOV(Xqu),
i=1 j=1

i=1 j=1
where Y1,Y5,...,Y,, are m random variables. Set m = n, ¥; = X;, we have
n n n n
Var (Z Xi) = ZVar(Xi) + Z Z Cov(X;, Xj).
i=1 i=1 i=1 j=1,j#i

If we further assume X; are independent with E [|X;|] < oo, by Remark 1.7.2,

Var (i XZ-> = zn:Var(Xi). (1.41)
i=1 i=1

Recall that we have defined Borel o—algebra for R” (Definition1.7.1). Correspondingly, we can
define a random vector similar to Definition 1.7.6.

55

Definition 1.7.9. A random vector X is a function X : Q — R%, such that
X 'B)={w:X(w)eB}eAVBecR
Note that a random variable is a random vector for the case d = 1.

Definition 1.7.10. A random vector X = (X1, X», ..., X,,) induces a Gaussian (or multivariate normal)
distribution if every linear combination

n
Zanj, aj € R,
7=1

is a normal random variable. The mean vector of X is

H = (MXl)MXQ}"'),u‘Xn))

where pux, is the mean of X;. The covariance matrix of X is given by the matrix) with entries Q;; =
Cov(X;, X;). When det Q # 0, the probability density function for X is

—;ex —lzc— TQ -
) = s e (5w e e)

We write X ~ N(u, Q) and we say that X is Gaussian/a Gaussian random vector.

Example 1.7.24. If X1,..., X,, are pairwise independent random variables and each X; ~ N(u;,0?)
is normal, then X = (X1, Xy,..., X)) induces a Gaussian distribution with mean g = (p1...., 1y)
and covariance matrix @ a diagonal matrix with Q;; = o2 (see [JP04, page 127] for a proof).

When we look at Gaussian random vectors, we have the following nice property for the compo-
nents of the random vector. The proof can be found in e.g. [JP04, page 128].

Theorem 1.7.3. Let X = (X1, X»,...,X,,) be a Gaussian random vector. Then the components X;
are independent if and only if the covariance matrix) of X is diagonal.

A direct corollary is as follows.

Corollary 1.7.1. Let X = (X, X5,...,X,,) be a Gaussian random vector. Two components X; and
X are independent if and only if they are uncorrelated.

Proof. Let X; and X be any two components of X.

= If X; and X are independent, by Theorem 1.7.3, Cov(X;, X;) = 0.

<= If Xj, X; are uncorrelated, the random vector Y := (X;, X;) is Gaussian with a diagonal
covariance matrix (see Example 1.7.24). Again by Theorem 1.7.3, X; and X are independent. O

Corollary 1.7.2. Two normal random variables X and Y are independent if and only if they are
uncorrelated.

Definition 1.7.11. Let X and Y be two random variables with finite variances. The correlation coeffi-

cient of X and Y is given by

. Cov(X,Y) (142)

/Var(X)Var(Y)

It can be shown by the Cauchy-Schwarz inequality that —1 < p <1 (see [JP04, p. 91]).

In general, the correlation coefficient is normally used to answer the question if large values of X
tend to be paired with large or small values of Y. For example, if when X is large (or small), Y is
also large (or small), then the signs of X; — X and Y; — Y will tend to be the same. Or if when X is
large (or small), Y is small (or large), then the signs of X; — X and ¥; — Y will tend to be different.
In both cases, the absolute value of p will be big. On the other hand, in the special case when X and
Y are uncorrelated (Definition 1.7.8), their correlation coefficient p = 0. In particular, if X and Y are
independent, then p = 0 (see Remark 1.7.2).

56

As another example, suppose X has finite expectation and variance. For a,b € R and a # 0, if
Y = aX + b, then by Equations 1.33 and 1.36,

Cov(X,Y) E[XY]-E[X]E[Y] E[X(aX +b)] —E[X]E[aX +]

po= \/Var(X)Var(Y)_ /Var(Y)Var(X) B \/Var(aX + b)Var(X)

E[aX?+bX] —aE[X]? —bE[X] aE[X?] +bE[X] - aE[X]? — bE [X]

a2Var(X)>? |a|Var(X)
_ avVar(X) e J1 a>0
la|Var(X) |a] -1 a<0’

1.8 Statistics

In this section, we will first discuss a few important distributions (Section 1.8.1). Then we will intro-
duce statistical methods for estimating the mean and variance of a normal distribution (Section 1.8.2)
which utilize properties of those important distributions. Those methods will provide more insights
into our analysis of device leakages in Section 4.2.3. Finally, we touch on some basics of hypothesis
testing (Section 1.8.3) which justifies leakage assessment methods that will be introduced in Sec-
tion 4.2.3.

We suggest the readers come back to this part later when they reach Chapter 4.

1.8.1 Important Distributions

Let Z denote a random variable that induces a standard normal distribution. We have discussed in
Example 1.7.14 that Z has probability density function

10 = e (-5).

and cumulative distribution function

B(z) = \/12? /Oo exp <—y;) dy.

Furthermore, Z has expectation E [Z] = 0 (see Example 1.7.17) and variance Var(Z) = 1 (see Exam-
ple 1.7.22), we write Z ~ N(0, 1).
Given any «a € (0, 1), we define z, such that

P(Z>2,)=1-®(24) =, ie. P(zo)=1-0q. (1.43)

Those z, values are useful for many applications and there are tables listing the values of ®(z)
for small values of z (e.g. [Ros20, Table A1]). Given «, the approximated value of z, can be found by
examining such a table. In Table 1.4, we list a few values of z, with corresponding «, which will be
used later in the book.

o 0.1 0.05 | 0.01 | 0.005 | 0.001
1—a | 0900 | 0.950 | 0.990 | 0.995 | 0.999
Zo 1.282 | 1.645 | 2.326 | 2.576 | 3.090

Table 1.4: Values of z, (see Equation 1.43) with corresponding c.

By definition, ®(z) is the integral of f(z). As shown in Figure 1.3, o corresponds to the area under
f(z) for z > z,. Furthermore, since f(z) is symmetric about 0, we have

O(—24) = P(Z < —24) = P(Z > 2z4) = «,
and

P(=zaj2 < Z < 2qy2) = P(Z > —2qp2) = P(Z > 24)2) =1 = P(Z < —24)2) — % =1—a (144)

Next, we look at y?—distributions.

57

Area is «

6 Zo

Figure 1.3: Probability density function f(z) for Z ~ N(0,1). P(Z > z,) = a, a corresponds to the
area under f(z) for z > z,.

Definition 1.8.1. Let Z, Z5, ..., Z, be independent standard normal random variables. Define

X = f:ZZ?.
=1

The distribution induced by X is called x2—distribution with n degrees of freedom. We write X ~ x2.
Remark 1.8.1. We note that if X; ~ x2 , X2 ~ x2, are independent, then X1 + Xy ~ x2 ...

For example, when n = 8, the probability density function for X ~ xZ is shown in Figure 1.4.
Similarly to z, (Equation 1.43), for any « € (0, 1), we define xi,n to be the number such that

P(X >3, = (1.45)
As shown in Figure 1.4, a corresponds to the area under the PDF of X for X > X?x,n' We also have

P(X%fa,n <X < Xi,n) = P(X = Xffoz,n) - P(X 2 ng,n) =1-2c

rea is «

8 Xi,g
Figure 1.4: Probability density function for X ~ x3. P(X > ng,s) = .

Finally, we provide some details on ¢t—distributions.

Definition 1.8.2. Let X ~ x2, Z ~ N(0, 1) be two independent random variables. Define random

variable
A

VX/n

The distribution induced by T, is called a t—distribution with n degrees of freedom. We write T}, ~ t,,.

T, =

It can be shown (see [Ros20, page 189]) that the PDF of T, is symmetric about 0. And when
n becomes larger, the PDF for T}, becomes more and more like that for a standard normal random
variable. Furthermore,

n
n—2

E[T,)=0forn>1, Var(T,) = forn > 2.

58

— Th ~ty,n=2
— Th ~tp,n=>5
—Th ~ty,,n=10
— Z ~N(0,1)

Figure 1.5: Probability density functions for 7;, ~ t, (n = 2,5,10) and for the standard normal
random variable Z.

For example, in Figure 1.5 we can see the PDF of T}, for n = 2, 5,10 and for Z ~ N(0, 1).
The same as for z, (Equation 1.43) and x,., (Equation 1.45), given « € (0, 1), we define ¢, such
that
P(Ty > tan) = a. (1.46)

By symmetry of the PDF for 7T,,, we have
P(Tn < _ta,n) = P(Tn > ta,n) = q,

and
P(Ty > ~tan) =1—P(T) < —tan) =1 —a = t1_an = —tan.

An illustration is shown in Figure 1.6. We have
P(—ton <T <ton) =PI, > —tan) — P(Th > tan) =1-2¢,

which gives
P(_ta/Z,n <T< ta/2,n) =1-a, (147)

or
P(IT| > tajon) = . (1.48)

The table of values of ¢, , can be found in standard books for statistics, see e.g. [Ros20, Table A3].

Remark 1.8.2. For large values of n (n > 30), t,,, can be approximated by z, (see Table 1.4).

Area is « Area is «

_ta,f) = tlfa,f) 0 ta

Figure 1.6: Probability density function for 75, P(1T5 > ta5) = .

1.8.2 Estimating Mean and Difference of Means of Normal Distributions

In Section 1.7 we have discussed that a random experiment is an experiment whose output cannot
be predicted with certainty in advance. However, if the experiment is repeated many times, we can
see “regularity” in the average output. For a given random experiment, the sample space, denoted by
€1, is the set of all possible outcomes.

In this subsection, we are interested in a random variable X : Q@ — R (see Definition 1.7.6) that
induces a normal distribution. In particular, we assume X ~ N(y,, 02) has mean y1,, and variance o2.

59

We will first discuss how to estimate ji,.. To do so, we repeat the random experiment » times and
record the outcomes. Then the possible outcomes { X, X», ..., X, } are n independent identically
distributed random variables. We refer to this set as a sample. An actual outcome for X;, denoted x;,
is called a realization of X;.

The sample mean (empirical mean), denoted X, is given by

_ 1<
X = — X,L 1.4
- ;1 (1.49)

Remark 1.8.3. It can be shown that the sum of independent normal random variables induces a
normal distribution with mean (resp. variance) given by the sum of the means (resp. variances) of
each random variable (see e.g. [JP04, page 120], and also Equations 1.33 and 1.41).

Since each X; ~ N(piz, 02) are independent, together with Equations 1.33 and 1.41, we have
E[X] = 1 zn:E[XZ] = pt, Var(X) = iiVar(Xi) = U—%.
i3 n? i=1 n

By Remark 1.8.3,
2
X~ N <ux, %> | (1.50)
n

i.e. the sample mean is a normal random variable with mean p, and variance o2 /n. It follows from
Remark 1.7.1 that

X — iz
~ N(0,1). 1.51
Similarly, fori =1,2,...,n,
Xi_ T
Sk Hz N0, 1). (1.52)

The sample variance (empirical variance), denoted S2, is given by

n

2. 1 L X)2
S2im ;(Xz X). (1.59)
We note that
SXi—) = 3G =)+ (X =)
i=1 i=1
= (X —pa)? + Y (X=X 42 (X - X)(X —)
i=1 i=1
i=1
where n n
SXi-X)=-nX+> X;=0.
i=1 i=1
Dividing by 02, we get
n 2 —— 2 n Y \2
o _ P (X - X
Z(M) _ (\/E(X M:c)) +Zz:1(:) . (1.54)
i=1 Tz O 7z

Since X; are independent normal random variables, by Equation 1.52 and Definition 1.8.1, the left-
hand side of Equation 1.54 induces a x?—distribution with n degrees of freedom. By Equation 1.51
and Definition 1.8.1, the first term of the right-hand side of Equation 1.54 induces a y?—distribution

60

with 1 degree of freedom. By Remark 1.8.1, it is tempting to conclude that the two terms of the right-
hand side of Equation 1.54 are independent and the second term induces a y?—distribution with n—1
degrees of freedom.

Such a result has indeed been proven. In particular, it was shown that [Ros20, page 216]°

Theorem 1.8.1. The sample mean X and sample variance S2 are independent random variables.

Furthermore, ,
n—1)Sz
oD% (1.55)

T

The above discussions give us the following useful result.

Lemma 1.8.1. -
X — g
~tpq.
vn 5 1
Proof. Since (see Equations 1.51 and 1.55)
X — iy (n— 1)S2 2
~N(0,1), ———F~
O'x/\/ﬁ (’)7 0_32: Xn—1>

by Definition 1.8.2,

\/ﬁ(y — M:B)/Ux _ \/ﬁy — Mz
\/S%/O’% B S:v

O]

Let © denote the subset of R that contains all possible values of ji,. A point estimator of p, is a
function with domain R™ and codomain © that is used to estimate the value of 1. We use a point in
© for the estimation, hence the name point estimator.

Remark 1.8.4. For example, we can use the sample mean as a point estimator for y,,. Similarly, we
can use the sample variance as a point estimator for o, (see Example 4.2.1).

Example 1.8.1 (Sample correlation coefficient). Suppose U and W are two random variables. Let
{(U1,Wy), (U, Wa), ..., (Upn, Wy} be a sample for this pair of random variable (U, W). We further
denote the sample mean and sample variance for {U;, Us, ..., U, } by U and S2. Similarly, the sample
mean and sample variance for {WW;, Wy, ..., W, } are denoted by W and S2. Then, following Defini-
tion 1.7.11, we can define the sample correlation coefficient, denoted by r, as follows (see Equations 1.39
and 1.35):

Uw-TUW _ n izt (Ui = U) (Wi — W)
VESE RS- T2) (R S (i - W)
i (Ui - U)W = W)

= . (1.56)
VI U = D)2 S (Wi - T2

Then, the sample correlation coefficient can be used as a point estimator for the correlation coefficient
between U and IW. We note that since the correlation coefficient analyzes the relations between U and
W, we collect samples in pairs (U;, Wj).

However, we do not expect 1, to be exactly equal to the sample mean. Thus, we would like to
specify an interval for which we have a certain degree of confidence that our parameter lies. We refer
to such an estimator as an interval estimator.

For the rest of this part, let o € (0, 1) be a real number. We recall the definitions of z, and ¢, from
Equations 1.43 and 1.46 respectively.

5The results are only valid for a normal random variable X.

61

Interval estimator for 1, with known variance. We first consider afﬂ to be known. By Equations 1.44

and 1.51, B
P(—Za/2< /f <Za/2> :l—a,

which gives

P(X— a/2f<,um<X—|—za/2f> =1-oq.
Thus, the probability that y, lies between X — 2, 120k \F and X + z, 120k f is 1 — o. We say that
Oz _ Oz
<.’L'—Za/2\/?l, l"i‘za/g\/ﬁ) (157)

is a 100(1 — «) percent confidence interval for i, where 7 is a realization of X.
We define the precision of our estimate, denoted by ¢, to be

Oz
Ci=24/9——
af \/57

which is the length of half of the confidence interval. It measures how “close” is our estimate to .
Consequently, to have an estimate with precision ¢ and 100(1 — «) confidence, the number of data in
the sample should be at least (see Example 4.2.2)

2

UI
=222, (1.58)

Interval estimator for ;;,, with unknown variance. In case the variance is unknown, by Lemma 1.8.1
and Equation 1.47, we have

X —
P <_ta/2,n—1 < \/ﬁ f < ta/2,n—1> =1-q,
T

which gives

P <X - ta/2,n71& < pp < X+ta/2,nlsx> =1l-a.

Vn Vvn
Thus a 100(1 — «) percent confidence interval for i, is given by (see Example 4.2.2)
Sy Sy
<$_ ta/Q,n—lﬁa m+ta/2n 1\/*) (159)

Similarly, we can define the precision

S
Ci= ta/2,n71ﬁ‘

Then to have an estimate with precision ¢ and 100(1 — «) confidence, the number of data required in
the sample is given by

$2

2

n= ; a/2n—1"

By Remark 1.8.2, when n is large (> 30), t,, is close to z,, and n can be estimated by (see Exam-

ple 4.2.2)
2

For the rest of this part, let Y be a normal random variable with mean f,, and variance O'Z that
is independent from X. Let { Y7,Y5,...,Y,, } be a sample for Y with sample mean Y and sample
variance S,. We are interested in estimating p, — .

We note that since X and Y are point estimators for p, and y, respectively, X — Y is a point
estimator for ju, — 1.

62

Interval estimator for /i, — /1, with known variances. Suppose we know the values of o and o7.. By

Equation 1.50,
— 2 — o2
XNN(/L%%), YNN(Hy,y>.
n m

By Remark 1.8.3,

- — — — 02 O'2
E[X—Y]qu—uy, Var(X—Y)zf%—Ey,
and
. 2 42 XV — (4 —
X—YwN(ux—uy,(Zj—l—nﬂz) — : ('“12 [iy) ~ N(0,1). (1.61)
2+
By Equation 1.44, we have
X-Y - -
Pl =242 < (e — 11y) <Zopp | =1-—a

SN

=t

n

3

A 100(1 — o) confidence interval estimate for 1, — (i, is then given by (see Example 4.2.3):

o o2 o2 o o2 o2
=Y = 2a/2 ﬁ"’%ya l'—y+2a/2 ﬁ"’%y (162)
The precision c is
o2 o2
€= Zq)9 =4 Y,
n o m

If m = n, to have an estimate with precision ¢ and 100(1 — «) confidence, the number of data required
in the sample is at least (see Example 4.2.3)

22 (0'34—0'2)
n= o2 T (1.63)

Interval estimator for i, — i, with unknown equal variance. Suppose o0, = o, is unknown. Let
o = 0, = 0y. By Equation 1.55,

(n—1)S3

o2

(m —1)S2

2 Y 2
~X ~ ixmfl

n—1s 2
Since we assume the samples are independent, those two x? random variables are independent. By

Remark 1.8.1, we have
(n-1SF (m-DS;

> ol X2 0o (1.64)
ket (n—1)S2 + (m —1)8?
n—1)5;+(m—1
§2 = e v, (1.65)

By Theorem 1.8.1, X, 57,Y’, SZ are independent. By Definition 1.8.2, Equations 1.61 and 1.64,

Lo — Hy) :Y_?_(/%_Uy)

Y
%2_1_%2 [S2 /0 Spyv/1/n+1/m

~ tntm—2. (1.66)

Then according to Equation 1.47,

Y_?_(,uav_ﬂy)

Pl —to/omtma < < ta/2ntm— =1-—oa.
< [Zntm=2 Spy/1/n+1/m /2n+ 2)

63

A 100(1 — «) confidence interval estimate for s, — 11, is then given by

(f —Y —ta2ntm—25pV1/n+1/m, T —Y+1ta2nrm—25pV1/n+ 1/m))

If we assume m = n, to have an estimate with precision c and 100(1 — «) confidence, the number of
data required in the sample is at least

2 2
_ 2ta/2,2n728p

n
02

For large n (n > 30), we can approximate n by (see Example 4.2.3)

22;2 252
na ol (167)

1.8.3 Hypothesis Testing

By statistical hypothesis, we refer to a statement about the unknown parameters of a distribution (see
Example 4.2.5). We call such a statement hypothesis because it is not known whether or not it is true.
In this subsection, we will use samples from the distribution to draw certain conclusions regarding
a given hypothesis about its unknown parameters. In particular, we will introduce a procedure for
determining whether or not the values of a sample are consistent with the hypothesis. The decision
will then be either to accept the hypothesis, or to reject it. By accepting a hypothesis, we conclude that
the resulting data from the sample appear to be consistent with it.

The same as in Section 1.8.2, we consider a normal random variable X with mean p, and variance
o2. Furthermore, let { X1, Xo,...X,, } denote a sample from the distribution induced by X with
sample mean X and sample variance S2. We would like to test hypotheses about 1, using data from
this sample.

The hypothesis that we want to test is called the null hypothesis, denoted by Hy. For example

Hy:pe=1, Hy:p, >0.
We will test the null hypothesis against an alternative hypothesis, denoted by H;. For example
Hy:pe #1, Hy:tpg>1
To test the hypothesis, we define a region C' such that
if a sample { z1,z2,..., 2y, } € C, we accept the null hypothesis Hy.

And
if a sample { x1,22,..., 2z, } € C, we reject the null hypothesis H.

C is called the critical region. We also define the level of significance of the test, denoted by «, such that
when Hj is true, the probability of rejecting it is not bigger than «, namely

P({z1,z2,...,2, } € C|Hyis true) < a.

Thus, the main procedure in our hypothesis testing is to find the critical region C' given a level of
significance .

Two-sided hypothesis testing concerning ;i,. Let ;1o € R be a constant. We set the null hypothesis
and the alternative hypothesis as follows

Ho: pe = po, Hi:po # po- (1.68)

Recall that the sample mean, X, is a point estimator for j, (see Remark 1.8.4). Then it is reasonable
to accept Hj if X is not too far from 1. Given «, we choose the critical region to be

C={(X1,Xo,..., Xp) | [X —pol>c}, (1.69)

64

where c is a number such that if X = py,
P(IX — po|l > ¢) = a.

Then our main task is to find c that satisfies the above equation.
Suppose the variance o2 is known. If X = 1, then by Equation 1.50,

2
XNN(M0,0>-
n

Define —

X — o

Z =

o/\/n’

by Remark 1.7.1, Z ~ N(0, 1). According to Equation 1.70, we can choose c such that
P(|Zy> c ”) :a:>2P(Z>c ") :a:>P(Z>C ") =2,
o o o 2
By definition of z, (Equation 1.43),
C\/ﬁ Za)20

—— =Zqpp=>C=
o

v

And the critical region for significance level « is given by

C=4 (X1, X, X)) | [X = puo| > 2222
- 1, A2y.e.yAn Ho \/ﬁ .

Consequently, we reject the null hypothesis (Equation 1.68) if

_ o .. V.
|Z — pol > Za/2% Le. 7|9€ = Ho| > Zq 2,

and accept Hj otherwise (see Example 4.2.6).

(1.70)

(1.71)

(1.72)

(1.73)

Remark 1.8.5. We can see that when pp = 0, the critical region corresponding to the level of sig-
nificance « in Equation 1.73 is the complement of the 100(1 — «) percent confidence interval for p,

(Equation 1.57).

Suppose we do not know the variance o2. Recall that sample variance S2 (Equation 1.53) is a
point estimator for o2. Similar to Equation 1.71, we are interested in the following random variable

T V(X — po)
: S
We want to find ¢ such that when p, = uo,
P(T| > ¢) = a.

(1.74)

Note that when ;1 = po, T'induces a t—distribution with n — 1 degrees of freedom. By Equation 1.48,

we choose
c= ta/?,nfl‘
Hence to achieve level of significance o, we reject Hy (Equation 1.68) if

‘ VI (T — po)

> ta/2,n—1
Sz

and accept Hj otherwise.

65

One-sided hypothesis testing concerning ;. Now we consider the same null hypothesis with a
different alternative hypothesis as follows:

Ho:p=po, Hy:p> po. (1.75)

We refer to such a test as one-sided test.

In this case, we will reject Hy when X is much bigger than ug since when X is smaller, it is more
likely for Hy to be true than for H; to be true. In other words, the critical region is of the following
form

C:{(Xl,Xg,...,Xn) ‘ Y—,uo>c}. (1.76)

To find the value of ¢, we assume H), is true. Then by definition, ¢ should be chosen such that
P(X —pp >c) =a.

In case the variance o2 is known, by the definition of Z (Equation 1.71),

P <Z > Cﬁ) - a.
g
By definition of z, (Equation 1.43),
cev/n ZaO
=z, =2 1.77
. 2o = C Yo (1.77)

The critical region for significance level « is then given by
C= { (X1, Xo, ..., Xp) | X —po > W}-

Thus, we reject the null hypothesis (Equation 1.75) if
s A
o

T — Mo > % 1.e.
and accept Hy otherwise (see Example 4.2.7).
Suppose we know a good estimate of ¢ for the critical region in Equation 1.76. Let 0 = 0. We
have o
C={(X1,X2,....%,) | X>c}. (1.78)

Then by Equation 1.77, to test whether j,, is different from 0 with significance level «, the number of
data required is at least (see Example 4.2.7)

0.2

n=-—5z, (1.79)
c
In case we do not know the variance 2. By definition of T' (Equation 1.74), we have
P <T > Cﬁ) =a
Sz
Then according to Equation 1.46,
C\/ﬁ :tocn—l N — M
Sz ’ vn
Thus the significance level « test is to reject Hy (Equation 1.75) if
V@ =) o
Sx
and accept Hy otherwise. When n is large (> 30), we reject H) if (see Example 4.2.7)
M > 2. (1.80)

Sx

66

Suppose we want to test if the mean p, is bigger than 0 with significance level o and we have a
good estimate for c. Set 19 = 0. The number of data required is at least

2
_ Sz ,2
672 an—1-

For large n (n > 30), we have (see Example 4.2.7)
n=-%2 (1.81)

Two-sided hypothesis testing about 1, and ji,. For the rest of this part, let Y denote a normal ran-

dom variable independent from X with mean (i, and variance ag . Furthermore, let { Y1, Ys,..., Y, }

denote a sample from the distribution induced by Y with sample mean Y and sample variance Sg.
We would like to test the following hypotheses:

Hy:pg = pry, Hy:pg # py. (1.82)

Since X and Y are point estimators for s, and 1, respectively, X — Y is a point estimator for i, — fi,,.
Then it is reasonable to reject Hy when | X — Y| is far from zero. Given ¢, our critical region is of the

form
C = { (X1, Xo,...,. X, 1, Y. .., Y}) } | X -Y]| >c}, (1.83)

where c is chosen such that
P(|X —=Y| > c|Hpistrue) = P(|X = Y| > clus = py) = . (1.84)

Our task is to decide how to choose the value of c.
In case the variances 2 and 05 are known, by Equation 1.61, when p,, = 1, (i.e. when Hj is true),
we have

X —
~ N(0,1). (1.85)
2 7
By Equation 1.44,
X-Y X-Y
Pl—zyp<———=<zyp|=1-a=P ¥>za/2 = q.
o3 + ﬁ Tz 4 ﬁ
Thus, we let
2 o2
= zoo\| 2 + L. (1.86)
n m

To achieve significance level «, we reject H if

2 2
9y

o o2
|‘T—y|>za/2 -+ =
n m
and accept H otherwise (see Example 4.2.8).
Furthermore, suppose m = n and we have a good estimate for c. To test if p, # p, with signifi-
cance level o, the number of data required is at least (see Example 4.2.8)

2 (52 4 52
22 005 +0y)
In case the variances are unknown but we know that o, = 0. Let 0 = 0, = 0. By Equation 1.66,
when 1, = p1y,
X-Y

\/Sg(l/n—i— 1/m)

~ tptm—2-

67

According to Equation 1.48,
X-Y
p
\/Sg(l/n +1/m)

> ta/2,n+mf2 = Q.

Thus, we let

c= ta/2,n+m—2\/5;12)(1/” +1/m)

For a test with significance level a, we reject H if
‘f - y‘ > ta/2,n+m—2 8127(1/TL + 1/m)

and accept Hj otherwise. Such a test is called the student’s t—test.
For large n and m, we reject Hy if (see Example 4.2.11)

1T =7l > 2a24/52(1/n+1/m), or equivalently,] > 20/2- (1.88)
s2(1/n+1/m)

Furthermore, when n = m, we have (see Equation 1.65)

(n—1)S2+(n—-1)S; 2 :S§+S§

2 _ _ = I
S2(1/n+1/m) = T = v,

and we reject Hy if (see Examples 4.2.8 and 4.2.9)

=l . (1.89)

In this case, suppose we have a good estimate for ¢, to have a student’s t—test with significant level
a, the number of data we need for both samples is given by (see Examples 4.2.8 and 4.2.9)

S2 452
n=z = v (1.90)

If we further assume that the unknown variances o7 and o are not equal, it can be shown

that [Wel47] o
-y

S, S
Vot

(S7/n + S5 /m)?
(82/n)?/(n = 1) + (S5/m)?/(m — 1)

And a test with significance level o rejects H if

~ tvv

1N
38

where

V=

[z 9l

52

>ta/2.y-
ﬁ + v /
Such a test is called the Welch's t—test.

When n and m are big (> 30), we test if (see Example 4.2.13)

(1.91)

Remark 1.8.6. Note that when n = m is big (> 30), the Welch’s t—test and the student’s t—test have
the same formula (see Equation 1.89 and 1.91).

68

Both student’s t—test and Welch’s ¢t —test will be useful for leakage assessment in Section 4.2.3.

One-sided hypothesis testing about ;, and 1. For one-sided testing, we consider the following
null and alternative hypotheses:

Ho:,um:,uy, H1:/L$>/Ly.
Similar to Equation 1.76, our critical region is given by
C={(X1,X2,.... X, V1,Y2,....Yy) | X=Y >c}, (1.92)

where c is chosen such that o
P(X =Y > clpe = py) = a.

We will only discuss the case when 032: and af, are known. For unknown variances, we refer the
readers to [Wel47]. By Equations 1.85 and 1.43,

X-Y
P >z0 | =
9% | %
n T m
Thus, we choose
o2 o2
c= 2o\ =+ 2. (1.93)
n o m
To achieve level of significance o, we reject Hy if
o2 o2
T—7>zaf| =+ 2
n om

and accept Hy otherwise (see Example 4.2.10).
Furthermore, suppose m = n, we have a good estimate for ¢, and we know that p; > 1. To test
if p, # py, the number of data required is at least (see Example 4.2.10)

2a(03 + 0y)

n = B}

(1.94)
C

1.9 Further Reading

For more detailed discussions on sets, functions, number theory, and abstract algebra, we refer the
readers to [Her96, Chapters 1 — 6] and a series of lecture notes from Frédérique Oggier [Ogg].

[LX04] provides more in-depth studies for finite fields and coding theory.

For probability theory, we refer the readers to [Dur19] and [JP04] for a thorough analysis, and [Ros20]
for practical examples. [Ros20] also provides more insights on statistical methods presented in Sec-
tion 1.8.

Chapter 2

Introduction to Cryptography

IB~

Abstract

In this chapter, we first give an introduction to cryptography in general and present
some classical ciphers that were designed a few centuries back. Then we will discuss
how cryptographic algorithms are actually used with different encryption modes.
Keywords: cryptographic primitives, classical cipher, encryption modes

Before we dive into the modern cryptographic algorithms that are in use today (Chapter 3), we
give an introduction to cryptography in general (Section 2.1) and discuss some classical ciphers which
were designed a few centuries back (Section 2.2). In the end, we will discuss how cryptographic
algorithms are actually used with different encryption modes (Section 2.3).

We start with a definition of cryptography.

Definition 2.0.1. Cryptography studies techniques that allow secure communication in the presence
of adversarial behavior. These techniques are related to information security attributes such as confi-
dentiality, integrity, authentication, and non-repudiation.

Below, we give more details on the information security attributes that can be achieved by using

cryptography:

1. Confidentiality aims at preventing unauthorized disclosure of information. There are various
technical, administrative, physical, and legal means to enforce confidentiality. In the context
of cryptography, we are mostly interested in utilizing various encryption techniques to keep
information private.

2. Integrity aims at preventing unauthorized alteration of data to keep them correct, authentic, and
reliable. Similarly to confidentiality, while there are many means of ensuring data integrity, in
cryptography we are looking at hash functions and message authentication codes.

3. Authentication aims at determining whether something or someone is who they claim they are.
In communication, the entities should be able to identify each other. Similarly, the properties of
the exchanged information, such as origin, content, and timestamp, should be authenticated.
In cryptography, we are mostly interested in two aspects: entity authentication and data origin
authentication. For these purposes, signatures, and identification primitives are used.

4. Non-repudiation aims at assuring that the sender of the information is provided with proof of
delivery, and the recipient is provided with proof of the sender’s identity so that neither party
can later deny the actions taken. Similarly to authentication, signatures, and identification
primitives are cryptographic means of supporting non-repudiation.

Note

CIA Triad is a widely utilized information security model, where the abbreviation
stands for confidentiality, integrity, and availability. Therefore, a curious reader
might be interested in knowing why we did not mention the availability. The answer

69

70

Cryptographic
primitives

C Unkeyed) C Public key) CSymmetric key)

Hash functions Publlc— Block ciphers
key ciphers
Stream ciphers

Message
‘— authentica-
tion codes

Figure 2.1: Categorization of cryptographic primitives. The ones highlighted in blue color will be
discussed in this book.

is rather simple — there are no techniques within cryptography that could contribute
in one way or another to ensure availability. Availability attribute ensures that in-
formation is consistently and readily accessible for authorized entities. One needs to
look into other means of supporting this attribute.

2.1 Cryptographic Primitives

Cryptographic primitives are the tools that can be used to achieve the goals listed in Definition 2.0.1.
The categorization of cryptographic primitives is depicted in Figure 2.1. We have highlighted the
ones that will be discussed in more detail in this book, especially regarding hardware attacks.

Let us briefly explain each primitive.

¢ Hash functions: hash functions map data of arbitrary length to a binary array of some fixed
length. We provide more details on hash functions in Subsection 2.1.1.

e Public-key ciphers: public-key (or asymmetric) ciphers use a pair of related keys. This pair
consists of a private key and a public key. These keys are generated by cryptographic algorithms
that are based on mathematical problems called one-way functions. A one-way function is a
function that is easy to compute on every input, but it is hard to compute its inverse.!

* Signatures: digital signatures provide means for an entity to bind its identity to a message. This
normally means that the sender uses their private key to sign the (hashed) message. Whoever
has access to the public key can then verify the origin of the message.

¢ (Symmetric) block ciphers: block ciphers are cryptographic algorithms operating on blocks of
data of a fixed size (generally multiples of bytes for modern cipher designs). They use the
same secret key for the encryption and decryption of data. Block ciphers are detailed in Sub-
section 2.1.2. Three modern block ciphers are discussed in Section 3.1.

¢ Stream ciphers: stream ciphers are symmetric key ciphers that combine plaintext digits (usually
bits) with the keystream, which is a stream of pseudo-random digits generated by the cipher. The
combination is normally done by a bitwise XOR operation. The idea of stream ciphers comes
from the one-time pad (Subsection 2.2.7).

* Message authentication codes (MACs): A message authentication code is a piece of informa-
tion that is used to authenticate the origin of the message and to protect its integrity. MAC
algorithms are commonly constructed from other cryptographic primitives, such as hash func-
tions and block ciphers.

'It is worth noting that the existence of one-way functions is an open conjecture and depends on P # N P inequality.

71

2.1.1 Hash Functions

A hash function is a computationally efficient function mapping data of arbitrary length to a binary
array of some fixed length, called hash values or message digests.

The following are the properties that should be met in a properly designed cryptographic hash
function:

(a) itis quick to compute a hash-value for any given input;
(b) itis computationally infeasible to generate an input that yields a given hash value (a preimage);

(c) it is computationally infeasible to find a second input that maps to the same hash value when
one input is already known (a second preimage);

(d) it is computationally infeasible to find any pair of different messages that produce the same
hash value (a collision).

Cryptographic hash functions are mostly used for integrity and digital signatures. Message integrity
use case of hash functions works as follows. The user creates a message digest of the original message
at some point in time. At a later time (e.g., after a transmission), the digest is calculated again to check
whether there have been any changes to the original message. In digital signatures, it is common to
first create a message digest that is afterwards digitally signed, rather than signing the entire message
which can be slow in case the message is large (see Section 3.4).

The current NIST standard for hash functions was released in 2015 and is called Secure Hash
Algorithm 3 (SHA-3) [Dwo15]. It is based on Keccak permutation [BDPA13] which uses a previously
developed sponge construction [BDPVAO7].

2.1.2 Cryptosystems

We have mentioned three types of ciphers: public-key ciphers, block ciphers, and stream ciphers. In
this subsection, we will provide more discussions on ciphers, which are also called cryptosystems.

When we use ciphers, we normally assume insecure communication. A popular example setting
is that Alice would like to send messages to Bob but Eve is also listening to the communication. The
goal of Alice is to make sure that even if Eve can intercept what was sent, she will not be able to
find the original message. To do so, Alice will first encrypt the message, or the plaintext, and send
the ciphertext to Bob, instead of the original message. Bob will then decrypt the ciphertext to get the
plaintext. For this communication to work, there must be a key for encryption and decryption. It is
clear that the decryption key should be secret from Eve and a basic requirement is that the algorithm
for encryption/decryption should be designed in a way that Eve cannot easily brute force the plaintext
with the knowledge of the ciphertext.

Definition 2.1.1. A cryptosystem is a tuple (P, C, K, €, D) with the following properties:

¢ Pis a finite set of plaintexts, called plaintext space.

C is a finite set of ciphertexts, called ciphertext space.

X is a finite set of keys, called key space.

€ ={FEy:keX} where Ej : P — Cis an encryption function.

D ={Dy:keX} where Dy : € — Pis adecryption function.
e For each e € X, there exists d € K such that D;(E.(p)) = pforallp € P.

If e = d, the cryptosystem is called a symmetric (key) cryptosystem. Otherwise, it is called a public-
key/asymmetric cryptosystem.

Take any ¢; = E.(p1),c2 = Ee(p2) from the ciphertext space C, where e € K. Let d € X be the
corresponding decryption key for e. If ¢; = ¢, then by definition,

p1 = Dg(c1) = Dy(c2) = pa.

72

Thus, E. is an injective function (see Definition 1.1.2). We also note that if P = C, E, is a permutation
of P (see Definition 1.2.3).
There are mainly two types of symmetric ciphers: block ciphers and stream ciphers.

Definition 2.1.2 (Block cipher). A block cipher is a symmetric key cryptosystem with P = € = A" for
some alphabet A and positive integer n. n is called the block length.

For classical ciphers that we will see in Section 2.2.1 — Section 2.2.5, A = Zs. For modern cryp-
tosystems that we will discuss in Section 3.1, A = Fy = { 0,1 }.

Now, if we have a long plaintext p = pips ..., where each p; € A" is one block of plaintext, and a
key k, using a block cipher, we can obtain ciphertext string c as follows”:

c=cico---=eg(pr)ex(p2). ...

But, for a stream cipher, P = C = A are single digits. Encryptions are computed on each digit of
the plaintext. In particular, suppose we have a plaintext string p = pip2... (where p; € A) and a
key k. We first compute a key stream z = 223 ... using the key £, then the ciphertext is obtained as
follows:

c=cica--=ey(p1)es(p2) ...

A stream cipher is said to be synchronous if the key stream only depends on the chosen key k& but not
on the encrypted plaintext. In this case, the sender and the receiver can both compute the keystream
synchronously. In Section 2.2.7 we will see a classical synchronous stream cipher called one-time pad.

2.1.2.1 Converting message to plaintext

An important aspect to clarify is how the message that Alice intends to send is represented as plain-
text.

H I J K L M N 0] P Q R S T
7 8 9 10 11 12 13 14 15 16 17 18 19
U Y W X Y Z

20 21 22 23 24 25

o
—
N Q
w g
A~
w1
N Q

Table 2.1: Converting English letters to elements in Zag.

For classical ciphers that we will discuss in Section 2.2, we will only consider messages consisting
of English letters (A - z), and we map each letter to an element in Zos. Table 2.1 lists the details of the
mapping from letters to Zog. Thus the plaintext spaces are vector spaces over Zag.

In modern computers, we store data in binary digits, which can be viewed as variables ranging
over [Fy, or bits (see Definition 1.2.17). An 8—bit binary string is called a byte (see Definition 1.3.7).
Computers often operate on a few bytes at a time. For example, a 64-bit processor operates on eight
bytes at a time. In computer architecture, a word is defined as the unit of data of (at most) a certain bit
length that can be addressed and moved between storage and the processor. Therefore, for a 64-bit
processor, the word size is 64 bits.

We have discussed that a byte can be represented as a decimal number between 0 and 255 or
as a hexadecimal number between 006 and FFi6 (see Remark 1.3.3). When modern cryptographic
algorithms are used, the messages are converted to plaintexts which are n-bit binary strings (i.e. vec-
tors in F3), where n is a multiple of 8. For example, Table 2.2 lists the representation of some single
symbols as bytes using ASCII and UTF-8 conversion methods. The second column gives the binary
representation of the byte value and the third column is the corresponding hexadecimal representa-
tion.

2.1.3 Security of Cryptosystems
When the security of a cryptosystem is analyzed, Kerckhoffs” principle is always followed.

?Such an encryption mode is called an ECB mode, more encryption modes will be introduced in Section 2.3.

73

A [01000001 | 41 A | 11000001 | c1

B | 01000010 | 42 A | 11000100 | c4

a | 01100001 | 61 I | 11001101 | cD

b | 01100010 | 62 x | 11010111 | D7

? 1 00111111 | 3F = | 11110111 | F7
(a) ASCII (b) UTF-8

Table 2.2: Examples of methods for converting message symbols to bytes. The second column in
each table is the binary representation of the byte value and the third column is the corresponding
hexadecimal representation.

Definition 2.1.3 (Kerckhoffs” principle). The security of a cryptosystem should depend only on the
secrecy of the key.

In other words, everything is public knowledge except for the secret key.

To discuss the security of cryptosystems, we should also specify the attack assumptions. Nor-
mally, they consist of the attacker’s knowledge and the attacker’s goal. Ciphertext-only attack assumes
the attacker has access to a collection of ciphertexts. Known plaintext attack assumes the attacker has
a collection of plaintext and ciphertext pairs. And in chosen plaintext attack, the attacker has access to
the encryption mechanism such that they can choose plaintexts and obtain the corresponding cipher-
texts. The attacker’s goal can be the recovery of the plaintext or the recovery of the key.

By Kerckhoffs” principle (Definition 2.1.3), we assume the attacker has knowledge of the cipher
design and communication context, e.g. the sender is a student and might use words like “exam,”
“assignment,” etc.

A ciphertext-only attack scenario is the weakest attacker model, and also the most realistic one.
For example, an intercepted encrypted network traffic falls into this category. As an example of a
known plaintext attack scenario, one can think of the cryptanalysis of Enigma during World War II.
There were situations when the German military broadcast the same message encrypted by different
cryptosystems — for some recipients, it was encrypted by a so-called dockyard cipher (a manual cipher,
relatively easy to cryptanalyze), and for some, it was encrypted by Enigma [Mah45]. If both messages
were intercepted, the allies would possess both the plaintext and the ciphertext, thus making it a
known plaintext attack on Enigma. When it comes to chosen plaintext attacks, one can imagine a
scenario when an encryption device is captured and the attacker can send queries to it and receive
the ciphertexts. As the key would normally be stored in secure storage, the attacker needs to use the
plaintext-ciphertext pairs to recover it. This is a common scenario for hardware attacks. While in the
traditional cryptanalysis setting, a chosen plaintext attack is infeasible for modern ciphers, hardware
attacks can recover the key relatively efficiently, depending on the attacker’s assumptions and the
attack type.

In this book, we say a cipher is broken if the secret key is recovered®. A cipher is said to be perfectly
secure if, in a ciphertext-only attack setting, the attacker cannot obtain any information about the
plaintext no matter how much computing power they have. A cipher is secure in practice if there is
no known attack that can break it within a reasonable amount of time and with a reasonable amount
of computing power. A cipher is said to be computationally secure if breaking it requires computing
power that is not available in practice.

In Section 2.2.7, we will introduce a classical cipher that achieves perfect secrecy. However, we
will see that the key management of this cipher makes it impractical for modern usage. Modern cryp-
tosystems that are popular today are considered to be computationally secure. Most of the ciphers
are designed in a way that the effort taken to break them grows exponentially with the number of
bits of the secret key, which is called key length. Thus, key length is an important factor in the security
of modern ciphers.

*In a more general sense, breaking a cipher means finding a weakness in the cipher algorithm that can be exploited with
a complexity less than brute-force [Sch00].

74

o
n =z
H O
(@)
< O
= @
X n
o

c
<
=
b
=
N

Table 2.3: Shift cipher with k& = 5. The second row represents the ciphertexts for the letters in the first
row.

2.2 Classical Ciphers

In this section, we will discuss some classical ciphers and analyze their security. We focus on the case
when messages consist of English letters. Those letters are identified with elements in Zyg as shown
in Table 2.1. For easy reading, we will not distinguish letters and elements in Zys. For example, when
the message is A, we may say that the plaintext is A or the plaintext is 0, similarly for ciphertext.

2.2.1 Shift Cipher
Definition 2.2.1 (Shift cipher). Let P = € = KX = Zg. For each k € X, define

By : Zog — Zog, pr>p+kmod26; Dy :Zog — Zog, ¢+ c— kmod 26.

The cryptosystem (P, €, K, E, D), where £ = { E,: k€ X },and D = { Dy, : k € K }, is called the shift
cipher.

By Theorem 1.4.2, Zyg is a commutative ring with addition and multiplication modulo 26. We
also discussed that subtracting k& corresponds to adding the additive inverse of k (see Remark 1.4.2).

Example 2.2.1. Let k = 2, we have
—k = —2mod 26 = 24 mod 26.

Suppose the message is 2, then the corresponding plaintext is 0 (see Table 2.1). The ciphertext is given

by
Er(a) =0+ 2mod 26 = 2 mod 26 = C.

When we decrypt the ciphertext using the same key, we get our original message:
Dy(C) =2 —2mod 26 = 2+ 24 mod 26 = 0 mod 26 = A.

We note that encrypting using a key k is the same as shifting the letters by k positions, hence the
name “shift cipher”.

Example 2.2.2. For example, when £k = 5,
Ex(2a)=0+5mod 26 =F, Ei(Z)=25+5mod26=4mod26=E.

To encrypt a message, we can follow Table 2.3 and replace letters in the first row with those in the
second row. Suppose the messageis I STUDY IN BRATISLAVA.Then the corresponding ciphertext
(omitting the white spaces) is NXYZIDNSGWEF YNXQFAF.

When k = 3, the cipher is called the Caesar Cipher, which was used by Julius Caesar around 50
B.C.. It is unknown how effective the Caesar cipher was at the time. But it is likely to have been
reasonably secure since most of Caesar’s enemies would have been illiterate and they might have
also assumed the messages were written in an unknown foreign language.

Now, suppose as an attacker, we know that the ciphertext is NXYZIDNSGWFYNXQFAF. By Kerck-
hoffs” principle (Definition 2.1.3), we can assume that we also know the communication language is
English, how can we find the corresponding plaintext?

With a moment’s thought, it is easy to see that we can simply try all the possible keys until we
find a plaintext that makes sense. For example, let k& = 1, then N should be decrypted to M, X to

75

W, and so on. Eventually, we get MWXYHCMRFVEXMWPEZE, which does not make sense. So we con-
tinue, when k£ = 2, we get LVWXGBLQEUDWLVODYD. When k = 3, we have KUVWFAKPDTCVKUNCXC,
and for k = 4, we get JTUVEYJOCSBUJTMBWB. Finally, letting £k = 5, we get a proper sentence
ISTUDYINBRATISLAVA. Since there are only 25 possible keys (the key is not equal to 0), with a
known ciphertext, it is easy to find the original plaintext and the key!

Such a method of trying every possible key until the correct one is found is called an exhaustive
key search. We have demonstrated that with an exhaustive key search, we can break the shift cipher,
i.e. find the key.

2.2.2 Affine Cipher
Recall that Z7 is the set of elements x € Z,, such that gcd(x,n) = 1 (Definition 1.4.5).

Definition 2.2.2 (Affine cipher). Let P = € = Zys and K = { (a,b) | a € Z34,b € Zgs }. For each key
(a,b), define

E(a,b) : Z26 — ZQG, p = ap+ b mod 26; D(a,b) : ZQG — Z26, C+— a_l(c — b) mod 26.

The cryptosystem (P, C, K, &, D), where € = { E(,) : (a,b) € X }, D = { Dy : (a,b) € K }, is called
the affine cipher.

Note that when a = 1, we have a shift cipher (Definition 2.2.1).
Next, we will verify that the affine cipher is well-defined. In particular, we will show the follow-

ing:
* Decryption is always possible, i.e. given any a € Z3; and b, y € Zsg, a solution for x such that
ar + b=y mod 26

always exists in Zog.

¢ Each encryption function E}, is injective, i.e. different plaintexts produce different ciphertexts,
or equivalently, if the solution for az + b = y mod 26 exists, then it is unique.

Fix a € Z3, b,y € Zgs. To solve the equation
axr + b =y mod 26
is equivalent to solving the equation
ax =y — bmod 26.
When y varies over Zsg, y — b also varies over Zog. Thus we can focus on solutions for
ar = z mod 26, (2.1)

where z € Zog. Since a € Zjg, by Theorem 1.4.6, Equation 2.1 has a unique solution. The existence
of the solution proves that decryption is possible, and the uniqueness guarantees that encryption
functions are injective.

Given a key (a,b), to find a~! mod 26, we can apply the extended Euclidean algorithm (Algo-
rithm 1.2).

Example 2.2.3. Suppose the key for affine cipher is (3, 1), by the extended Euclidean algorithm, we
can find 37! mod 26:

26=3x8+23=24+1=1=3-(26-3x8)=3x9—-26=3"mod26=09.
To encrypt the word STROM,* we compute (see Table 2.1):

3x1841=55=3mod26, 3x194+1=>58=6mod 26,
3x17+1=52=0mod 26, 3x14+1=43=17mod 26,
3x1241=237=11mod 26.

So the ciphertext is DGARL. We can list the correspondence between plaintext and ciphertext as fol-
lows:

4Strom is a Slovak word which means tree.

76

< g +H m
> G
w = N g
QX B =N
U< =2 -
H N =z =
o =
WO
O o

Table 2.4: Definition of o, a key for substitution cipher.

N O P Q R
M N O P Q R S

<
=
b
=
N
=
53]
H G Q=
a < o H
> H g
w X 49 =N
Q< X
o N R

Table 2.5: Definition of o~ !, where o € Sy is a key for substitution cipher shown in Table 2.4.

S T R) M
18 19 17 14 12
3 6 0 17 11
D G A R L

We know that 26 = 2 x 13. By Theorem 1.4.3,

©(26) = 26 x (15) <1113> =12.

So there are 12 possible values for a € Z3;. And there are 26 possible values for b € Zgys. Then the
total number of possible keys (a, b) is 12 x 26 = 312. Similarly to shift cipher, knowing a ciphertext,
we can try each of the 312 keys until we find a plaintext that makes sense. Thus we can break affine
cipher by exhaustive key search.

2.2.3 Substitution Cipher

Recall that the symmetric group of degree n, denoted S, is the set of permutations of a set X with
n elements (see Definition 1.2.4). We have discussed that a permutation is a bijective function and
its inverse exists with respect to the composition of functions (see Lemma 1.2.1). In particular, any
permutation o € Sy has an inverse o1

Definition 2.2.3 (Substitution cipher). Let P = C = Zys, and K = Sas. For any key o € Sy, define
Ey : Zos — Zog, p+— o(p); Dy : Zog — Zag, c— o *(c).

The cryptosystem (P,C,XK,E,D), where £ = {E,:0 € K}, D ={D,:0 € X}, is called the substi-
tution cipher.

We note that an affine cipher (Definition 2.2.2) is also a substitution cipher.

Example 2.2.4. Define o as in Table 2.4, then the corresponding table for decryption can be computed
by flipping the two rows of the table (see Table 2.5). For example, to decrypt UIF INJUWUJPOHWNE,
using Table 2.5, we get THE IMITATION GAME.

We have discussed that |S,,| = n! (see Example 1.2.9). So the size of key space for substitution
cipher is 26! &~ 4 x 10?5, Modern computers run at a speed of a few GHz, which is ~ 10? instructions
per second. There are ~ 10° seconds per day, so one computer can run ~ 10'* instructions per day,
or ~ 101 instructions per year. If we would like to exhaust every key for substitution cipher, we
will need ~ 10° years. Compared to the age of the universe, which is 13.8 billion, i.e. 1.38 x 1010
years, exhaustive key search is impossible with current computation power. However, we will show
in Section 2.2.6 that other methods can be used to break substitution cipher.

77

2.24 Vigenére Cipher

For the substitution cipher, one alphabet is mapped to a unique alphabet. Hence such a cipher is also
called a monoalphabetic cipher. Vigenere cipher, named after the French cryptographer Blaise Vigenere,
is a polyalphabetic cipher where one alphabet can be encrypted to different alphabets depending on the
key.

Let m be a positive integer, and let Z5, be the set of matrices with coefficients in Zyg of size 1 x m.
In other words, Z3§ is the set of 1 x m row vectors with coefficients in Zos (see Definition 1.3.1). As
discussed in Equation 1.4, for any x = (xo,Z1,...,Zm-1), ¥ = (Y0, ¥1,---,Ym—1) in Z5, the addition
x + y is computed componentwise:

x+y: ($0+y0a$1+?/1,~--7$m71+ym71),

where z; + y; is computed with addition modulo 26. Recall that the additive inverse of an element a
in Zgg is given by —a (see Remark 1.4.2). x — y is then computed componentwise using the additive
inverses of y;s.

Definition 2.2.4 (Vigeneére cipher). Let m be a positive integer and let X = P = € = Z5;. For each
k € X, define
Ey 75 — Zss, pr—p+k; Dy, : Zyg — Zyg, c—c—k.

The cryptosystem (P, C, K, E,D), where E = { E, : k€ X }, D ={ Dy : k € X }, is called the Vigenere
cipher.

The key for a Vigenere cipher is also called a keyword since it can be written as a string of letters.
By definition, a Vigenere cipher encrypts m alphabetic characters at a time.

Example 2.2.5. Let m = 6 and choose SECRET as the keyword. Thus the key is
k=(18 4 2 17 4 19).

To encrypt AN EXAMPLE, we write the plaintext in groups of six letters and add the keyword to each
group letter by letter, modulo 26.

A N E X A M P L E
0 13 4 23 0 12 15 11 4
18 4 2 17 4 19 18 4 2
18 17 6 14 4 5 7 15 6
S R G O E F H P G

The ciphertext is given by SRGOEFHPG.
Example 2.2.6. Let the keyword be SKALA. So m = 5 and
k=(18 10 0 11 0).

To decrypt ZSLWCAZHPR, we write the ciphertext in groups of five letters and add the keyword to
each group letter by letter modulo 26. We get the plaintext HILLCIPHER.

z S L w C A Z H P R
25 18 11 22 2 0 25 7 15 17
18 10 0 11 O 18 10 0 11 O

7 8 11 11 2 8 156 7 4 17
H I L L C I P H E R

The size of the key space for Vigenere Cipher is given by 26™. If m = 6, itis about 3.1 x 10% ~ 2282,
which is possible to search each key using a computer. However, for larger m, it becomes much more
difficult. If m = 25, 262° ~ 2117, which is not feasible with current computation powers.

78

2.2.5 Hill Cipher
Definition 2.2.5 (Hill cipher). Let m be an integer such that m > 2. Let P = € = Z3; and
K={A| AeMuxm(Zap), det(A) € Z3s }.
For each A € X, define
Ep: 75 — 75, ps pA; Dy 75 — 70, c— cA™L

The cryptosystem (P,C,K,E,D), where € = { E4: AKX}, D ={Ds:AecX}, is called the Hill
cipher.

By Theorem 1.4.2, Zog is a commutative ring. We have defined the determinant of a square matrix
with coefficients from a commutative ring R in Section 1.3.1 (Equation 1.6). We discussed that an
m x m matrix A is invertible in M,, x, (R) if and only if its determinant, det(A), is a unit (see Defi-
nition 1.2.10) in R. Furthermore, when A is invertible, its inverse can be calculated using the adjoint
matrix of A (Theorem 1.3.2). By Lemma 1.4.3, a matrix A € M, (Z2s) is invertible if and only if
ged(det(A),26) = 1, i.e. det(A) € Zi;. Therefore, in the definition of the Hill cipher, we require
det(A) € Zs4 so that the decryption can be computed.

Example 2.2.7. Let

1 2
2 4
5 1
be a matrix in M3y 3(Z2s). We denote by A;; the matrix obtained from A by deleting the ith row and

the jth column. Then
12 4 3 4 3 12
A00<5 1>, A01<O 1>7 A02(0 5)-

Following the discussions in Example 1.3.6, we have

—_

2
A=13
0

det(Agg) = 12 —20mod 26 = —8 mod 26,
det(Ap1) = 3 —0mod 26 =3 mod 26,
det(Ag2) = 15— 0mod 26 = 15 mod 26.

Similarly, we can calculate

det(Alo) = —9mod 26, det(AH) = 2 mod 26, det(Alg) = 10 mod 26,
det(Ago) = —20 mod 26, det(Agl) = 2 mod 26, det(AQQ) = 21 mod 26.

Let a;; denote the entry of A at ith row and jth column, then by Equation 1.6,
2 .
det(A) = Z(—l)]aoj det(A()j) mod 26
§=0
= (1) x2x(=8)+ (1) x 1 x 34 (~1)* x 2 x 15 mod 26
= —16—-3+30mod 26 = 11.
By the Euclidean algorithm (Algorithm 1.1), we can find ged(26, 11):

26=11x244, 11=4x2+3,4=3+1,3=1x3= ged(11,26) = 1.

Thus A is an invertible matrix in M3y 3(Zgg).
By the extended Euclidean algorithm (Algorithm 1.2),

1=4-3=4—(11-4%x2)=4x3—11=(26—11x2)x3—11 =26x3—11x7 => 11" mod 26 = 7.
By Theorem 1.3.2,

-8 9 =20 56 —63 140 4 15 10
At=—7[-3 2 —2 | mod 26 = 21 —-14 14 mod 26 = [21 12 14
15 —-10 21 —-105 70 —147 25 18 9

79

Example 2.2.8. Let

2 1 2
A=13 12 4
0 5 1

be a key for Hill cipher. Suppose the plaintext is CIPHER. By Table 2.1, this corresponds to (2 8 15)
and (7 4 17). To encrypt, we calculate

(2 8 15)(
(7 4 17)(

And the ciphertext is CRZAKV.
Now suppose the ciphertext is DOSJBQ. By Table 2.1, this corresponds to (3 14 18)and (9 1 16).
We have calculated in Example 2.2.7 that

4 15 10
At=121 12 14].
25 18 9

We can then compute the plaintext as follows:

1 2

12 4] mod26 = (2 17 25),
5 1

1

O W N O W

2
12 4) mod26 = (0 10 21).
5 1

4 15 10
(3 14 18) (21 12 14) mod 26 = (756 537 388) mod26= (2 17 24),
25 18 9

4 15 10
(9 1 16) (21 12 14) mod 26 = (457 435 248) mod 26 = (15 19 14).
25 18 9

And the plaintext is CRYPTO.

Remark 2.2.1. By Definition 2.1.2, shift cipher, affine cipher, and substitution cipher are block ciphers
of block length 1. Vigenere cipher and Hill cipher are block ciphers of block length m.

2.2.6 Cryptanalysis of Classical Ciphers

In this subsection, we will discuss the cryptanalysis of the classical ciphers introduced in the previous
subsections. Cryptanalysis comes from the Latin words kryptés (hidden) and analyein (to analyze).
The goal of cryptanalysis is to decrypt the ciphertext without knowing the key. Successful cryptanal-
ysis recovers the plaintext or even the key. We recall the different assumptions of attack described in
Section 2.1.3.

Example 2.2.9 (Known plaintext attack — Hill cipher). Let us consider a known plaintext attack on
Hill cipher. Suppose we know m = 2,i.e. A € May2(Zas), and we have a string of plaintext ATTACK
as well as its corresponding ciphertext FTMT IM. By Definition 2.2.5, we have

Es((0 19)=(5 19), Ea((19 0))=(12 19), Ea((2 10))=(8 12).

The first two plaintext-ciphertext pairs give us

0 19 5 19
<19 0>Amod26—<12 19>. (2.2)

The inverse of a 2 x 2 matrix can be computed using Equation 1.7, where the computations should

be mod 26. We have .
0 19\ " . [0 7 (0 11
(19 0> =3 (7 o) mO‘“6<11 o)'

80

A 0082 B 0.015 c 0.028 D 0.043 E 0127 F 0.022
G 0020 B 0061 1 0070 J 0.002 K 0.008 L 0.040
M 0024 N 0.067 o 0.075 p 0.019 o 0.001 R 0.060
s 0063 T 0091 U 0028 v 0.010 w 0.023 x 0.001
Yy 0020 z 0.001

Table 2.6: Probabilities of each letter in a standard English text [BP82].

Together with Equation 2.2,

0 11 5 19 2 1
A= (11 0) (12 19) mod 26 = (3 1)'
We can verify this key using the third plaintext-ciphertext pair

(2 10) @ 1) mod 26 = (8 12).

We have seen that an exhaustive key search can be used to break affine cipher, where the attacker
can find both the plaintext and the key. But this does not apply to substitution cipher or Vigenere
cipher. Next, we will discuss other cryptanalysis methods that can be used to break those ciphers.

2.2.6.1 Frequency analysis

By Kerckhoffs” principle (Definition 2.1.3), we assume we know the plaintext is an English text. We
also know the cipher used for communication. We assume a ciphertext-only attacker model, and we
will show how to recover both the plaintext and the key using frequency analysis for affine cipher and
Vigenere cipher.

As the plaintext is an English text, we first analyze the probabilities for the appearance of each
letter in a standard English text. For example, Table 2.6 lists the analysis results from [BP82]. In
particular, we observe that E has the highest probability and the second most common letter is T.
Similarly, [BP82] also shows that the most common two consecutive letters are TH, HE, IN, ...; and
the most common three consecutive letters are THE, ING, AND,

Given a ciphertext that is encrypted using a monoalphabetic cipher (i.e. one alphabet is mapped
to a unique alphabet), we expect a permutation of the letters in the ciphertext to have similar fre-
quencies as in Table 2.6.

Example 2.2.10. Suppose the cipher used is an affine cipher and we have the following ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

We can calculate the frequencies of each letter that appear in the text:

Y

s I 0 R K P N Z T L C F H M Y A
8 4 3 3 2 2 2 2 2 2 2 1 1 1 1 11

The most frequent letter is V, and the second most frequent one is S. Thus, it makes sense to assume v
is the ciphertext corresponding to E and S to T. Let the key be (a, b). By Table 2.1 and Definition 2.2.2,
we have the following equations:

4a+b =21 mod 26, 19a+ b= 18 mod 26,

which gives
15a = 23 mod 26.

By the extended Euclidean algorithm,

26=15x1+11, 15=11x1+4, 11=4x2+3, 4=3+1,

81

and

] = 4-3=4—(11-4x2)=-11+4x3=—11+ (15— 11) x 3
= 15x3-11x4=15x3—-(26—-15)x4=15x7—26 x 4.

Hence, we have 15! mod 26 = 7 and
a=23x 15" mod 26 = 23 x 7mod 26 = 5 mod 26.

Furthermore, we get
b=21—4amod 26 =21 —4 x 5mod 26 = 1.

To decrypt the message, we compute the decryption key by finding a~! mod 26 = 5! mod 26:
26=5x5+1=1=26-5x5=—5"'mod 26 = —5mod 26 = 21.
Applying the decryption key (21, 1) to the ciphertext, we get the following plaintext:
EVERYTHING IS KNOWN EXCEPT FOR THE SECRET KEY.

We note that the same technique works for substitution cipher since it is also monoalphabetic. But
a longer ciphertext might be needed since we do not have equations to solve for the key. Instead, we
must guess the mapping between each distinct letter in the ciphertext to the 26 alphabets (see [Sti05]
Section 1.2.2).

Remark 2.2.2. Suppose the length of the keyword m is determined for Vigenere cipher. We take
every mth letter from the ciphertext and obtain m ciphertexts. Then each of them can be considered
as the ciphertext of the shift cipher with a key given by the corresponding letter in the keyword.

Example 2.2.11. Suppose we have the following ciphertext generated with Vigenére cipher (Defini-
tion 2.2.4) and we know that the keyword length m = 3.

SJRRIBSWRKRAOFCDACORRGSYZTCKVYXGCCSDDLCCEKOAMBHGCEKEPRS
TJOSDWXFOGMBVCCTMXHGXKNKVRCMLDLCMMNRIPDIVDAGVP ZOXFOWYWI.

Take every third letter, we have the following three ciphertexts

SRSKODOGZKXCDCOBCESOWOBCXXKCDMRDDVOOW,
JIWRFARSTVGSLEAHEPTSXGVTHKVMLMIIAPXWI,
RBRACCRYCYCDCKMGKRJDFMCMGNRLCNPVGZEY.

We note that each of them can be considered as the ciphertext of a shift cipher, where the keys cor-
respond to each letter of the keyword for the Vigenere cipher (as mentioned in Remark 2.2.2). The
frequencies of each letter in the first ciphertext are as follows:

0 b C S K X R B W G 2 E M V
7 55 3 3 3 2 2211111

The most frequent letter is O, and we assume O (14) is the ciphertext corresponding to E (4). And this
gives us the first letter of the keyword

14 — 4 mod 26 = 10 mod 26 = K.

The frequencies of each letter in the second ciphertext are as follows:

=

I A S T V R G L E H P X M J F K
4 3 3 3 3 2 2 2 2 2 2 2 2 111

a. [N

Similarly, we assume E (4) is encrypted as I (8). And the second letter of the keyword is
8 —4mod 26 =4 mod 26 =E.

The frequencies of each letter in the third ciphertext are:

82

C RYMGD KU FNUBA AUJTLP V Z
7 55 333 2221111111

And we have the third letter of the keyword
2 —4mod 26 = 24 mod 26 = Y.

Thus we have recovered the keyword KEY. Computing decryption with the keyword we get the
following plaintext

IF THE DISTANCE BETWEEN TWO APPEARANCES OF THE SAME WORD
IS A MULTIPLE OF M, THE CORRESPONDING PARTS IN THE
CIPHERTEXT WILL BE THE SAME.

Next, we will discuss two methods to determine the length m of the keyword for a Vigenere
cipher.

2.2.6.2 Kasiski test — Vigenere cipher

We observe that if the distance between two appearances of the same sequence of alphabets in the
plaintext is a multiple of m, the corresponding parts in the ciphertext will be the same. Kasiski test
looks for identical parts of ciphertext and records the distance between those parts. Then we know
that m is a divisor for all the distance values.

Example 2.2.12. Suppose the plaintext is

THE MEETING WILL BE IN THE CAFE AND THE STARTING TIME IS TEN
and the keyword is KEY (m = 3). The encryption gives us

MEETING WILL BE IN CAFE AND STARTING TIME IS TEN
KEY KEYKEYK EYKE YK EY KEY KEYK EYK EYK EYKEYKEY KEYK EY KEY
DLC WICDMLQ AGVP ZO ML DLC MEDO ELN XFO WRKVRSRE DMKO MQ DIL

The first two appearances of THE have distance 15, which is a multiple of 3 and hence the corre-
sponding parts in the ciphertext are the same DLC. But the third appearance of THE has distance 7
from the second appearance and the corresponding parts in the ciphertext are different.

On the other hand, if we have only the ciphertext, we can observe the two identical parts DLC
with distance 15, then we can conclude that very likely m is a divisor of 15, i.e. m = 1,3,5,15. To
decide the exact value of m, a longer ciphertext is needed, or frequency analysis (see Example 2.2.11)
can be applied assuming different values of m until a meaningful plaintext is found.

2.2.6.3 Index of coincidence — Vigenere cipher

Definition 2.2.6. Let x = z1x2 ...z, be a string of n alphabetic characters. The index of coincidence of
x, denoted by I.(x), is the probability that two random elements of « are identical.

Example 2.2.13. Let be a long random text. If we randomly choose a letter from x, we expect that
the probability for each letter to be chosen is close to 1/26. Then, if we randomly choose two letters
from z, the probability for those two letters to be the same is close to 1/262. The index of coincidence
for x will be close to)
1
1. ~26| —) =0.038.
(x) ~ 26 (26) 0.038

Example 2.2.14. Let « be a long English text. If we randomly choose a letter from x, we expect that the
probabilities for each letter to be chosen are similar to the values listed in Table 2.6. If we randomly
choose two letters from x, the probability for both letters to be A is then given by 0.0822, and the
probability for both to be B is 0.0152, etc. Thus, the index of coincidence for = can be approximated
as

25
I(z) = Y p} = 0.065.
=0

83

Remark 2.2.3. If x is a ciphertext string obtained using any monoalphabetic cipher, we would expect
I.(x) to be close to 0.065. The individual probabilities for different alphabets will be permuted, but
the sum will be unchanged.

Let fo, f1,. .., f25 denote the frequencies of letters A, B, . . ., Z in «. If we randomly choose a letter,
the probability of each letter appearing is then given by

()
)

We have the following formula for I.(x):

X2 (B X Ai— 1)
I.(x) = = = . (2.3)
(5) n(n—1)
Example 2.2.15. Let = be the ciphertext from Example 2.2.11. The total number of letters is 110 and
the frequencies of each letter are

c R OD S K GGMV X I WAIBUF Y TUL E P J Z H N
2 9 7 7 7 6 6 6 55 4 4 4 3 3 3 3 3 3 3 2 2 2 2
By Equation 2.3, the index of coincidence of « is
1

Given a ciphertext ¢ = cicz . . . ¢, output from Vigenere cipher. To find the length of the keyword
m, for each m > 1, we construct substrings of ¢ by taking every mth letter.

Cl = C1Cm+1 - - -

Co = C2Cm+42 - - -

Chm, = CnCom - - -

If m is the keyword length, we expect I.(c;) to be close to 0.065 (see Remark 2.2.3). Otherwise, ¢; will
be more random and I.(¢;) will be closer to 0.038 (See Example 2.2.13)

Example 2.2.16. Suppose we have the same ciphertext as in Example 2.2.11, and we do not know the
value of m.
Assume m = 1, we have calculated that

I.(c) = 0.004454

in Example 2.2.15.
Assume m = 2, we have

c; = SRISRROCAORSZCVXCSDCEOMHCKPSJISWEFGBCTXGKKRMDCMRP IDGPOEFWW
c9 = JRBWKAFDCRGYTKYGCDLCKABGEERTODXOMVCMHXNVCLLMNIDVAVZXOYTI

and
I.(e1) = 0.05253, I.(c2) = 0.03636.

Assume m = 3,
c1 = SRSKODOGZKXCDCOBCESOWOBCXXKCDMRDDVOOW
co = JIWRFARSTVGSLEAHEPTSXGVTHKVMLMITIAPXWI
c3 = RBRACCRYCYCDCKMGKRJDFMCMGNRLCNPVGZFEY

and
I(cy) = 0.07958, I.(cy) = 0.04054, I.(c3) = 0.06984.

Thus it is more likely that m = 3. The exact value can be verified by frequency analysis as shown in
Example 2.2.11 to see if the recovered plaintext is meaningful.

84

2.2.7 One-time Pad

In this subsection, we will discuss a type of synchronous stream cipher (see Section 2.1.2) called
one-time pad, which was invented by Gilbert Vernam in 1917.

Definition 2.2.7 (One-time pad). Given a positive integer n, let P = € = X = F}. For any k € X,
define
Ey:Fy —-Fy, p—pdk Dy :F5 - Fy, c—cdk

The cryptosystem (P, C, K, E,D), where E = { E, : k€ X}, D = { Dy : k € X },is called the one-time
pad.

Recall that vector addition in F3 is defined as bitwise XOR, denoted by @ (see Definition 1.3.6).

For encryption, we require the key to be chosen randomly with uniform probability (see Defini-
tion 1.7.3) from K. This requirement will be justified in Theorem 2.2.1. Furthermore, we note that
if the attacker has knowledge of one pair of plaintext p and its corresponding ciphertext ¢, they can
recover the key by computing p ® ¢ = p ® p ® k = k. Thus each key can be used only once.

One distinct feature of the one-time pad from the previously introduced classical ciphers is that it
achieves perfect secrecy (see Section 2.1.3). Before proving this, we will first formalize the notion of
perfect secrecy.

Let P, €, and X denote the plaintext space, ciphertext space, and key space respectively for a
given cryptosystem. The random experiment we are interested in is encryption using one key and
one plaintext for communication. The sample space (see Section 1.7) is 2 = P x K.

Letp := { (p,k) | k € X} denote the event that p is encrypted. Similarly, k := { (p,k) | p€ P}
denotes the event that & is used for encryption. ¢ := { (p,k) | Ex(p) = c¢ } denotes the event that c is
the ciphertext. Note that p and k are independent.

By Kerckhoffs” principle, P(p) and P(k) are known to the attacker. Then the cryptosystem is
perfectly secure if p and c are independent (Definition 1.7.4) for any p and ¢, or equivalently (Equa-
tion 1.28)

P(pne) = P(p)P(c), ie. P(p|c) = P(p).

Example 2.2.17 (An example of cipher that is not perfectly secure). Let
P={0,1}, XK={=z,y}, C={a,8}.
Define the encryption functions as follows

E.(0) = E,(1) = a, E,(1) = E,(0) = B.

Su
ppose , ,)
P(O):gv P(l):§, P(z) = ¢, P(y)=5
Then 3
P(a)=P(xn0)+ Plynl)=P(x)P(0)+ P(y)P(1) = 5
and PO)P(al0) PO)P(z) 1
PO = =50 = P 9
We have
P(lja) =1 - P(0la) = ,
and 5
P(8) =1~ Plo)= 2.

Similarly, we get
2 1
POI) ==, P(18) = -.
0= 5. PR =5

Thus P(p|c) # P(p) for all p € P, ¢ € € and the cipher is not perfectly secure.

In particular, if the attacker knows the ciphertext is a, they can conclude that it is more likely that
the plaintext is 1 rather than 0; and if the ciphertext is /3, they can conclude that it is more likely for
the plaintext to be 0.

85

We recall uniform probability measures from Definition 1.7.3.

Theorem 2.2.1. One-time pad is perfectly secure if and only if the probability measure on the key
space is uniform.

Proof. Fix a positive integer n, let P = € = KX = F3. For any p € P and ¢ € C, if c is the ciphertext
corresponding to p, then we know the key used is k,, . := p @ c. Thus

P(c|p) = P(kpe).
— Fix c € C, for any p, we have

Ppne) _ P()P(c)
P(k,.) = P(c|p) = = = P(c),
which shows that the probability of k), . is not dependent on p and the probabilities of all &, .s are the
same for this fixed c. When p takes all possible values in P, we have all possible values of &, . € X.
Thus we can conclude that P(k) is the same for all £ € K.
<= Since { ¢ | ¢ € P } is a finite partition of €2, by Theorem 1.7.2, for any ¢ € Cand any p € P,

Plelp)P(p) —_ Plkpe)P(p)
qu? P(C‘Q)P(Q) qu? P(kq,c)P(Q)'

Since the probability measure on the key space is uniform,

P(plc) =

1

Also, >° ey P(q) = 1. We have

__ PkoPl) _ Pp)
qufP P(kq,c)P(Q) qufP P(Q)

P(plc) = P(p).

O]

We note that brute force of the key does not work for one-time pad — by brute force, the attacker
can obtain any plaintext of the same length as the original plaintext.

However, key management is the bottle neck of one-time pad. With a plaintext of length n, we
will also need a key of length n. Furthermore, as we have mentioned earlier, each key can only be
used once. Thus it is necessary to share a key of the same length as the message each time before the
communication. This makes it impractical to use one-time pad.

2.3 Encryption Modes

We have seen a few examples of classical block ciphers. For messages that are longer than the block
length, the way we encrypted them (e.g. see Examples 2.2.8 and 2.2.5) can be described by Figure 2.2.
Similarly, the decryption method we have applied (e.g. see Examples 2.2.8 and 2.2.6) corresponds to
Figure 2.3.

Po D1 b2 DPe
k k 4’ k H k H
Co Cc1 C2 Ce

Figure 2.2: ECB mode for encryption.

86

Co C1 C2 Cy
k _> k _> k _> """" k _>
Po D1 b2 Dbe

Figure 2.3: ECB mode for decryption

In general, when we use a symmetric block cipher of block length n to encrypt a long message, we
first divide this long message into blocks of plaintexts of length n. Then we apply certain encryption
mode to encrypt the plaintext blocks. If the last block has a length of less than n, padding might be
required. Different methods exist for padding, e.g, using a constant, or using a random number.

The simplest encryption mode is the mode we have been using so far, which is called electronic
codebook (ECB) mode. ECB mode is easy to use, but the main drawback is that the encryption of
identical plaintext blocks produces identical ciphertext blocks. For an extreme case, if the plaintext
is either all Os or all 1s, it would be easy for the attacker to deduce the message given a collection
of plaintext and ciphertext pairs. Due to this property, it is also easy to recognize patterns of the
plaintext in the ciphertext, which makes statistical attacks easier (e.g. frequency analysis of the affine
cipher described in Example 2.2.10). For example, Figure 2.4 (b) gives an example for encryption
using ECB mode. Compared to the original image in Figure 2.4 (a), we can see a clear pattern of the

AND [

plaintext from the ciphertext.

(a) Original picture (b) ECB encrypted (c) CBC encrypted

CRY TOGRA HY

Figure 2.4: Original picture and encrypted picture with ECB and CBC modes.

To avoid such problems, we can use the cipherblock chaining (CBC) mode. The encryption and
decryption are shown in Figures 2.5 and 2.6 respectively, where IV stands for initialization vector. An
IV has the same length as the plaintext block and is public. We can see that with CBC, the same
plaintext is encrypted differently with different IVs. Figure 2.4 (a) encrypted with CBC mode is
shown in Figure 2.4 (c), where no clear pattern can be seen.

Po b1 D2 De

2% - D D ~D
k Ey kE— Eg k E, | -+ k Ey
Co C1 C2 Cy

Figure 2.5: CBC mode for encryption.

Furthermore, if a plaintext block is changed, the corresponding ciphertext block will also be
changed, affecting all the subsequent ciphertext blocks. Hence CBC mode can also be useful for
authentication.

87

Co C1 C2 Ce

k Dy, k— Dy k Dy | - k Dy,
IV ——P D D ~D
Po b1 b2 De

Figure 2.6: CBC mode for decryption.

However, with CBC mode, the receiver needs to wait for the previous ciphertext block to arrive to
decrypt the next ciphertext block. In real-time applications, output feedback (OFB) mode can be used to
make communication more efficient. As shown in Figures 2.7 and 2.8, the encryption function is not
used for encrypting the plaintext blocks, rather it is used for generating a key sequence. Ciphertext
blocks are computed by XORing the plaintext blocks and the key sequence. Such a design allows the
receiver and the sender to generate the key sequence simultaneously before the ciphertext is sent.

v
k Ek k‘ Ek k‘ Ek k] Ek
Po —D p1 —D P2 —(D pe —D
Co C1 C; Cy

Figure 2.7: OFB mode for encryption.

In a way, OFB mode can be considered as a synchronous stream cipher (see Section 2.1.2). An-
other advantage of OFB mode is that padding is not needed. However, the encryption of a plaintext
block does not depend on the previous blocks, which makes it easier for the attacker to modify the
ciphertext blocks.

1V
k' — Ek: k —_— Ek: k Ek k S Ek
o—B a—dH oD ¢t —D
Po P P2 Pe

Figure 2.8: OFB mode for decryption.

88

2.4 Further Reading

We refer the readers to [Sti05, Chapter 1] for more discussions on classical ciphers; and to [MVOV18]
for a detailed presentation on different cryptographic primitives. As for encryption modes and
padding schemes, we refer the readers to [PP09, Chapter 5].

In Section 2.2.7 we introduced a classical stream cipher — one-time pad. The area of stream ciphers,
albeit less discussed in the cryptography books than its block cipher counterpart, encompasses many
modern algorithm designs. We do not go into details in this book, interested readers will find more
information in [KPP22].

The physical attacks we will present in Chapters 4 and 5 are for symmetric block ciphers, one
particular public-key cipher (RSA), and RSA signatures. There is also plenty of research on physical
attacks on other cryptographic primitives, e.g. hash functions [HH11, HLMS14, KMBM17], post-
quantum public-key algorithms [MWK*22, PSKH18, XIU"21, PPM17], or stream ciphers [BMV07,
BT12, KDB*22].

Chapter 3

Modern Cryptographic Algorithms and their
Implementations

25 PO

Abstract

When the keys for encryption and decryption are the same in a cryptosystem, it is a
symmetric cipher. Otherwise, it is a public key /asymmetric cipher.

In this chapter, we will detail the designs of three symmetric block ciphers — DES,
AES, and PRESENT as well as one public key cipher — RSA. We will also discuss
how RSA can be used for digital signatures. Moreover, we will present different
techniques for implementing those algorithms.

Keywords: DES, AES, PRESENT, RSA, RSA signatures, bit-sliced implementation

We have defined cryptosystem/cipher in Definition 2.1.1. When the keys for encryption and
decryption are the same, it is a symmetric cipher. Otherwise, it is a public-key/asymmetric cipher. In
general, symmetric key ciphers are faster, but they require key exchange before communication.

In this chapter, we will detail the designs of three symmetric block ciphers — DES (Section 3.1.1),
AES (Section 3.1.2), and PRESENT (Section 3.1.3) as well as one public key cipher — RSA (Section 3.3).
We will also discuss how RSA can be used for digital signatures (Section 3.4). Moreover, we will
present different techniques for implementing those algorithms (Sections 3.2 and 3.5).

3.1 Symmetric Block Ciphers

For the construction of symmetric block ciphers, two important principles are followed by modern
cryptographers — confusion and diffusion. Shannon first introduced them in his famous paper [Sha45].

Confusion obscures the relationship between the ciphertext and the key. To achieve this, each
part of the ciphertext should depend on several parts of the key. For example, in Vigenere cipher,
each letter of the plaintext and each letter of the key influence exactly one letter of the ciphertext.
Consequently, we can use the Kasiski test (Section 2.2.6.2) or index of coincidence (Section 2.2.6.3)
to attack the Vigenere cipher. Diffusion obscures the statistical relationship between the plaintext
and the ciphertext. Each change in the plaintext is spread over the ciphertext, with the redundancies
being dissipated. For example, monoalphabetic ciphers (Section 2.2.4) have very low diffusion — the
distributions of letters in plaintext correspond directly to those in the ciphertext. That is also why
frequency analysis (Section 2.2.6.1) can be applied to break those ciphers.

As mentioned in Section 2.1.2, for modern symmetric block ciphers, P = € = F3 for a positive
integer n, which is called the block length of the cipher. Furthermore, the key space is also a vector
space over [F, and its dimension is called the key length of the cipher. Each key k € X is called a master
key.

A symmetric block cipher design specifies a round function and a key schedule. Encryption of a
plaintext block consists of a few rounds of round functions, possibly with minor differences. Each
round function takes the cipher’s current state as an input and outputs the next state. The key sched-
ule takes the master key k£ and outputs the keys for each round, which are called round keys. In most

89

90

cases, the key schedule is an invertible function. In particular, given one or more round keys, the
master keys can be calculated.

By Kerckhoffs” principle, round functions and key schedule specifications are public, but the mas-
ter key (hence also the round keys) are secret. In physical attacks that we will discuss in the later parts
of the book, the attacker normally aims to recover some round key(s) and then use the inverse key
schedule to find the master key.

To be more specific, suppose we have a symmetric block cipher with round function F' and in
total Nr number of rounds. Let K; denote the round key for round i and S; denote the cipher state at
the end of round :. For a plaintext p € F3, the corresponding ciphertext ¢ € Fy can be computed as
follows':

SO = D
S F(So, K1),
Sy = F(S1,K>),

SNr = F(SNr—laKNr)7

¢ = Sy
To perform decryption, we require that for any given round key K;, F(-, K;) has an inverse, i.e.
FYF(x,K;),K;) =x, Va Ty
In this case, given ciphertext ¢, plaintext p can be computed as follows:

SNr = ¢,

SNr—l - Fﬁl(SNraKNr)’

S, = F 1Sy, Ky),
Sy = F7YS,Ky),
p = So.

Ls R3

Figure 3.1: An illustration of Feistel cipher encryption algorithm.

We recall for a vector space over F9, vector addition is given by bitwise XOR, denoted @& (Defini-
tion 1.3.6). XOR with the round key is a common operation in round functions of symmetric block
ciphers.

!The round function for the last round might be a bit different, as for the case of AES (see Section 3.1.2).

91

Plaintext Master key
Pany Ko l
[Permutation | — K
=7 A SS—/ X/
LT Pl]] NN REEE
A Kl
PP PP
A K J
>
' Ko
A nt)
L]
SBY
| Permutation I . ™~
PP PP
D K)
>

Ciphertext

Figure 3.2: An illustration of SPN cipher encryption algorithm.

Another common function is a substitution function called Sbox, denoted SB,
SB : F5' — F52.

Normally w; or/and ws is a divisor of the block length n and a few Sboxes are applied in one round
function. When w; = wy, SB is a permutation on F5* and we say that the Sbox is a w; —bit Sbox.
There are mainly two types of symmetric block ciphers — Feistel cipher and Substitution—permutation
network (SPN) cipher.
For a Feistel cipher, the cipher state at the beginning/end of each round is divided into two halves
of equal length. The cipher state at the end of round i is denoted as L; and R;, where L stands for left
and R stands for right. The round function F is defined as

(Li, RZ) = F(Lifl, Rz;l, KZ), where Ll = Rl;l, RZ = Li,1 &) f(Rifl, Kl) (31)

We note that f is a function that does not need to have an inverse since the function F defined as in
Equation 3.1 is always invertible:

Li1=R;® f(Li, K;), Ri—1 =1L

92

Furthermore, the ciphertext is normally given by Ry.||Ly. (i.e. swapping the left and right side of
the cipher state at the end of the last round). In this case, if we let R; and L; denote the right and left
part of the cipher state at the end of round ¢ in the decryption, then the decryption computation is
the same as in Equation 3.1 except that the round keys are in reverse order as that for encryption. An
illustration of Feistel cipher can be seen in Figure 3.1.

Let w be a divisor of n, the block length, and let ¢ = n/w. The design of an SPN cipher encryption
is shown in Figure 3.2, where SB is an w—bit Sbox. In most cases, w = 4, 8.

Each round of an SPN cipher normally consists of bitwise XOR with the round key, application
of ¢ parallel w—bit Sboxes, and a permutation on 3. The encryption starts with XOR with a round
key, also ends with XOR with a round key before outputting the ciphertext. Otherwise, the cipher
states in the second (or the last) round are all known to the attacker. Those two operations are called
whitening. For decryption, the inverse of Sbox and permutation are computed, and round keys are
XOR-ed with the cipher state in reverse order compared to that for encryption.

3.1.1 DES

Let us first look at one Feistel cipher — Data Encryption Standard (DES). DES was developed at IBM
by a team led by Horst Feistel and the design was based on Lucifer cipher [Sor84]. It was used as the
NIST standard from 1977 to 2005. Furthermore, it has a significant influence on the development of
cipher design.

58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 6 38 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37 5 45 13 53 21 61 29
57 49 41 33 25 17 9 1 36 4 44 12 52 20 60 28
59 51 43 35 27 19 11 3 35 3 43 11 51 19 59 27
61 53 45 37 29 21 13 5 34 2 42 10 50 18 58 26
63 55 47 39 31 23 15 7 33 1 41 9 49 17 57 25
(a)IP (b) P!

Table 3.1: Initial permutation (IP) and final permutation (IP~!) in DES algorithm.

The block length of DESis n = 64,ie. P = C = JFS4. Hence L;, R; € F%Q. The master key length is
56, i.e. X = F3°. The round key length is 48. The total number of rounds Nr = 16. An illustration of
DES encryption is shown in Figure 3.3. Each DES round function follows the structure as described
in Equation 3.1.

Before the first round function, the encryption starts with an initial permutation (IP). The inverse of
IP, called the final permutation (IP~1) is applied to the cipher state after the last round before outputting
the ciphertext. Initial and final permutations are included for the ease of loading plaintext/ciphertext.
Initial and final permutations are shown in Table 3.1. For example, in IP, the 1st bit of the output is
from the 58th bit of the input. The 2nd bit of the output is from the 50th bit of the input.

Note

For DES specification, we consider the 1st bit of a value as the leftmost bit in its
binary representation. For example, the 1st bit of 3 = 0115 is 0, the 2nd bit is 1 and
the last bit is 1.

At the ith round, the function f in the round function of DES takes input R;_; € F%Q and round
key K; € F3%, then outputs a 32—bit intermediate value as follows:

f(Ri—h Kz) = PDEs(SbOXGS(ED}gs(Ri_l)) Kl))

Firstly, R;_1 is passed to an expansion function Epgs : F3? — F3%. Then the output Epgs(R;—1) is
XOR-ed with the round key K, producing a 48—bit intermediate value. This 48—bit value is divided
into eight 6—bit subblocks. Eight distinct Sboxes, SBi,¢ : F§ — F3 (1 < j < 8), are applied to each

93

Lo Ry
} |
IP
K,
< f |«

K,
Kis
Kig

Ip~1

Ciphertext

Figure 3.3: An illustration of DES encryption algorithm.

321 2 3 4 5 4 5 6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1

Table 3.2: Expansion function Epgs : F3? — F3® in DES round function. The 1st bit of the output is
given by the 32nd bit of the input. The 2nd bit of the output is given by the 1st bit of the input.

of the 6 bits. Finally, the resulting 32—bit intermediate value goes through a permutation function
Ppgs : F3? — F32. An illustration of f is shown in Figure 3.4.

Details of the expansion function Epgs are given in Table 3.2. 16 bits of the input are repeated and
affect two bits of the output, which influence two Sboxes. Such a design makes the dependency of
the output bits on the input bits spread faster and achieves higher diffusion.

The design of the first Sbox is shown in Table 3.3, and the rest of the Sboxes are detailed in
Appendix C. To use those tables, take an input of one Sbox, say b1b2b3b4b5bs, the output corresponds

4 4 131 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 O
15 12 8 2 9 1 7 5 11 3 14 10 0 6 13

Table 3.3: SB},¢ in DES found function.

to row b1 bg and column b2b3b4bs. We note that each row of each of the Sbox tables is a permutation of
integers 0, 1,...,15.

Example 3.1.1. Suppose the input of SB],¢ is
b1b2b3bsbsbs = 100110.

According to Table 3.3, the row number is given by bibs = 2. The column number is given by

94

R K;

%32 48

| Expansion (Fpgs) |

J(48 any
N

LR AT A A A

1 o Y
|

| Permutation (Ppgs) |
|

Figure 3.4: Function f in DES round function.

bab3bybs = 0011 = 3. Hence the output is 8 = 1000. Similarly (see Table C.1 (b)),
SBies(100110) = 9 = 1001

The details of the permutation function Ppgg are given in Table 3.4.

l6 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Table 3.4: Permutation function Ppgs : F32 — F3? in DES round function. The 1st bit of the output is
given by the 16th bit of the input. The 2nd bit of the output comes from the 7th bit of the input.

The key schedule of DES takes a 64—bit master key as input and outputs round keys of length 48.
An illustration of the key schedule is in Figure 3.5, where PC stands for permuted choice.

Each 8th bit of the master key is a parity-check bit of the previous 7 bits, i.e. the XORed value
of those 7 bits. PC1 reduces 64—bit input to 56 bit by ignoring those parity-check bits and outputs
a permutation of the remaining 56 bits. Then the output is divided into two 28—bit halves (see
Table 3.5). Each half rotates left by one or two bits, depending on the round (see Table 3.6). Finally,

Left Right
57 49 41 33 25 17 9 63 55 47 39 31 23 15
1 58 50 42 34 26 18 7 62 54 46 38 30 22
10 2 59 51 43 35 27 14 6 61 53 45 37 29
19 11 3 60 52 44 36 21 13 5 28 20 12 4

Table 3.5: Left and right part of the intermediate values in DES key schedule after PC1. The 1st bit of
the left part comes from the 57th bit of the master key (input to PC1).

PC2 selects 48 bits out of 56 bits, permutes them, and outputs the round key (see Table 3.7).

For some master keys, the key schedule outputs the same round keys for more than one round.
Those master keys are called weak keys. Weak keys should not be used. It can be shown that there are
in total four of them:

e 01010101 01010101,
e FEFEFEFE FEFEFEFE,
e EOEOEQOEO F1FI1F1F1,
e IF1FIF1F OEOEOEOQE.

Remark 3.1.1. From the design of the DES key schedule, we can see that with the knowledge of any
round key, the attacker can recover 48 bits of the master key. The remaining 8 can be found by brute
force. Alternatively, with the knowledge of another round key, the master key can be recovered.

95

Master key
64
PC1
ljé <3
K1
48
K] K]
Ky
48
=4 =4
K5 < PC2
48
< =<3
Kie PC2

48

Figure 3.5: DES key schedule.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 2 2 2 2 21

Rotation 1 2 2 2 2 2 2 1

Table 3.6: Number of key bits rotated per round in DES key schedule.

14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2 41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32

Table 3.7: PC2 in DES key schedule.

96

3.1.2 AES

In 1997, NIST published a call for cryptographic algorithms as a replacement for DES. In October
2000, Rijndael was selected as the winner and certain versions of Rijndael are set as the Advanced
Encryption Standard (AES). Rijndael was invented by Belgian cryptographers Joan Daemen and Vin-
cent Rijmen and optimized for software efficiency on 8 and 32 bit processors.

02 03 01 01
column x 01 02 03 o1
01 01 02 03

03 01 01 02

I i}
<>

SBAEs

SR |_|# MC AK
{;

Figure 3.6: AES round function for round i, 1 < i <Nr—1. SB, SR, MC and AK stand for SubBytes,
ShiftRows, MixColumns, and AddRoundKey respectively.

SB

SRR
<>

For AES, block length n = 128, number of rounds Nr= 10, 12, 14 with corresponding key lengths
128,192,256. The corresponding algorithms are hence named AES-128, AES-192, and AES-256 re-
spectively. The original design of Rijndael also allows for other key lengths and block lengths. As
shown in Table 3.8, where blue-colored values are specifications adopted by AES.

block length
key length —5e— 5102 g224 256
128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Table 3.8: Specifications of Rijndael design, where blue-colored values are adopted by AES.

The encryption algorithm starts with an initial AddRoundKey operation. Then the round func-
tion for the first Nr—1 rounds consists of four operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. Finally, the last round (round Nr) consists of SubBytes, ShiftRows, and AddRound-
Key. AddRoundKey is bitwise XOR with the round key and SubBytes is the application of 8—bit
Sboxes. ShiftRows permutes the bytes and MixColumns is a function on 32—bit values (four bytes).
Figure 3.6 illustrates the AES round function.

The inverse of SubBytes, ShiftRows, and MixColumns are denoted as InvSubBytes, InvShiftRows,
and InvMixColumns respectively. The first round of AES decryption computes AddRoundKey, In-
vShiftRows, and InvSubBytes. Then the round function for the next Nr—1 rounds consists of Ad-
dRoundKey, InvMixColumns, InvShiftRows, and InvSubBytes. Finally, there is an additional Ad-
dRoundKey operation. The round keys for decryption are in reverse order as those for encryption.

To give more details on the AES round function, we represent the AES cipher state as a four-by-
four matrix of bytes:

500 S01 S02 S03
§10 S11 S12 813 | (3.2)
§20 S21 S22 S23
830 831 S32 833

Recall that one byte is a vector in F§ and can be represented as a hexadecimal number between 00
and FF (see Definition 1.3.7 and Remark 1.3.3). As discussed in Section 1.5.1, a byte can also be
identified as an element in Fo[x]/(f(z)), where f(z) = 2® + 2* + 23 + 2 + 1 € Fy[x] is an irreducible
polynomial over 5.

97

Remark 3.1.2. We refer to (sqo

as the (j + 1)th column of the cipher state.

Si1 Si2 Sig) as the (i + 1)th row of the cipher state, and

Table 3.9: AES Sbox.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0|63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1|CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO
2|B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3104 Cc7 23 C3 18 96 05 SA 07 12 80 E2 EB 27 B2 75
4109 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5|53 D1 00 ED 20 FC Bl 5B 6A CB BE 39 4A 4C 58 CF
6| D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C O9F AS8
7151 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8| Ch 0OC 13 EC 5F 97 44 17 C4 A7 7T7E 3D 64 5D 19 73
9|60 81 4r DC 22 2A 90 88 46 EE B8 14 DE 5E OB DB
A|EO0O 32 3A 0A 49 06 24 5C Cz2 D3 AC 62 91 95 E4 79
B|E7 C8 37 eb 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C|BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D|70 3E B5 66 48 03 F6 OE 61 35 57 B9 86 Cl 1D O9E
E|El F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F|8 Al 89 0D BF E6 42 68 41 99 2D OF BO 54 BB 16

The 8—bit Sbox in AES can be described using Table 3.9, for example, SBags(12) = C9. Different

from the eight Sboxes in DES, AES Sbox can also be defined algebraically. Let

then

1 1111 000
01 1 1 1100
001 11110
00011111
1 00 01 111
1 1.0 0 0 1 11
1 1100011
1 1110 0 01
Azl +a
SBags(2) = {a

z2#0
z=0

0

_— O O O = =

where 27! is the inverse of z as an element in Fy[x]/(f(z)) (see Section 1.5.1).

Example 3.1.2. SBags(00) = a = 011000113 = 63.

(3.3)

Example 3.1.3. Suppose the input of AES Sbox is 03 = 000000115, which corresponds to x + 1 €

Fo[x]/(f(z)). We have shown in Example 1.5.21 that 037! = 111101105. Then

O = = O

e e i e e R = R R e I)

— R R, OO OR K~

=0 O O = =

— O O O = = = =

1
1
1
1
1
0
0
0

0 0

O O =
O R = = = = O

0

el i e e e s B)

O = = O ==

0

= =0 O O = =

0

O O O == OO

= =0 O O = = O

R =R O~ =~ O

98

So SBags(03) = 011110115 = 7B, which agrees with Table 3.9.

For decryption, we need to compute the inverse of SubBytes, InvSubBytes. Let g denote the

function

g(z) = Az +a.

Then by Equation 3.3, InvSubBytes computes
(g7'(=)~"
0

SB;ES (2)

where g71(2) is given by (see [DR02])

InvSubBytes can also be described using a table, as detailed in Table 3.10.

_ o= OO~ OOo

o OO, OO

—_ O Ok OO ~=O

OO R OO~k O

O OO~k OFOo

_ o o= O OO

O = O = OO O

SO O R Ok OO

z+

— o= O O O oo

0 1 2 3 4 5 6 7 8 9 A B C D B F
0|52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1|7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2154 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C(C3 4E
3108 2E Al 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4|72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5|6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6|90 D8 AB 00 8C BC D3 O0OA F7 E4 58 05 B8 B3 45 06
7|DO0 2C 1E 8F CA 3F OF 02 Cl1 AF BD 03 01 13 B8A ©6B
81 3A 91 11 41 4r 67 DC EA 97 F2 CF CE FO B4 E6 73
9196 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF ©6E
A|47 F¥F1 1A 71 1D 29 C5 89 6F B7 62 OE AA 18 BE 1B
B|FC 56 3E 4B Co6 D2 79 20 9A DB CO FE 78 CD 5A F4
cC|1lr DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D|le0O 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E|A0 EO 3B 4D AE 2A F5 BO C8 BE BB 3C 83 53 99 61
F|17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 3.10: Inverse of AES Sbox.
Example 3.1.4. Let z = 63 = 011000112. Then
01 010010 0 0 0 0 0
00101001 1 0 0 0 0
1001 0100 1 0 0 0 0
g (2) 01 001010 0 n of_10 L Of_ 10
001 00T1O0O71 0 0 0 0 0
1001 0010 0 1 1 1 0
01001001 1 0 0 0 0
1 01 00100 1 1 1 1 0

which is equal to 00. And we have SBs(63) = 00.

99

Example 3.1.5. Let z = 8C = 100011002. Then

01010010\ /1 0 0 0 0
0010100 1]|]0 0 1 0 1
100101000 0 0 0 0

» 010010710]|]o0 0 1 0 1

9@=log0100101|[1|T|ol=1lFT]o] ||
100100710]][1 1 1 1 0
0100100 1]]o0 0 1 0 1
1010010 0/ \o 1 0 1 1

which corresponds to
2® 4+ 2t 2d 42+ 1 € Fola]/(f(2)).

By the Euclidean algorithm

fz) = @+ D)@+t + 23+ +1)+ (25 + 23 + 22),
S+ttt r+1l = 2@+ 42+ (e +1),
P+t = @+t D(e+1)+ 1

Then by the extended Euclidean algorithm

1 = B +r+1)(z+1)

st a4+ 1)@+t 2P+ 4+ 1) +2(2® + 23+ 2?))
B4+)@+t B+ D)+ @+t 2o+ D)2 + 23+ 2?)
s+ +r+)@+t + 2+ 1)

@+t e+)(f@)+ @@+ D)@+ 2t + 23+ 2+ 1))

= @+t +22 2+)f(@)+ @+ + 28 4@+t 423 a4+ 1).

(x® 4+ 23 +2%) +
(m + 23 4+ 2?) +
("
(*

=~

And we have
(®+ 2zt + 23+ 24+ 1) mod f(z) = 27 + 25 + 2° + 2* = 11110000, = FO,
which gives SB;ES(8C) =F0

As the name suggests, the ShiftRows operation shifts the bytes in the rows of the cipher state.
Recall the representation of the AES cipher state from Equation 3.2. Then the ShiftRows operation
can be described by the following transformation:

500 So1 S02 S03 S00 So01 S02 S03
S10 S11 S12 813 _ S11 S12 513 S10
520 S21 S22 S23 S22 523 S20 S21
530 S31 532 833 833 530 S31 S32

The first row does not change. The second row rotates left by one byte. The third row rotates left by
two bytes. Finally, the last row rotates left by three bytes.

In another representation, let us denote the input of ShiftRows using cipher state representation
in Equation 3.2. Let the output of ShiftRows be a matrix B with entries b;; (0 < 7,5 < 3). Then

b()j SOj

blj _ 81(j+1 mod4) ’ 0 SJ < 4. (34)
ba; 82(j+2 mod 4)

bsj 83(j+3 mod 4)

For decryption, the inverse of ShiftRows, InvShiftRows, can be easily deduced.
The MixColumns function takes each of the four columns of the cipher state (Equation 3.2)

S =0,1,2,3,

100

as input. The column is considered as a polynomial over Fa[z]/(f(x)):
S3jl'3 + S2j£L‘2 + S1;% + Soj-

MixColumns multiplies s3;2% + s2j2? + s1;z + so; with another polynomial over Fy[z]/(f(z)) given
by
g(x) = 0323 + 012 + 012 4 02.

The multiplication is computed modulo z* + 1. This design choice is based on specific diffusion and
performance goals. We will not go into the details in this book, interested readers can refer to [DR02].
Let d(x) = d3z® + dox?® + dyx + do denote the product of 83j:c3 + szij + s1j2 + so; with g(«) modulo
z* + 1. We have

d(z) = (sgja® + soja? + s1;@ + 50;) (0323 + 0122 + 012 + 0216) mod (z* + 1)
= 03s3;2° + (01s3; + 03s9;)2° + (01s3; + 01s9; + 03s1;)"
+(0253; + 01s9; + 01s1; + 03s07)2> + (02895 + 01s1; + 01s05)z>
+(0281; + 01sp;)x + 0250; mod (z* + 1)
= (02s35+ 01s9; +01s1; + 0380]-)963 + (03535 + 02595 + 01515 + Olsoj):c2
+(01s3; + 03525 + 02515 + 01spj)x + 01s3;
+01s9; + 0351 + 0250;. (3.5)

Thus, MixColumns can be considered as multiplying the input column by a matrix:

do 02 03 01 01 S0;
dy _ 01 02 03 01 815 . (3.6)
do 01 01 02 03 $25
d3 03 01 01 02 83]'
Example 3.1.6. Suppose
505 D4
s | | BE
525 | 5D
S35 30
Then
02 03 01 01 D4 04
01 02 03 01 BF| | 66
01 01 02 03 sp| |81
03 01 01 02 30 ES

For example, we have calculated in Examples 1.5.17 and 1.5.20 that
02 x D4 =101100113, 03 x BF = 110110102.
The first entry of the product is then given by
10110011 ¢ 11011010 ¢ 01011101 & 00110000 = 00000100 = 04.

Remark 3.1.3. For any

aop bo
a b
a=| ", b=
as 2
as b3

we have
MixColumns(a + b) = MixColumns(a) + MixColumns(b),

where the addition is computed modulo f(x). As discussed in Remark 1.5.2, this addition is equiva-
lent to XOR. Consequently, we have

MixColumns(a & b) = MixColumns(a) & MixColumns(b).

101

The inverse of MixColumns, InvMixColumns, is defined by multiplying each column of the ci-
pher state by the inverse of g(x) (Equation 3.1.2) modulo z* + 1. We note that

e+ 1=(z+1)!

as a polynomial over Fa[x]/(f(x)). Since 1 is not a root of g(x), z + 1 does not divide g(x), which
gives
ged(g(z), 2t +1) = 1.

We have shown that Fy[z]/(f(z)) is a field in Section 1.5.1. g(x)~! mod 2 + 1 can be computed using
the extended Euclidean algorithm, similarly to Example 1.5.10. We have

g(z)" mod 2% + 1 = 0Bz® + 0D2% + 09z + OE.

It can be shown in the same way as in Equation 3.5 that, multiplication by g(z)~! mod z* + 1 is
equivalent to multiplication by the following matrix

OE OB OD 09
09 OE OB 0D
0D 09 OE OB
OB 0D 09 OE

(3.7)

We will discuss the AES key schedule for key length 128, which corresponds to Nr= 10. The
algorithms for other key lengths are defined similarly (see [DR02] for more details). The key schedule
algorithm is named KeyExpansion, shown in Algorithm 3.1. The master key k is written as a four-
by-four array of bytes, denoted by K [4][4] in the algorithm. KeyExpansion expands K [4][4] to a 4 x 44
array of bytes, denoted by W [4][44]. Since Nr= 10, in total we need 11 round keys. The ith round
key is given by the columns 4i to 4(i + 1) — 1 of W. Note that the Oth round key, i.e. the round key
for whitening at the beginning of the encryption, is given by the first 4 columns of W, which are
equal to the master key (lines 1 — 3). Round constants, denoted Rcon (line 6), is an array of ten bytes,
computed as follows:

Reon[l] =2° = 01, and Rcon[j] = zRcon[j — 1] = 277! for j > 1.

We have
Rcon:{Ol, o2, 04, 08, 10, 20, 40, 80, 1B, 36}.

Algorithm 3.1: KeyExpansion — AES-128 key schedule.
Input: K[4] [4] // master key written as a four-by-four array of bytes
Output: W[4][44]

1forj=0,j<4,j++do

2 fori=0,i<4,i++do

3 | WEII=KII]

4 forj=4,j<44,57+ + do

5 if j mod 4 == 0 then

6 W0][j] = W[0][j — 4] & SBags(W[1][j — 1]) & Reonlj /4]
7 fori=1,i<4,i++do

8 | W) = Wil[j — 4] ® SBags(W i + 1 mod 4][j — 1])
9 else

10 fori=0,i <4,i+ +do

1 | WL =W -4 e W[j - 1]

12 return W

102

b
Rcon > SB |— <«
e
VD
(AN
e
VD
(AN
e
VA
(AN

Figure 3.7: Key schedule for AES-128.

The key schedule is also depicted in Figure 3.7, where the round keys are represented as four-by-
four grids and each box corresponds to one byte. The rotation << rotates the right-most column by
one byte

Yo n
Y1 . Y2
Y2 Ys
Y3 Yo

Remark 3.1.4. We note that with the knowledge of any round key for AES-128 encryption, the at-
tacker can recover the master key using the inverse of the key schedule.

3.1.3 PRESENT

PRESENT was proposed in 2007 [BKL*07] as a symmetric block cipher optimized for hardware im-
plementation. It has block length n = 64, number of rounds Nr= 31, and a key length of either 80
or 128. The Sbox for PRESENT is a 4—bit Sbox. When the key length is 80, the algorithm is called
PRESENT-80.

The round function of PRESENT consists of addRoundKey, sBoxLayer, and pLayer. After 31
rounds, addRoundKey is applied again before the ciphertext output (see Figure 3.8).

Note

As opposed to DES specification, for PRESENT specification, we consider the Oth bit
of a value as the rightmost bit in its binary representation. For example, the Oth bit
of 3 =011y is 1, the 1st bitis 1 and the 2nd bit is 0.

addRoundKey takes the current 64—bit cipher state

besbga . . . by

103

Plaintext

l

addRoundKey

1

sBoxLayer

i}

pLayer

]
31x

b\

addRoundKey

v

Ciphertext

Figure 3.8: An illustration of PRESENT encryption algorithm.
and XOR it with the round key

bitwise ‘
bj =bj®k;, 0<j<63.
sBoxLayer applies sixteen 4—bit Sboxes to each nibble of the current cipher state. The 4—bit Sbox
is given by Table 3.11. For example, if the input is 0, the output is C.

Table 3.11: PRESENT Sbox.

pLayer permutes the 64 bits of the cipher state using the following formula:

pLayer(j) = HJ + (j mod 4) x 16,

where j denotes the bit position. For example, the Oth bit of the input stays as the Oth bit of the
output, and the 1st bit of the input goes to the 16th bit of the output. It can also be described using
Table 3.12.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 3.12: PRESENT pLayer.

Figure 3.9 shows two rounds of PRESENT.

104

|s8 | s8 | sBl|fsn|sa|se|ss|snlsnl|se|se|ss|snlsnlsa]ss]

Kii L L 1]

w0
o]
wn
=
w
o]
wn
=
w
o]
w0
=

IINY
N
WA
i
o
%

Il
i

I
/J

[
{

Figure 3.9: Two rounds of PRESENT.

K;

A

79 39]38 33]32 19] 18 15] 14 0

round counter

(79 76] 75 61] 60 20]19 15[14 0

V"

Ki+1

Figure 3.10: PRESENT-80 key schedule.

Here we detail the key schedule for PRESENT-80. We refer the readers to [BKL"07] for the key
schedule for the 128—bit master key. Let us denote the variable storing the key by krgk7s ... ko. At
round ¢, the round key is given by

Ki = Iié3/€é2 e I‘ié = k79k78 e]{516.
After extracting the round key, the variable k79k7s . . . ko is updated using the following steps:

1. Left rotate of 61 bitS,]C79/€78 . klko = k18k17 . kgoklg;

2. krokrskrrkre = SBpresenT (krokrskrrkre);
3. k19k18k17k16k‘15 = k19k18k17k16k15@ round,counter;

where SBpresent Stands for the PRESENT Sbox (Table 3.11) and round_counter = 1,2,...,31. A
graphical illustration is shown in Figure 3.10.

Remark 3.1.5. With the knowledge of any round key for PRESENT-80, the attacker can recover 64
bits of the master key. The remaining 16 bits can be recovered by brute force. Alternatively, with the
knowledge of another round key, the master key can also be revealed.

3.2 Implementations of Symmetric Block Ciphers

In Section 3.1, we saw that there are mainly three building blocks for a symmetric block cipher: bit-
wise XOR with round key, Sbox, and permutation. In this section, we will discuss how to implement
each of them. While we mainly focus on the software implementations of PRESENT and AES, the
main ideas apply in general to other ciphers with similar constructions.

It is easy in both software and hardware to implement bitwise XOR with a round key. In hardware,
there is an XOR gate and almost every processor has a dedicated XOR instruction.

105

3.21 Implementing Sboxes

In software, a naive way to implement Sbox is to use a lookup table. The table is stored as an array
in random access memory or flash memory. The storage space required for an Sbox SB: Fy' —
F5? is wy x 2“1, For example, PRESENT has a 4—bit Sbox (Table 3.11) and the storage required is
2% x 4 = 64 bits, or 8 bytes. A lookup table implementation of PRESENT Sbox in pseudocode is
shown in Algorithm 3.2. As current computer architectures normally use word sizes of at least one

Algorithm 3.2: A lookup table implementation of PRESENT Sbox in pseudocode.

1 integer array [1..16] Sbox ={C, 5,6,B,9,0,A,D, 3,E,F, 8,4,7,1, 2}
2 s =Sbox[s] // table lookup

byte (generally multiple bytes), it is not efficient to implement Sbox nibble-wise. To optimize the
execution time, we can merge two PRESENT Sbox table lookups (Algorithm 3.3). However, even

Algorithm 3.3: A more efficient lookup table implementation of PRESENT Sbox in pseu-
docode.
1 integer array [1..16] Sbox = {cC, 5, 6,B,9,0,A,D, 3,E,F,8,4,7,1,2}

2 integer big,S = SbOX[S & OF] // lower nibble; & denotes bitwise AND (see
Definition 1.3.6)
3 bigfs = bigfs V (Sbox[(s>>4) & 0F] «4) // upper nibble; V denotes bitwise OR (see

Remark 1.3.2)
4S =big,S // state update

though we can utilize the space more efficiently, the additional operations take extra computing
time. To avoid the bit shifts and boolean operations, it is better to combine two 4 x 4 Sbox tables into
one bigger 8 x 8 table (Algorithm 3.4):

SB(0)|SB(0) SB(0)
SB(1)|SB(0) SB(1)|SB(

SB(1) ... SB(0)[SB(F)
) ... SB(1)|SB(F)

[

SB(F)[SB(0) SB(¥)|SB(1) ... SB(F)SB(F)

Algorithm 3.4: A lookup table implementation combining two PRESENT Sboxes in parallel
in pseudocode.

1 integer array [1..256] Sbox = {cc, c5,...,C1,C2, 5¢C, 55,...,51,52,... 2C,25,...,21,22}
2 8= SbOX[S] // table lookup of two nibbles in parallel

3.2.2 Implementing Permutations

The efficiency of the implementation is highly dependent on the design of the permutation. For AES
ShiftRows, the bytes are permuted, making it easier to implement. For PRESENT pLayer, the bit level
permutations are “free” in hardware as we just need to reorder the wires, no new gates are required.
However, in software, extracting each bit and putting it in the right position is time-consuming.

3.2.2.1 Implementing pLayer

In this part, we will discuss two methods for implementing PRESENT pLayer by combining it with
sBoxLayer.

The first method is straightforward. We will construct sixteen 4 x 64 lookup tables, TB1, TB2,
..., ITB16. The input of TBi is given by the ith nibble of the cipher state at the input of sBoxLayer.
The outputs are 64—bit values with mostly Os except for 4 bits that are related to this ith input nibble
through sBoxLayer and pLayer.

106

Let us consider TB1, whose input is the first nibble of the cipher state at the input of sBoxLayer.
By Table 3.12, the Sbox output corresponding to this nibble should go to bits 0, 16, 32 and 48 of the
output of pLayer. Thus, each entry of TB1 is a 64—bit value with bits in positions 0, 16, 32 and 48
given by the Sbox output, and the other bits are all 0.

Example 3.2.1. For example, if the input is 2, the Sbox output should be F = 11115 and
TB1[a] = 0...010...010...010...1,

where the Oth, 16th, 32nd and 48th bits are 1. Similarly, PRESENT Sbox output for input B is 10002,
and
TB1[B] = 0...010...0,

where the 48th bit is 1.

Example 3.2.2. TB2 takes the second nibble of the cipher state as input. The output bits should be
positioned at 1,17, 33 and 49. Thus

TB2[B] = 0...010...0,

where only the 49th bit is 1.

As for the memory consumption, a 4 x 64 table takes 64 x 24 bits and those sixteen tables take
16384 bits of memory. Compared to one Sbox table, which is 64 bits, this is much bigger, but these
tables also implement pLayer of PRESENT. The speed can be further improved by merging two Sbox
computations and constructing eight 8 x 64 lookup tables. The memory consumption will be the
same. But the speed will be much faster.

The second method [GHNZ09, PV13] requires a deeper look at the pLayer design. The aim is to
design four 8 x 8 tables that output the corresponding Sbox values and permutate the bits of each
byte of the sBoxLayer input.

If we analyze Table 3.12 and Figure 3.9, we can see that in round i:

* The Oth bits of bytes at positions 0, 1, 3, 5 in pLayer output come from the Oth nibble of the input
of pLayer, which corresponds to the Oth nibble of the cipher state at sBoxLayer input of round
i;

* The 1st bits of bytes at positions 0, 1,3, 5 in pLayer output correspond to the 1st nibble of the
cipher state at sBoxLayer input;

¢ The 2nd bits of bytes at positions 0, 1, 3, 5 in pLayer output correspond to the 2nd nibble of the
cipher state at sBoxLayer input;

¢ The 3rd bits of bytes at positions 0, 1, 3, 5 in pLayer output correspond to the 3rd nibble of the
cipher state at sBoxLayer input;

* The 7th bits of bytes 0, 1,3, 5 in pLayer output correspond to the 7th nibble of the cipher state
at sBoxLayer input;

Similar observations hold for bytes at positions 2,4, 6, 7.
We can have the following four tables for the implementation of sBoxLayer and pLayer:

* Table one takes the Oth byte (bits 0 — 7) of sBoxLayer input, the corresponding output will be
the Oth and 1st bits for bytes at positions 0, 1,3, 5 (bits 0,1, 16,17, 32, 33,48, 49) in the output of
pLayer;

* Table two takes the 1st byte (bits 8 — 15) of sBoxLayer input, the corresponding output will be
the 2nd and 3rd bits for bytes at positions 0, 1, 3, 5 (bits 2, 3, 18, 19, 34, 35, 50, 51) in the output of
pLayer;

107

¢ Table three takes the 2nd byte (bits 16 — 23) of sBoxLayer input, the corresponding output will
be the 4th and 5th bits for bytes at positions 0, 1, 3, 5 (bits 4, 5, 20, 21, 36, 37, 52, 53) in the output
of pLayer;

* Table four takes the 3rd byte (bits 24 — 31) of sBoxLayer input, the corresponding output will
be the 6th and 7th bits for bytes at positions 0, 1, 3, 5 (bits 6, 7, 22, 23, 38, 39, 54, 55) in the output
of pLayer.

The same tables can also be used for the remaining four bytes of the cipher state:

* Table one takes the 4th byte (bits 32 — 39) of sBoxLayer input, the corresponding output will be
the Oth and 1st bits for bytes at positions 2, 4,6, 7 (bits 8,9, 24, 25, 40, 41, 56, 57) in the output of
pLayer;

* Table two takes the 5th byte (bits 40 — 47) of sBoxLayer input, the corresponding output will be
the 2nd and 3rd bits for bytes at positions 2,4, 6, 7 (bits 10, 11, 26, 27,42, 43, 58, 59) in the output
of pLayer;

* Table three takes the 6th byte (bits 48 —55) of sBoxLayer input, the corresponding output will be
the 4th and 5th bits for bytes at positions 2,4, 6, 7 (bits 12, 13, 28, 29, 44, 45, 60, 61) in the output
of pLayer;

e Table four takes the 7th byte (bits 56 — 63) of sBoxLayer input, the corresponding output will be
the 6th and 7th bits for bytes at positions 2,4, 6, 7 (bits 14, 15, 30, 31, 46, 47, 62, 63) in the output
of pLayer.

Since the input for each table is one byte, we will be computing two Sboxes in parallel. In Al-
gorithm 3.4 we have seen the algorithm for such a computation. To see how the four tables are
computed, we will detail the first three entries of each table. The other entries are calculated with
similar methods.

First, we note that to combine two Sboxes, the lookup table starts with

CC C5 C¢o

As mentioned above, one type of input intended for Table one is bits at positions 0—7 of sBoxLayer
input, those bits correspond to bits at positions 0 — 7 at sBoxLayer output. The corresponding output
of Table one are bits at positions 0,1, 16,17, 32, 33,48, 49 of pLayer output. According to pLayer
(Table 3.12) design, we will need to permute bits at positions 0 — 7 to 0,4,1,5,2,6, 3,7 so that they
will give us bits at positions 0, 1,16, 17,32, 33, 48,49 of pLayer output. For example, if the input of
Table one is 00, the corresponding sBoxLayer output is CC= 11001100, where the Oth bit is 0. After
permutation, we get 11110000 =F 0. Similarly, we get that Table one starts with

FO B1 B4 ... (3.8)

If we consider the other set of inputs intended for Table one, which are bits at positions 32 — 39,
they should be first permuted to 32, 36, 33, 37, 34, 38, 35, 39 so that the output will be bits at positions
8,9,24,25,40,41, 56, 57. Then we arrive at the same values as in Equation 3.8.

For Table two, the output will later be positioned at the 2nd and 3rd positions in the eight bytes
of the pLayer output. A natural choice is to design it so that the output can be combined with the
outputs of other tables with a binary operation, e.g. V. In particular, since the output of Table one
starts with bits from positions 0, 1 and 8, 9, the output of Table two will put bits from positions 2, 3 and
10,11 in the 2nd and 3rd positions. Thus, Table two permutes bits 8 — 15 to 11, 15,8, 12,9, 13, 10, 14,
which then will give bits at 50, 51, 2, 3,18, 19, 34, 35 for pLayer output. Similarly, bits 40 — 47 will be
permuted to 43,47,40,44,41,45,42,46 and give bits at 58,59, 10,11, 26, 27,42, 43 for pLayer output.
The first few entries of Table two are as follows:

3C 6C 2D

Table three first permutes bits from 16 — 23 (resp. 48 — 55) to 18,22, 19,23,16,20,17,21 (resp.
50, 54,51, 55,48, 52, 49), which then give bits 36, 37,52, 53, 4, 5, 20, 21 (resp. 44,45, 60, 61,12, 13, 28, 29)
of pLayer output. The table starts with

OF 1B 4B

108

Table four first permutes bits from 24 — 31 (resp. 56 — 63) to 25,29, 26, 30,27, 31,24, 28 (resp.
57,61,58,62,59,63,56,60), which then give bits 22, 23, 38, 39, 54, 55, 6, 7 (resp. 30, 31, 46,47, 62, 63, 14, 15)
of pLayer output. The table starts with

C3 C6 D2

A pseudocode for the implementation is detailed in Algorithm 3.5. We represent the ith byte of
the cipher state at sBoxLayer input by b; (: = 0,1,2,...,7). The algorithm demonstrates how the bits
0 — 7 of the pLayer output can be computed. Other bits can be calculated similarly. In line 1, we pass
the Oth byte of the cipher state at sBoxLayer input, by, to Table one. The table lookup result is stored
in al, which gives us bits 0, 1,16, 17, 32, 33, 48, 49 of pLayer output. In line 5, the leftmost two bits of
sl are given by the leftmost two bits of a1, which correspond to bits at positions 0 and 1 in pLayer
output. Similarly, s2 (reps. s3, s4) stores bits at positions 2, 3 (resp. 4,5, 6, 7) at of pLayer. Then those
eight bits are combined together in line 9 to produce the Oth byte of the pLayer output.

Algorithm 3.5: An implementation that combines sBoxLayer and pLayer for PRESENT.
Input: b7, bg, bs, ba, b3, b2, b1, by, Table_one, Table_two, Table_three, Table_four

// bz,be,bs,bs,b3,ba,b1,bp is the cipher state at the input of sBoxLayer, each b

represents one byte

= {F0, B1, B4,...}

// Table_two = {3C, 6C, 2D, ...}

// Table_three = {0F, 1B, 4B, ...}

// Table_four = {C3, C6, D2,...}

Output: cipher state at the output of pLayer

// compute bytes at positions 0,1,3,5 in pLayer output—---—-
al = Table_one[by|// 1ook up bits 0,1,16,17,32,33,48,49
a2 = Table_two[b1]// look up bits 50,51,2,3, 18, 19,34, 35
a3 = Table_three[ba]// 1ook up bits 36,37,52,53,4,5, 20,21
a4 = Table_four[bs]// 1ook up bits 22,2338 39,54,55,6,7

// computing bits 0—7 of pLayer output

sl =al & C0// extract bits 0,1. & denotes bitwise AND (see Definition 1.3.6)
s2=a2& 30// extract output bits 2,3

$s3=a3 & 0C// extract output bits 4,5

s4=0a4 & 03// extract output bits 6,7

b() =351Vs2Vs3Vsd// combine bits, V denotes bitwise OR (see Remark 1.3.2)

B W N =

O 0 N S G

// other bits of bytes at positions 0,1,3,5 in pLayer output

10 ...
// compute bytes at positions 2,4,6,7 in pLayer output—---

11 al = Table_one[b4] // look up bits 8,9,24,25,40,41,56,57

12 a2 = Table_two[bs] // look up bits 58,59,10,11,26,27,42,43

13 a3 = Table_three[bg] // look up bits 44,45,60,61,12,13,28,29

14 a4 = Table_four[b;] // look up bits 30,31,46,47,62,63,14,15

15 ...

3.2.2.2 AES T-tables

This part discusses an implementation method combining SubBytes, ShiftRows, and MixColumns
for AES round function. Let SB denote the AES Sbox.

Recall that the cipher state of AES can be represented by a four-by-four matrix of bytes (Equa-
tion 3.2). Let us denote the input of SubBytes by a matrix S. The outputs of SubBytes, ShiftRows, and
MixColumns are represented by matrices A, B, and D respectively. By definition, a;; = SB(s;;),0 <
i,j < 4. By Equations 3.4 and 3.5,

b(]j ap; doj 02 03 01 01 b()j
blj . al(j+1 mod 4) dlj . 01 02 03 01 blj i~ 0.1.2.3
boj | — | aso ©ldy | T o1 01 02 03] by | T TH
2j a2(j4-2mod 4) 2j 2j

bs; a3(j43 mod 4) ds; 03 01 01 02/ \bs

109

We have
do; 02 03 01 01 SB(s;)
dij | _ |01 02 03 01| [SB(s1(j+1moeds)
do; 01 01 02 03[[SB(sa(j+2mod 1))
ds; 03 01 01 02/ \SB(ss(;48mod4))
02 03 01 01
01 02 03 01
= 01 SB(SOj) &P 01 SB(S]_(]‘+1 mod 4))) 02 SB(S2(j+2 mod 4)) @ 03 SB(SSU+3 mod 4))’
03 01 01 02

where j = 0,1, 2, 3. For a € F§, define

02 03 01 01
01 02 03 01
To(a) :== 01 SB(a), Ti(a):= 01 SB(a), Ti(a):= 02 SB(a), T3(a):= 03 SB(a).
03 01 01 02
Then

dw
d .
d;j = To(505) © T1(51(j+1mod 1)) © T2(S2(j+2 mod 4)) T3(53(j+3 mod 4))
d&

Thus the four tables Ty, 11,15, T3 of size 8 x 32 can be used to implement SubBytes, ShiftRows, and
MixColumns. Those four tables are called T-tables for AES. We note that to store the T-tables we need
processors with a word size of 32 or above. They cannot be used for the last round of AES as there is
no Mixcolumns operation.

3.2.3 Bitsliced Implementations

Bitsliced implementation of symmetric block ciphers was first introduced by Eli Biham for imple-
menting DES [Bih97]. The goal of a bitsliced implementation is to simulate a hardware implemen-
tation in software so that several plaintext blocks can be encrypted in parallel. The operations in
symmetric block ciphers will be represented as a sequence of logical operations. Naturally, the im-
plementations should be adjusted based on the specific underlying hardware — the word size of the
architecture (see Section 2.1.2). We will see that with word size w, we can encrypt w blocks of plaintext
in parallel.

3.2.3.1 Algebraic Normal Form

To introduce bitsliced implementation, we will need to discuss the algebraic normal form for a
Boolean function. Let n be a positive integer in this part.

Definition 3.2.1. A Boolean function is a function ¢ : F5 — Fa.

From the definition, we can see that a Boolean function has 2" possible input values. For each
input value, there are 2 possible output values. Thus, in total, we have 22" possible Boolean functions
defined for F; — F. In particular, a Boolean function can be specified by giving the output values
for all inputs, such a table is called a truth table.

Example 3.2.3. The parity-check bit defined for 3 bits is a Boolean function
o:F3 — Ty
ToX1Xg +> X+ x1+ 9.

Its truth table is given by:

z2 |0 0 0 0 1 1 1 1
zr [0 0 1 1 0 0 1 1
z [0 1 0 1 0 1 0 1
o(x) ‘ 011010 01

110

Example 3.2.4. Now let use consider the Boolean function defined as follows:
©o F% — Ty
x — SBpresenT()o

where SBpresent ()0 is the Oth bit of SBpresent(), the PRESENT Sbox output corresponding to x.
The truth table of ¢y is given by the first five and the second last (the row for ¢y (x)) rows in Table 3.13.
For example, if the input is 0, the Sbox output is C= 1100. Then ¢y (x) = 0.

T o 1 2 3 4 5 6 7 8 9 A B C D E F

3 0o 0o 0O00o0O0OO0OOT1TT1T 111111

To o 0o 001 111 00 001 1 1 1

T 0 0 1170011 001 1 0011

g 01 01 01 01010101 01
SBpRrESENT (CC) c 5 6 B 9 0 A D 3 E F 8 4 7 1 2
vo(x) 01 01 1 0oo011 01 O0O0T11O0

Az 01 0 01 o1 o1 0o 0 O0OUO0OO0OTUO0OTUO

Table 3.13: The Boolean function ¢ takes input « and outputs the Oth bit of SBpresgnt(2). The
second last row lists the output of ¢ for different input values. The last row lists the coefficients
(Equation 3.10) for the algebraic normal form of (.

Definition 3.2.2. Fix v = v,_1vp—2,...,v1v9 € Fy, we define the indicator function for v, denoted 1,,
as follows:

1y :Fg — [y
x o= [@ J] (-2
v;=1 1:0;=0

With this definition, for any ¢ : F§ — 3, we can express ¢ in the following polynomial expres-

sion:
o)=Y o(v)ly(z).

vely

After simplification, ¢ can be written as

n—1
o) = Z (Av H :r;h))
=0

velFy
which is called the algebraic normal form representation of the Boolean function ¢.

Example 3.2.5. Continuing Example 3.2.3, we can find the algebraic normal form of ¢ as follows
olx) = Z o(v)1y(x) = 1go1(x) + lo1o(x) + L10o(x) + 1111 ()
velFy
:1:0(1 — xl)(l — :IZQ) + 1:1(1 — xo)(l — 1:2) + $2(1 — xo)(l — $1) + xoxr129
= 29+ +T2— 2($0$1 + zogxo + xlscg) + 4dxgx1x0 = To + 1 + To.

It can be proven that the algebraic normal form of a Boolean function is unique.”

Theorem 3.2.1. Every Boolean function ¢ : F; — Fy has a unique algebraic normal form representa-

tion .
px)=> (Av 11 x) : (3.9)
i=0

velFy
The coefficients A, € Fy are given by

Ay = Z o(w), (3.10)

w<v

where w < v means that w; < v; forall0 <:<n —1.

For the proof, see e.g. [MS77, page 372] and [O'D14, page 149].

111

We note that there are 22" Boolean functions defined for F} — Fy. Furthermore, there are 22"
choices for the coefficients A, (A, = 0,1 and there are 2" distinct v). Thus the number of distinct
expressions on both sides of Equation 3.9 coincides.

Example 3.2.6. Continuing Example 3.2.3. By Equation 3.10,
A110 = ¢(000) + ¢(100) 4+ ¢(010) + ¢(110) =0+ 1+14+0=0.
Similarly, we can calculate all the coefficients A:

Aooo =0, Xor =1, Aowo=1, Anu=1+1=0,
Moo =1, Ao1 =0, A10=0, A111=0.

By Equation 3.9,

n—1
o) = Z (Av H xf’) = A001Z0 + Ao10%1 + A100%2 = T + 71 + T2
i=0

velFy
which agrees with Example 3.2.5.

Example 3.2.7. Continuing Example 3.2.4, we can calculate \,, using Equation 3.10. Those values are
given by the last row of Table 3.13. For example,

A1100 = ©0(0000) + ©0(1000) + ©(0100) + (1100) =0+ 1+ 1+ 0 = 0.

By Equation 3.9,
n—1
po(x) = Z <)\v H xf) = A0001Z0 + A0100Z2 + Ao110Z1Z2 + A100023
veFy i=0
= x0+ T2+ T122 + x3. (3.11)

For example, if the input is 0= 0000, the PRESENT Sbox output is C= 1100, then the output of ¢y is
0 and
To+ a2+ 129 +23=04+04+0+0=0.

If the input is 7= 1110, the PRESENT Sbox output is D= 1101, then the output of ¢ is 1 and
To+rotaxi20+23=14+14+14+0=1.

Similarly, we can define ¢;(x) = SBpresent ()i for i = 1,2, 3, where SBpresent(); is the ith bit of
PRESENT Sbox output for . We can calculate the algebraic normal form for each of ¢; in a similar
way (see Appendix D). They are given by:

vi1(®) = 1+ x5+ 123 + T2X3 + TT1T2 + TOXT1T3 + ToT2X3, (3.12)
(,02(:12) = 14 x9o+4 3+ 2021 + ToT3 + T123 + ToT123 + ToT2T3, (3.13)
p3(®) = 14+z0+ 21+ 23+ 2122 + ToT122 + TT1T3 + ToT2X3. (3.14)

3.2.3.2 Bitsliced Implementation of PRESENT

In this part, we will use PRESENT as a running example to show how the bitsliced implementation
of a symmetric block cipher is designed.

First, we discuss how to transform the plaintext blocks into bitsliced format. As a simple example,
let us consider block length 3 and a 4—bit architecture, which allows us to encrypt 4 blocks of plaintext
simultaneously. We take 4 plaintext blocks, say

p1 = 010, p2 = 110, p3 = 001, p4 = 100.

The bitsliced format of p;s is given by a 3 x 4 array, denoted S, where each column is given by one
block of plaintext:

0 010
S=1110 0
0101

112

In particular, if we let S[z] denote the xth row of S, then S[0] corresponds to the Oth bits of p;. S[1]
corresponds to the 1st bits of p;. And S[2] corresponds to the 2nd bits of p;.

Next, we will show how to encrypt 8 plaintext blocks in parallel with PRESENT assuming an
8—bit architecture. Let p1,pa,...ps be 8 plaintext blocks, each of length 64. We convert them into
bitsliced format as described above and store them in a 64 x 8 array Sy, where Sy[y] contains the yth
bits of each plaintext block. Furthermore, for each round key K;, we construct a 64 x 8 array Keyi
whose columns are given by K;, i.e.

Keyily][z] = Kily] V0 <z <8. (3.15)

The bitsliced implementation of the ith round of PRESENT is given in Algorithm 3.6. Line 1
implements addRoundKey. For example, when i = 0, the xth bit of each plaintext (row x of Sy)
are XORed with the xth bit of K (row z of Key0). To implement the Sbox in bitsliced format, we
refer to the algebraic normal forms for each output bit of the Sbox as a function of the input bits
(see Example 3.2.7). We recall that addition and multiplication in F2 can be implemented as logical
XOR (@) and logical AND (&) respectively (see Definition 1.2.17). There are in total 16 Sboxes and
we consider each of them in one loop of line 2. zg, z1, 2, x3 defined in line 3 are arrays of size 8,
each storing one bit of Sbox input from all eight encryption computations. Lines 4 — 7 compute eight
Sboxes in parallel, each corresponding to the encryption of one plaintext block. The Oth bits of the
Sbox outputs are given by the 4bth bits of the cipher state at the end of sBoxLayer, where 0 < b < 15.
Line 4 computes the Oth bits of the Sbox outputs using Equation 3.11. Similarly, lines 5, 6, 7 compute
the 1st, 2nd and 3rd bit of Sbox outputs using Equations 3.12, 3.13 and 3.14 respectively. Finally,
pLayer is implemented by line 8 onwards using Table 3.12. We note that S;[0] (line 8) is an array of 8
bits and we are permuting the Oth bit of cipher state for 8 encryptions simultaneously. The same can
be done for the remaining 63 bits.

Algorithm 3.6: Bitsliced implementation of round 7 of PRESENT, 1 <7 < 31.

Input: S;_1, Keyi// S;_1 is the output of round i—1. When i=1, Sy contains the
plaintext blocks in bitsliced format.

// Keyi is the ith round key K; in bitsliced format given in Equation 3.15.
Output: S;: output of round ¢
// addRoundKey
15,.1=25,_1PKeyi// bitwise XOR
// sBoxLayer
2 forb=0,b < 16,b+ + do
// Bits of Sbox inputs
3 o = Si_1[4b], xr1 = Si_1[4b + 1], To = Si_1[4b + 2}, xr3 = Si_l[4b + 3]
// 0th bit of Sbox output
4 state[4b] = xo ® x2 B (1 & x2) ® 23
// 1lst bit of Sbox output
5 state[4b+1] = z1Bx3D(z1 & x3) B (v2 & 23)D (o & 1 & x2) B (w0 & 71 & 3) D (20 & T2 & T3)
// 2nd bit of Sbox output
6 state[4b+2] =1hxs @$3EB(ZEU & :L‘l)@(l‘o & mg)@(l‘l & .’Eg)@(l‘o &z & xg)@(xo &zo& xg)
// 3rd bit of Sbox output

7 state[4b+3] =1®x0D 1 @1‘3@(331 &I‘Q)@(l‘g & &{Eg)@(l‘o & 1y &l‘g)@(.’ﬁo & 9 &.’Eg)

8 S;[0] = state[0]
9 S;[16] = state[1]
10 S;[32] = state[2]
1 ...

12 return S;

It is easy to see that with 32—bit (resp. 64—bit) architecture, we can encrypt 32 (resp. 64) plaintext
blocks in parallel. We note that bitsliced implementations are mostly used for bit-oriented ciphers
(e.g. DES, PRESENT). For byte-oriented ciphers (e.g. AES), table-based implementations will likely
give better performance.

113

3.3 RSA

In Section 2.1.2 we have mentioned that there are symmetric-key and asymmetric cryptosystems.
Up to now, we have only seen symmetric cryptosystems, both classical and modern designs. For
symmetric key cipher, a prior communication of the master key (key exchange) is required before
any ciphertext is transmitted. With only a symmetric key cipher, the key exchange may be difficult to
achieve due to, e.g. far distance, and too many parties involved. In practice, this is where asymmetric
key cryptosystem comes into use.

For example, Alice would like to communicate with Bob using AES. To exchange the master key,
k, for AES, she will encrypt k by a public key cryptosystem using Bob’s public key e. Let ¢ = E.(k).
The resulting ciphertext ¢ will be sent to Bob, and Bob can decrypt it with his secret private key d,
k = Dg(c). Then Alice and Bob can communicate with key % using AES.

Clearly, we require that it is computationally infeasible to find the private key d given the public
key e. In practice, this is guaranteed by some intractable problem.> However, the cipher might not
be secure in the future. For example, if a quantum computer with enough bits is manufactured, it
can break many public key cryptosystems [EJ96]. Furthermore, we note that a public key cipher is
not perfectly secure (see Section 2.2.7) as the attacker can brute force the key.

In this section, we will be discussing one public key cryptosystem - RSA. It was published in
1977 and named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is the first
public key cryptosystem, and still in use today. The security relies on the difficulty of finding the
factorization of a composite positive integer.

Definition 3.3.1 (RSA). Let n = pq, where p, ¢ are distinct prime numbers. Let P = C = Z,, X =
Ly — {1} Forany e € X, define encryption

E.: 72, — 7Z,, m~ m®modn,
and the corresponding decryption
Dy:Zy — Zn, ¢ c?modn,

where d = e~ mod ¢(n).
The cryptosystem (P, C, K, E, D), where E ={ E.:ec K}, D={D,;:de X}, iscalled RSA.

Recall by Theorem 1.4.3, ¢(n) = (p — 1)(¢ — 1) and by Definition 1.4.5, L,y consists of elements
in Z, () that are coprime to ¢(n), or equivalently, that have multiplicative inverses modulo ¢(n).

For encryption, the message sender needs to have knowledge of n and e. They are the public
key for RSA. n is called RSA modulus and e is called the encryption exponent. The private key d for
decryption is kept secret. In this case, only the private key owner can decrypt the message sent to
him.

To generate the keys for RSA, we first generate randomly and independently two large primes p
and ¢. Then we compute n = pg. Normally p and ¢ are supposed to have equal lengths. For example,
take p and ¢ to be 512-bit primes, and n will be a 1024-bit modulus. Next e € Z;(n) is chosen. Since

¢(n) is even, e is odd. Finally, we compute d = e~ mod ¢(n).

Example 3.3.1. As a toy example, suppose Bob would like to generate his private and public keys for
RSA. Bob randomly generates p = 3 and ¢ = 5. Then he computes n = 15 and

en)=B-1)x(b—-1)=2x4=8.
From Z§ = { 1,3,5,7 }, Bob chooses e = 3. By the extended Euclidean algorithm, he computes
8=3%x2+42,3=2x141=1=3-2x1=3-(8-3x%x2)=-8+3x3.

Hence his private key d = 37! mod 8 = 3.
Suppose Alice would like to send plaintext m = 2 to Bob, using Bob’s public key n = 15 and
e = 3. Alice computes
¢ =m°mod n = 2*mod 15 = 8 mod 15.

®A problem is intractable if there does not exist an efficient algorithm to solve it.

114

After receiving the ciphertext c from Alice, Bob computes the plaintext using his private key
m = ¢ mod n = 8> mod 15 = 512 mod 15 = 2 mod 15.

Example 3.3.2. Now we will look at a bit larger values for p and ¢. Let p = 29, ¢ = 41, then n = 1189
and ¢(n) = 28 x 40 = 1120. It is easy to verify that 3 { ¢(n). Let us choose e = 3. By the extended
Euclidean algorithm

1120=3x373+1=1=1120 — 3 x 373.

Hence
d= —-373mod 1120 = 747.

To send plaintext m = 2 to Bob. Alice computes
¢ =m°mod n = 2° mod 1189 = 8 mod 1189.
To decrypt, Bob calculates
m = ¢ mod n = 8" mod 1189 = 2 mod 1189.

Since
747 =512+ 128464 +32+8+2+1,

we compute

84 mod 1189 = 4096 mod 1189 = 529, 8% mod 1189 = 5292 mod 1189 = 426,
816 mod 1189 = 4262 mod 1189 = 748, 832 mod 1189 = 7482 mod 1189 = 674,
864 mod 1189 = 6742 mod 1189 = 78, 82 mod 1189 = 782 mod 1189 = 139,
8256 mod 1189 = 1392 mod 1189 = 297, 8°!2 mod 1189 = 2972 mod 1189 = 223.

And we have

812128 mod 1189 = 223 x 139 mod 1189 = 83,
80432 mod 1189 = 78 x 674 mod 1189 = 256
882 mod 1189 = 426 x 64 x 8 mod 1189 = 525,

84" mod 1189 = 83 x 256 x 525 mod 1189 = 2.

Next, we explain why the decryption works. By the choice of e and d,
ed = 1 mod p(n) = ed = ¢(n)a + 1 for some a € Z.

Then
4= (me)d — mematl _ o (p—1)(g—Da,,

By Corollary 1.4.3,

¢ =mmodp, ¢?=mmodyg.

Since p and ¢ are distinct prime numbers and n = pg, by Chinese Remainder Theorem (see Theo-
rem 1.4.7 and Example 1.4.19)

¢ = m mod n.

We note that, if p or ¢ is known to the attacker, they can factorize n and compute ¢(n). Then with
e, d can be computed using the extended Euclidean algorithm (Algorithm 1.2). Thus all p, ¢, ¢(n)
should be kept secret.

RSA can only be secure if computing d from n and e is intractable. Of course, if the attacker can
factorize n with an efficient algorithm, then RSA is broken. However, there is no proof to conclude
if factorizing n is intractable or not. Up to now, the best-known algorithm for integer factorization
has been used to factorize RSA modulus of bit length 768 [KAF10]. In practice, the most commonly
used RSA modulus n is 1024, 2048, or 4096 bit. Interestingly, it has been proved that if d is known,
then n can be factorized with an efficient algorithm (see [Buc04, Page 172]). On the other hand, there
is no proof that RSA is secure if factoring is computationally infeasible — there might be other ways
to attack RSA [May03].

Normally e is chosen to be small to make the encryption efficient. However, e cannot be too
small. It has been shown that only the n/4 least significant bits of d suffice to recover d in the case
of a small e [BDF98]. Also, d cannot be too small, it was proven that if d < n%2?%2, then RSA can be
broken [BDOO].

115

3.4 RSA Signatures

In this section, we discuss how RSA can be used for digital signatures.

As mentioned in Section 2.1, digital signatures provide a means for an entity to bind its identity
to a message stored in electronic form. This normally means that the sender uses their private key
to sign the (hashed) message. Whoever has access to the public key can then verify the origin of the
message. For example, the message can be electronic contracts or electronic bank transactions.

In more detail, suppose Alice signs a message m with a private key d and generates signature
s. The receiver Bob receives the message and the signature, he can then verify s with public key e
and a verification algorithm. Given m and s, the verification algorithm returns true to indicate a valid
signature and false otherwise.

To use RSA for digital signature, we again let p and ¢ be two distinct primes. Let n = pg. We
choose e € Z;,,,) and compute d = e~ mod ¢(n). Same as for RSA, the public key consists of e and
n. And d is the private key. p, ¢ and ¢(n) should be kept secret.

To sign a message m, Alice computes the signature

s =m%mod n.

Then Alice sends both m and s to Bob. To verify the signature, Bob computes
s mod n.

If
s = mmod n,

then the verification algorithm outputs true, and false otherwise.
Up to now, the only method known to compute s from m mod n is using d, so if the verification
algorithm outputs true, Bob can conclude that Alice is the owner of d.

Example 3.4.1. Alice chooses p = 5 and ¢ = 7. Then n = 35 and ¢(n) = 24. Suppose Alice chooses
e = 5, which is coprime to 24. By the extended Euclidean algorithm

M =5x4+4,5=4+1=1=5—(24—5x4)=24x (=1)+5x 5,
we have d = e~! mod 24 = 5. To sign message m = 10, Alice computes
s =m®mod n = 10° mod 35 = 5.
Alice sends both the message m = 10 and signature s = 5 to Bob. Bob verifies the signature
s®mod n = 5° mod 35 = 10 = m.

The most common attack for a digital signature is to create a valid signature for a message without
knowing the secret key. Such an attack is called forgery. If the goal is to create a valid signature given
a message that was not signed by Alice before, it is called selective forgery. If the goal is to create a
valid signature for any message not signed by Alice before, then the attack is called existential forgery.

There are normally three attacker assumptions. Key-only attack assumes the attacker only has
knowledge of e. Known message attack considers an attacker who has a list of messages previously
signed by Alice. In a chosen message attack, the attacker can request Alice’s signature on a list of
messages.

Next, we discuss the security of RSA signatures with respect to forgery attacks.

First, we consider a known message existential forgery attack. Suppose the attacker, Eve, knows
messages m1, mg and their corresponding signatures s; and so. Eve computes

s =s18omodn, m=mimsmodn.

Since

d,d

s = mfmé mod n = (mymz)? mod n = m?

mod n,

s is a valid signature for m.

116

A chosen message selective forgery attack works as follows. Eve chooses a message m € Z,, and
takes any message m; € Z;, that is different from m. She computes

1

mo = mm; mod n.

Eve obtains valid signatures
s1 = m‘f modn, and sy = mg mod n

for m; and my. Then she computes
s = 5159 mod n.

Since

d, . d

s =mdmd mod n = (mymso)? mod n = m?

mod n,

s is a valid signature for m.
In view of those attacks, RSA signatures are commonly used together with a fast public hash
function h (see Section 2.1.1). To sign a message m, Alice computes the signature

s = h(m)? mod n.
Then she sends both m and s to Bob. Bob computes s mod n and h(m). If
s®mod n = h(m),

then Bob concludes the signature is valid.

With a hash function, the two attacks discussed above will not work. Suppose Eve knows mes-
sages m1, my and their corresponding signatures s; and s;. She can compute h(m;) and h(m2) as
h is public. However, to repeat the known message existential forgery attack, she needs to find m
such that h(m) = h(m1)h(mz), which is computationally infeasible according to property (c) of hash
functions listed in Section 2.1.1.

Suppose Eve chooses a message m, and computes h(m). To repeat the chosen message selective
forgery attack, she needs to find m; such that h(m;) = y for some y € Z;. For the same reason as
above, this is computationally infeasible.

3.5 Implementations of RSA Cipher and RSA Signatures

In this section, we discuss several methods for implementing RSA and RSA signature computations.
Section 3.5.1 presents three methods for implementing modular exponentiation. As we will see, those
methods will require the computations of other modular operations. Then in Section 3.5.2, we discuss
how to efficiently implement modular multiplication.

3.5.1 Implementing Modular Exponentiation

To implement RSA or RSA signatures, we need to compute

a® mod n

for some integer a € Z,, where n = pq is a product of two distinct primes and d € Zf;(n). We
can compute d — 1 modular multiplications, but it will be inefficient for large d. In practice, the bit
length of d ranges in thousands, thus making the calculation infeasible by this naive method. We will
discuss three methods to make modular exponentiation computations faster.

3.5.1.1 Square and Multiply Algorithm

In this part, let n > 2 be an integer and d € Z (n)- We discuss how to calculate

a® mod n

fora € Z,.

117

By Theorem 1.1.1, we can write d in the following form

041
d= > d?2,
i=0
whered; =0,1,for0<i</{;—1,and
d=dg,—1...dad1dp

is the binary representation of d. Then we have

P lg—1

d— 9 i . %

a® = g2iSo 42" — | | (a2)dl = | | a’.
=0 0<i<ly,d;=1

Thus, to compute a® mod n, we can first compute a? for 0 < i < ¢,4. Then a? is the product of a? for
which d; = 1. One can see that compared to the naive calculation, requiring d — 1 multiplications,
this method only needs ~ log, d multiplications.

This observation leads us to the square and multiply algorithm listed in Algorithm 3.7. Line 5 com-
putes ¢ in loop i. We check each bit of d (line 3), if the ith bit of d is 1, then a?' is multiplied to the
result (line 4). As this algorithm starts from the least significant bit of d, i.e. d, it is also called the
right-to-left square and multiply algorithm. Accordingly, the left-to-right square and multiply algorithm is
listed in Algorithm 3.8. We can see that compared to Algorithm 3.7, Algorithm 3.8 requires one less
variable and hence less storage.

Algorithm 3.7: Right-to-left square and multiply algorithm for computing modular expo-
nentiation

Input: n, a, d// n€Z,n>2; ac€Zy; de Zymy has bit length fg

Output: a? mod n

result=1,t=a

2 fori =0,i < {4,1++ do

[y

// ith bit of d is 1
3 if d; = 1 then
// mutiply by a
4 L result = result x t mod n
/] t= (12/7‘
5 t=txtmodn

6 return result

Algorithm 3.8: Left-to-right square and multiply algorithm for computing modular expo-
nentiation.

Input: n, a, d// n€eZ,n>2; a€ln; d € Zyn)
Output: a? mod n
1t=1
2 fori=/4,1>0,i——do
3 t=txtmodn
// ith bit of d is 1
4 if d; = 1 then
5 Lt:a*tmodn
6 returnt

Example 3.5.1. Letn =15, d = 3 = 113, a = 2. Computing
a®mod n = 23 mod 15 = 8 mod 15 = 8

using Algorithm 3.7, we get the values of the variables in each loop as follows:

118

‘ i‘t‘result
114 2
1|1 8

_ O

The returned value is 8. Similarly, using Algorithm 3.8, the intermediate values are:

i di |t
11112
0|18

Where in the last loop, line 3 computes t = 4 and line 5 calculates t = 8 mod 15 = 8.

Example 3.5.2. Let n = 23, d = 4 = 1002, a = 5. Computing
a’ mod n = 5! mod 23 = 625 mod 23 = 4

using Algorithm 3.7, we get the values of the variables in each loop as follows:

i ‘ i ‘ t ‘ result
0|01 2 1
1101 4 1
211 |16 4

The final result is 4. Using Algorithm 3.8, in the first loop (i = 2), line 3 computes ¢ = 1 mod 23 and
line 5 calculates t = 1 x 5 mod 23 = 5 mod 23. The intermediate values are:

The final output is 4.

3.5.1.2 Montgomery Powering Ladder

Same as in Section 3.5.1.1, in this part, let n > 2 be an integer and d € Z We introduce another
method, Montgomery powering ladder, to compute a? mod n for a € Z,,.

Montgomery powering ladder was first introduced for efficient computations of elliptic curve
scalar multiplications [Mon87]. Then it was adopted for computing exponentiation in any abelian
group [JY03]. We will present the details of the method used for modular exponentiation. In partic-
ular, the abelian group we consider here is Z,, with modular multiplication.

Recall that we have the following binary representation of d

w(n):

lg—1

d= > d2'.
=0

For0 < j < /{4 — 1, define
041

L;:= ZdiT*j, H;:=L;+1
i=j

Then
041 041 041
2Lj11 =2 Z dinf(]Jrl) = Z d; 277 = —dj + Z d; 277 = —d; + Lj.
i=j+1 i=j+1 i=j
We have
Lj = 2L]’+1 + dj = Lj+1 + Hj+1 + dj —-1= 2Hj+1 + dj — 2,
and

L:— 2Lj+1 ifdj =0 H. — Ljg1+Hj ifdj:().
DLt Hp ifdy=17 7 | 2H0 ifd; =1

119

Then for any a € Z,,

:{<> ifd; =0 :{ td; =0 316

atirraflivy ifd; =17 (atli+1)? ifdj =1

Since
£4—1

Lo = Z d;i2" = d,
i=0

to compute a? mod n is equivalent to computing a’° mod n. By Equation 3.16,

Lo (aL1)2 lf do == 0
a™® = .
alrafr ifdy =1

Similarly, a’ and af’* can be computed with a’2 and 2. Thus, we can start from the most significant
bit of d, d,—1, compute a™a=1 and a"*a—1, then calculate a2 and a%—2 with Equation 3.16, and
so on. Note that

Lyy v =dg,1, Heyyr=dg,1+1

R %f g1 =0 w0 ‘ ?f deg-1 =0 (3.17)
a lfdgd_lzl a lfdgd_lzl

and

Details of Montgomery powering ladder for implementing modular exponentiation are shown in
Algorithm 3.9, where at the end of the jth iteration, Ry and R; correspond to a’s and a’% respectively.
When j = /4 — 1, lines 4 — 9 implement Equation 3.17. For j < /{4 — 1, lines 4 — 9 implement
Equation 3.16.

Algorithm 3.9: Montgomery powering ladder for computing modular exponentiation.

Input: n,a, d// neZ, n>2; a€Z,, de Ziy(ny has bit length fg
Output: ¢ mod n
1 Ro =1
2 R1 =a
sforj=¢;—1,7>0,7——do
4 if d; = 0 then
5 Ri = RgRymod n// o'y =P+ttt for j < ;-1
6 Ry = R(% modn// o" = ((1/‘/ J)z for j</tlg—1
else
8 R() = R()Rl mod n// a" =aPit it for 7 <tlg—1
9 Ry = R% modn// o' = ((1”’ ‘)_) for j</{q—1

10 return R,

The computations of lines 5 and 6 (respectively lines 8 and 9) can be done in parallel by first
storing the computation results in temporary variables and then assigning to R and R, (respectively
Rp and Ry).

Example 3.5.3. Same as in Example 3.5.1, let n = 15, d = 3 = 115, a = 2. We have calculated that
a? mod n = 8. To compute it with Algorithm 3.9, the intermediate values are

jZl, d1:1, R():R()Rl modn:2,
Ry = R?=22mod 15 =4
j:(], d():l, R():R()leodn:2><4m0d15:8

and the final result is 8.

120

Example 3.5.4. Here we repeat the computation in Example 3.5.2. Let n = 23, d = 4 = 1002, a = 5.
We know that a? mod n = 4. With Algorithm 3.9, the intermediate values are

j:2, d2:1, R():R()leodn:5,

R; = R? = 52 mod 23 = 25 mod 23 = 2
jIl, d1:0, RlzRoleOdn:5X2m0d23:10,
Ro = R%2 =52 mod 23 = 2
jZO, doZO, RlzRoleOdTLZQX101’1‘10(123:20,
Ro=R%,=2?2mod 15 = 4

and the final result is 4.

3.5.1.3 Chinese Remainder Theorem (CRT) Based RSA

In this part, we focus on the case when n = pq is the RSA modulus (p, ¢ are distinct odd primes) and
de Z:‘;(n) is the private key.
By Chinese Remainder Theorem (see Theorem 1.4.7 and Example 1.4.19), finding the solution for

= a*mod n

is equivalent to solving

z=a’modp, z=amodyg.

By Corollary 1.4.3, we can compute

_ ad mod (p—1) _ ad mod (¢—1)

Tp mod p, x4 mod g,

and solve for
r =z, modp, x=x,mody. (3.18)

An implementation that computes a? mod n by solving Equation 3.18 is called CRT-based RSA imple-
mentation.
By Equations 1.19 and 1.20, we compute

1 1

M, =q, M,=p, yq:qulmodp:qf mod p, yp:Mpflmodq:pf mod g,

and
T = TpYqeq + TqYpp mod n (3.19)

gives us the solution to Equation 3.18.
Calculating x by Equation 3.19 is called the Gauss’s algorithm for CRT. While Garner’s algorithm
calculates
z=xp+ ((xg — zp)yp, mod q)p. (3.20)

We will show that Equation 3.20 indeed gives the solution to Equation 3.18. First, it is straightforward
to see x = x, mod p. Furthermore,

r =1z, + (xg — zp) = 24 mod g.
Since z), € Zjp, x, < p. Similarly, (x4 — xp)y, mod ¢ < ¢ — 1. And
z=2z,+ ((xg —xp)ypmod ¢)p <p+ (¢ —)p=n.
Thus x € Z,,.

Example 3.5.5. Let us consider the toy example from Example 3.3.1. We have
p=3, q=5 n=15 ¢n)=8, e=3, d=3.
Bob receives ciphertext ¢ = 8 from Alice. Instead of computing the plaintext directly using

m = ¢ mod n = 8 mod 15,

121

we compute

my, = dmod (=1 mod p = 839942 mod 3 = 8mod 3 = 2,

mg = ™4 mod ¢ =8°M44 mod 5 = 512 mod 5 = 2.
By the extended Euclidean algorithm,
5=3x1+2 3=24+1=—=1=3-(5—-3)=3x2-5.
Thus

yp = p 'modg=3"'mod5=2mod5,
Yqg = q_lmodp:5_1mod3:—1m0d3:2mod3.

By Gauss’s algorithm,
m = mpYeq + mgyppmodn =2 x2x5+2x2x3=32mod 15 = 2.
By Garner’s algorithm,
m =my + ((mg —mp)y, mod q)p =2+ 0 = 2.
Both algorithms give us the original plaintext from Alice.
Example 3.5.6. Here we look at Example 3.3.2. We have
p=29, ¢=41, n=1189, ¢(n)=1120, e=3, d=T747,
and ciphertext ¢ = 8. Then

my = ¢dmod (P=1) mod p = 8747 M4 28 1154 29 = 819 mod 29 = 2,

my = @™ mod g = 8T med40 od 41 = 827 mod 41 = 2.
By the extended Euclidean algorithm

41=29+12, 29=12x2+5, 12=5x2+2, 5=2x2+1,
and

1 = 5-2x(12-5x2)=—-2x12+(29-12x2) x5
= 29 x5—12x (41 —29) = —41 x 12+ 29 x 17.

We have

y, = p 'modgq=29""mod 41 = 17 mod 41,
Yo = ¢ 'modp=41""mod 29 = —12 mod 29 = 17 mod 29.

By Gauss’s algorithm,
m = mpYeq + mgyppmod n =2 x 17 x 41 + 2 x 17 x 29 mod 1189 = 2380 mod 1189 = 2.
By Garner’s algorithm,
m = my + ((mg —myp)y, mod ¢)p =2 +0 = 2.
Example 3.5.7. Same as in Example 3.5.6, we keep
p=29, q=41, n=1189, ¢(n)=1120, e=3, d="T4T.

Then we have
yp =17, y, = 17.

122

Let ¢ = 155, then
my, = ™dP"N mod p=155"47m4 2 mod 29 = 10! mod 29 = 21,
my = ™4 mod g = 15577 M4 40 mod 41 = 3227 mod 41 = 9.
To compute 10! mod 29, we note that

102 mod 29 = 100 mod 29 = 13,

10°mod 29 = 132 mod 29 = 24,
10 mod 29 = 242 mod 29 = 25,
10 mod 29 = 252 mod 29 = 16.
Thus
10" mod 29 = 10%¢ x 10? x 10 mod 29 = 16 x 13 x 10 mod 29 = 21.
Similarly,

32°mod 41 = 40
32 mod 41 = 32 x40mod 41 =9
32°mod 41 = 9°mod 41 =32
32°"mod 41 = 32°mod 41 =9.
By Gauss’s algorithm,
m = MmpYeq + Mmgypp mod n = 21 x 17 x 41 +9 x 17 x 29 mod 1189 = 19074 mod 1189 = 50.
By Garner’s algorithm,
m = mp+ ((mg —myp)y, mod q)p =21+ ((9 — 21) x 17mod 41) x 29
= 21+1x29=50.
Example 3.5.8. Let us consider Example 3.4.1 for RSA signatures computation. We have
p=>5, q=7 n=35 @n)=24, e=5 d=5 m=10.
To sign message m = 10, Alice computes
sp = mimed =D mod p = 10°™°44 mod 5 = 0,
s = mdmed@=b mod g = 10°™°46 mod 7 = 5.
By the extended Euclidean algorithm
7T=5+2 5=2x241=1=5-2x(7T—5)=5x3-2x7

We have

1

Yp = p modg=3mod?7,

Yqg = ¢ 'mod p=—2mod 5 = 3.
By Gauss’s algorithm,
5= SpYYqq + Sqypp mod n =5 x 3 x 5 mod 35 = 5.
By Garner’s algorithm,
s=sp+ ((sq—sp)ypmod @)p=0+ (5 x3mod7) x5=1x5=05.

Compared to Gauss’s algorithm, Garner’s algorithm does not require the final modulo n reduc-
tion.

CRT-based RSA implementation can improve the efficiency of the computation in many ways.
Firstly, y, and y, can be precomputed, which saves time during communication. Secondly, the in-
termediate values during the computation are only half as big compared to those in the compu-
tation of a% mod n since they are in Z, or Z, rather than Z,. Moreover, z, = admod (P—1) mod p
and z, = a?™°4 (@~ mod ¢ can be calculated by the square and multiply algorithm (Algorithms 3.7
and 3.8) or Montgomery powering ladder (Algorithm 3.9) to further improve the efficiency. In this
case, dmod (p — 1) and d mod (¢ — 1) are much smaller than d, computing x,, or x, requires fewer
multiplications than computing a? mod p or a? mod g.

123

3.5.2 Implementing Modular Multiplication

From the previous subsection, we see that to have more efficient modular exponentiation imple-
mentations, we need to compute modular addition, subtraction, inverse, and multiplications. For
modular addition and subtraction, we can just compute the corresponding integer operations and
then perform a single reduction modulo the modulus. For inverse modulo an integer, as has been
mentioned a few times, we can utilize the extended Euclidean algorithm. Next, we will discuss two
methods for implementing modular multiplication.

Throughout this subsection, let n be an integer of bit length /,,, in particular

2=l < p < 90, (3.21)
Let a,b € Z;,, be two integers. Then 0 < a,b < n. We would like to compute
R := abmod n.

Let us assume the computer’s word size (see Section 2.1.2) is w. Define

K= Vn-‘ , le. (k—1Dw <y < kw.
w

We can write
a:a,{,1||a,€,2||...]|ao, b:bn71||b,{72||...||b0, Ogai,bj<2wfor0§i,j<n.

where || indicates concatenation. Note that some a; or b; might be 0 if the bit length of a or b is less
than 4,,. Furthermore, we have

Kk—1 k—1
a=> ai(2?), b= b2 (3.22)
i=0 j=0

Then the product of a and b is given by
t=ab= tgn_ly‘tgﬁ_2‘| e Ht(),

where
ty = Z a;ibj, 0<xz<2k-—1.
i, i+j=x
Such a multiplication method can be described by Algorithm 3.10.

Algorithm 3.10: Standard multiplication.

Input: a, b// a,b € Z,, where n>2 is an integer of bit length /4,
Output: ad
1 fori=0,1,2...,26 —1,t;, =0// x=[l,/w], where w is the word size of the computer
// for each bj
2 forj=0,j <k, j++do
3 T1 =0
// for each a;

4 fori=0,i<k,i++do

// T; has bit length at most w
5 TlHTO = tfH_j + aibj + T1

6 tiv; =To

7 B thrN :Tl

@

return t25_1|‘t2,€_2’| . Hto

One drawback of Algorithm 3.10 is that a variable with double word size is being processed in
line 5. To see this, the maximum value of the right-hand side in line 5 is

2 — 14 (2 —1)(2¥ —1)4+2¥ —1=2% 1.

Moreover, to compute R = t mod n, division by n will be required.

124

Example 3.5.9. As a simple example, let us consider word size w = 2 and let n = 15 be a 4-bit
integer. Let a = 13 = 11015 and b = 5 = 01015. We have

4
ag = 012, a] = 112, bo == 012, bl == 012, R = ’72—‘ = 2.

The product t = t3||t2||t1||to has bit length at most 8. Computations in lines 5 - 7 for each loop are as
follows:

T1|‘T0:t0+a0b0+T1200+01+0020001, toz()l,

TlHT():tl—l—albo—l-Tl:OO+11+0020011, t1 =11,

T1|\T0:t1+a0b1—l-T1:11+01+0020100, t1:OO,

Ti||To = ta + a1by + 11 =00+ 11 + 01 = 0100, to =00, t3 = 01

The values for each variable in Algorithm 3.10 are listed below

aibj Tl To t3 t2 tl to
01 00 01|00 00 00 O1
11 00 11 00 00 11 O1
01 01 00|00 00 00 O1
11 01 00|01 00 00 O1

— = O O|%.
— O = O

As expected, we get
t = 01000001 = 65 = 13 x 5.

Furthermore, if we would like to continue the computation and find ab mod 15, we will divide 65 by
15 and calculate the remainder, which is 5.

3.5.2.1 Blakely’s Method

First proposed in 1983 [Bla83], Blakely’s method for computing modular multiplication interleaves
the multiplication steps with the reduction steps. The product ab is computed as follows

K—1 Kk—1
t=ab= (Z ai(zwy) b= (2*)ab,
i=0 i=0
where a;s are given in Equation 3.22. Algorithm 3.11 lists the steps for computing
R =tmod n = abmod n

with Blakely’s method.

Algorithm 3.11: Blakely’s method for computing modular multiplication.

Input: n, a, b// neZ,n > 2 has bit length {,; a,b € Z,
Output: ab mod n
1 R=0
// K= H”/ﬂ, where w is the word size of the computer
2fori=x—-1,1>0,7— — do
3 R=2“R+ a;b
4 L R=Rmodn

5 return R

Note that in line 3,
R<2(n—1)4+ (2 = 1)(n—1)=(2“" —)n — (2“T — 1) < (2T — 1)n.

Thus, line 4 can be replaced by comparing R with n for 29! — 2 times and subtract n from R in case
R>n:

125

1 forj=0,1,2...,2t1 —2do
2 if R > n then
3 LR:R—n

4 else break

In this way, we can avoid dividing by n to compute the remainder. In particular, when w = 1,
20712 = 2. And we have Algorithm 3.12, which is the original proposal from Blakely [Bla83, Kog94].

Algorithm 3.12: Blakely’s method for computing modular multiplication by taking w = 1.

Input: n, a, b// ne€Z,n>2 has bit length 4,; a,b € Zy,
Output: ab mod n

1 R=0

2 fori=4¢,—1,1>0,i— — do

3 R:2R+alb

4 ifR>nthenR=R—n

5 ifR>nthenR=R—n

return R

=2

Example 3.5.10. Same as in Example 3.5.9, let the word size w = 2, and
a=13=110ls, b=5, n=15 Lly=4, r=2.

We have
a0:012:1, a1:112:3.

Let us calculate ab mod n using Algorithm 3.11. Fori =1,
R =043 x5mod 15 = 0 mod 15.

And fori =0,
R=04+1x5mod 15 =5mod 15.

We have the final result 13 x 5 mod 15 = 5.

Example 3.5.11. Let
a=55=110111y, b=46, n=069, w=2.

n is a 7—bit integer. Then

7
ap=11=3, a;=01=1, ax=11=3, a3=0, 52{2—‘:4.

Computing ab mod n with Algorithm 3.11 gives us the following intermediate values:

1=3 line3, R =0,
line4, R =0,
1=2 line3, R =3 x 46 = 138,
line4, R = 138 mod 69 = 0,
1=1 line3, R =1 x 46 = 46,
line4, R = 46 mod 69 = 46,
i=0 line3, R =2%x46+ 3 x 46 = 322,
line4, R = 322 mod 69 = 46.

We have ab mod n = 46.

126

Now we can expand the modular multiplication computations in the square and multiply algo-
rithm with Blakely’s method. The details are listed in Algorithm 3.13 for right-to-left square and
multiply algorithm, and in Algorithm 3.14 for left-to-right square and multiply algorithm.

Since /), is the bit length of n, the bit lengths of the variables “result”, “¢” and “a” are at most /,,.
We can write

Kk—1 r—1 k-1
result = Z hj(2¥), t= th@w)ja a= Zaj(?u)j-
=0 Jj=0 J=0

Then, in Algorithm 3.13, lines 5 — 9 implement result = result * ¢ mod n (line 4 of Algorithm 3.7) and

Algorithm 3.13: Right-to-left square and multiply algorithm with Blakely’s method for mod-
ular multiplication.

Input: n, a, d// ne€Z,n>2 has bit length fn; a € Zn; de L4y has bit length fg
Output: ¢ mod n

1 result=1

2t=a

3fori=0,i</{y i+ +do

// ith bit of d is 1

4 if d; = 1 then

// lines 5 —-— 9 implement result = resultxtmodn
5 R=0

// k=[ly/w], where w is the word size of the computer
6 forj=xk—-1,7>0,j——do
7 R=2R + hjt

L R=Rmodn
9 result = R

// lines 10 14 implement t=1tx*tmodn

10 R=0

1 forj=x—-1,j>0,j——do
12 R=2“R+t;t

13 R =Rmodn

14 ¥t:R

15 return result

lines 10 — 14 implement ¢ = ¢ * ¢t mod n (line 5 of Algorithm 3.7).
Similarly, in Algorithm 3.14, lines 3 — 7 implement ¢ = ¢ x t mod n (line 3 of Algorithm 3.8) and
lines 9 — 13 implement ¢t = a * ¢t mod n (line 5 of Algorithm 3.8).

Example 3.5.12. Let us repeat the computation in Example 3.5.2 with Blakley’s method. We will
calculate
a’ mod n = 5* mod 23 = 625 mod 23 = 4.

Suppose the computer word size w = 2. n = 23 = 101115 has ¢,, = 5 bits, then x = [5/2] = 3. Lines 1
and 2 in Algorithm 3.13 give

result =1, hg=01, h; =00, he=00, t=5=0101y, t; =01, t; =01, t5=00.

127

Algorithm 3.14: Left-to-right square and multiply algorithm with Blakely’s method for mod-
ular multiplication.

Input: n, a, d// n€Z,n>2 has bitlength f,; a € Z,; d€ Zymy has bit length fg
Output: a? mod n
1t=1
2 fori=/0;—1,i>0,i— —do
// lines 3 —-— 7 implement t=1t¢=xtmodn
3 R=0
// k= [ly/w], where w is the word size of the computer

4 forj=x—-1,7>0,j——do

5 R:2wR+tjt
R=Rmodn

7 t=R

// ith bit of d is 1

8 if d; = 1 then

// lines 9 —-— 13 implement t=ax*tmodn
9 R=0
10 forj=x—-1,7>0,7——do
11 R=2R +ajt
12 R=Rmodn
13 | t=R
14 returnt

The intermediate values during the computation are:

i=0 dy=0
loop line11 5 =2 R=0
j=1 R=2R+ t;t mod n = 5 mod 23
j=0 R=2“R+tytmodn =2%2x5+1x5mod 23 =2 mod 23
line 14 t=2 to =10, t; =00, to =00
i=1 di =0
loop line11 j =2 R=0
j=1 R=0
7=0 R =tyst mod n =2 x 2mod 23 = 4 mod 23
line 14 t=4 to =00, t1 =01, t2 =00
i=2 do=1
loop line6 j=2 R=0
j=1 R=0
7=0 R = hot mod n = 4 mod 23
line 9 result = 4

And the output is 4. Similarly, with Algorithm 3.14, line 1 gives
t=1, to=01, t; =00, = 00.

We also have
a=5, ay=01, a3 =01, ae=00.

128

The intermediate values are

i=2 dy=1
loopline4 j=2 R=0
j=1 R=0
j=0 R =tot modn =1mod 23
line 7 t=1 t():()l7 t1:OO, tQZOO
loopline10 =2 R=0
j=1 R=2YR+ai;t=1mod 23
j=0 R=2“R+apt=2%2+1=>5mod 23
line 13 t=5 ty=01, t; =01, t, =00
i=1 di=0
loopline4 j=2 R=0
j=1 R=titmodn = 5mod 23
j=0 R=2R+tytmodn =22 x5+ 5mod 23 = 25 mod 23 = 2 mod 23
line 7 t 2 t0:10, t1:00, to = 00
1=0 dp=0
loopline4 j=2 R=0
j=1 R=0
j=0 R=tytmodn =2 x2mod 23 =4 mod 23
line 7 t=4
The output is also 4.

Similarly, we can adopt Blakely’s method in Montgomery powering ladder (Algorithm 3.9) and
we get Algorithm 3.15 for computing modular exponentiation. Since ¢, is the bit length of n, the bit
lengths of the variables Ry and R; are at most /,,. We can write

k—1 Kk—1
Ro=) Ru(2°)', Ri=) Ru(2“)"
i=0 1=0

Then lines 5 — 9 implement Ry = RoR; mod n (line 5 of Algorithm 3.9). Lines 10 — 14 implement
Ry = R3mod n (line 6 of Algorithm 3.9). Lines 16 — 20 implement Ry = RyR; mod n (line 8 of
Algorithm 3.9). Lines 21 - 25 implement R; = R? mod n (line 9 of Algorithm 3.9).

Example 3.5.13. Here we repeat the computation in Example 3.5.4 with Algorithm 3.15. Let
n=23 d=4=100,, a=>.

We have calculated that a? mod n = 4. Same as in Example 3.5.12, we assume w = 2. Then we have
¢, =5 and k = 3. With Algorithm 3.15, lines 1 and 2 give

Ry=1, Ry =01, Rop1=00, Rp2=00, R;=5 Rio=01, Ry; =01, Ry2=00.

The intermediate values are

j=2dy =1
loop line 17 ¢ = 2 R=0
1=1 R=0
1= R = RypR1 mod n = 5 mod 23

line 20 Ro=5 Ry =01, Ry; =01, Rypo =00
loopline22 i =2 R=0
1=1 R=2R+ R11R1 mod n = 5 mod 23
i=0 R=2R+ RygRy modn =2?x5+5mod 23 =2

line 25 R1 =2 RlO = 10, R11 = 00, R12 =00
j=1d,=0

129

Algorithm 3.15: Montgomery powering ladder with Blakely’s method for computing mod-
ular multiplication.

Input: n,a,d//) ncZ, n>2; acl,; de Ziym) has bit length fg4
Output: a? mod n

1 Ro =1
2 R1 =a
3forj=40;—1,7>0,7——do
4 | ifd; =0 then

// lines 5 —-— 9 implement R; = RoRi modn
5 R=0
6 fori=x—-1,1>0,7i— —do

// k= [l,/w], where w is the word size of the computer

7 R=2R+ Ry;R1
8 R =Rmodn
9 R1 =R

// lines 10 —-- 14 implement Ro = R3modn
10 R=0
11 fori=x-1,1>0,7i— —do
12 R=2“R+ Ry, Ry
13 R =Rmodn
14 Ry=R
15 else

// lines 16 —- 20 implement Ry = RoRi1 modn
16 R=0
17 fori=x-1,1>0,7— —do
18 R=2“R+ Ry;R:1
19 R=Rmodn
20 Ry=R

// lines 21 —— 25 implement R; = R?modn
21 R=0
22 fori=x—-1,1>0,7— —do
23 R=2“R+ Ry;R;
24 R=Rmodn
25 Ri =R

26 return R

loopline6 i=2 R=0

1=1 R = Rp1 Ry mod n = 2 mod 23

i=0 R=2“R+ RyR; modn =22x2+2mod 23 =10
line 9 Ry =10 Ryp = 10, Ry; = 10, Ry = 00
loop line 11 ¢ =2 R=0

1=1 R =2YR+ Ryp1 Ry mod n = 5 mod 23

i=0 R=2“R+ RyRomodn =2?x5+5mod 23 =2
line 14 Ry=2 Ry =10, Rp; =00, Ry =00

T=0do=0
loopline6 i=2 R=0
1=1 R=0
1=0 R = RypRi modn =2 x 10 mod 23 = 20
line 9 R, =20

looplinell i=2 R=0

130

1=1 R=0
1=0 R:RooRomOdn=2X2m0d23:4
line 14 Ry=4

Hence the output is 4.

3.5.2.2 Montgomery’s Method

In this part, we discuss another method for computing modular multiplication, attributed to Peter
Montgomery [Mon85].

Suppose n is odd and let r = 2. In particular, gcd(n,7) = 1. By Bézout’s identity (Theorem 1.1.3),
there exist integers 7! and # such that

et — i = 1. (3.23)

We have discussed that such a pair of integers 7! and 7 can be found with the extended Euclidean
algorithm.

Remark 3.5.1. We note that for any positive integer ¢,
et —nn A+ trn —trn=1=r(r "' +tn) —n(n +tr) = 1. (3.24)
Then 7! + tn, fi + tr can replace 7! and # in Equation 3.23.
For the rest of this part, we further require that 7 is positive.
Example 3.5.14. Let n = 15. Then ¢, = 4 and r = 2% = 16. By the extended Euclidean algorithm
16=15+1=1=16 — 15,
wehaver 1 =1,and 7 = 1.

Example 3.5.15. Let n = 23. Then ¢,, = 5 and r = 2° = 32. By the extended Euclidean algorithm

32=23+9, 23=9x2+5 9=5+4, 5=4+1,

e 1=5—-(9—5)=-9+(23-9x2)x2=23x2-5x (32—-23) =23 x7—32x5.

Hence r—! = —5 and 7» = —7. To make # positive, we can take ¢ = 1 as in Equation 3.24, we have
rl=-54n=-5+23=18, f=-T+r=-7+32=25

We can check that

18r —25m =18 x 32 —25 x 23 = 1.
Example 3.5.16. Let n = 57. Then ¢, = 6 and r = 2° = 64. By the extended Euclidean algorithm

64=57+7,57T=Tx84+1=1=57—(64—57) x8=—64 x84 57x9,

and we have r~1 = —8, and 7 = —9. To get a positive 7, we choose (see Remark 3.5.1)
rl=—84n=-84+57=49, A+r=—9+64=D55

We can check that
49r — 55n =49 x 64 — 55 x 57 =1.

131

Example 3.5.17. Let n = 1189. Then ¢, = 11 and r = 2! = 2048. By the extended Euclidean
algorithm

2048 = 1189 + 859, 1189 = 859 + 330, 859 = 330 x 2+ 199, 330 = 199 + 131,
199 = 131 + 68, 131 = 68 + 63, 68 = 63 + 5, 63 =5x 12+ 3,
5=3+2, 3=241,

and
1 = 3-2=(63-5x12)x2-5=63%x2—(68—063) x25=(131—-68) x 27— 68 x 25
= 131 x 27— (199 — 131) x 52 = (330 — 199) x 79 — 199 x 52 = 330 x 79 — (859 — 330 x 2) x 131

= (1189 — 859) x 341 — 859 x 131 = 1189 x 341 — (2048 — 1189) x 472
— 2048 x (—472) — 1189 x (—813).

We have r—! = —472 and 7 = —813. To have a positive n, we take
r = 47241189 = 717, 7 = 2048 — 813 = 1235.

Before computing R = abmod n, we first introduce Algorithm 3.16, denoted MonPro, which
calculates abr—! mod n given a, b, n, and f.
By Equation 3.23,
1+ nn =0mod r.

Then in line 3 of Algorithm 3.16,
t+mn=t+tnn =t(l+ nn)
is divisible by 7, and the output u is an integer. By our choice of r = 2» and Equation 3.21
t=ab < rn.

From line 2 we know m < r. Hence in line 3,

rm—+1rn
U < = 2n,
r

which shows that lines 4 — 5 calculate v mod n. Furthermore,

b
u ab+mn =abr ' +mnr~' = abr—' mod n.

r

Thus, Algorithm 3.16 indeed outputs abr ! mod n.

Algorithm 3.16: MonPro, Montgomery product algorithm.

Input: n,r,mn, a, b// n is an odd integer of bit length f,; r=2; fH is a positive
integer satisfying Equation 3.23; a,b€Z,

Output: abr~! mod n

t=ab

2 m=tnmodr
t+mn

[y

r
if u > n then

Lu:u—n

(¢ I

6 return u

Letx = x¢,_12¢,—2 ... x120 be a positive integer of bit length ¢,. By definition (see Theorem 1.1.1),

we know that ,
1

T = Z wi2i.
i=0

132

If ¢, > ¢, foranyi > ¢, ;2" isa multiple of r = 2fn Thus,

min{ly,—1,6n—1}
zmodr = E z;2°.

=0

In other words, to compute mod r, we just keep the least significant ¢,, bits of x. Note that the
integer r — 1 has binary representation given by a binary string with /,, 1s. We have

zmodr=uz& (r—1).
We know that a,b > 0. Since we also choose 7 > 0, line 2 can be replaced by
m=tn& (r—1).
In case z is a multiple of 7. We have

lp—1

2fn Z 220
=0

It is easy to show that z; = 0for 0 <i¢ < ¢,. And

z lz—1 ’
== a2 (3.25)
" i=ly,

For any positive integer s < ¢,,, we define right shift x by s bits to be the integer xy, 127, 2. .. zs.t We
write
T >>851=xp,_1T7,—2...Ts. (3.26)

Compared with Equation 3.25, division by r is equivalent to right shift by ¢,,. We have shown that
t +mn in line 3 is a multiple of . Then line 3 can be replaced by

u=(t+mn)>>/,.

In summary, Algorithm 3.16 can be rewritten as Algorithm 3.17. The discussions above demon-
strate the main advantage of using MonPro over a standard modular multiplication method — the
operations modulo n is replaced by modulo r, which can be simplified to an AND operation. Further-
more, to compute division by r, we can simply do a right shift.

Algorithm 3.17: MonP ro, Montgomery product algorithm.

Input: n,T,N,a, b// n is an odd integer of bit length f,; r=2; 7 is a positive
integer satisfying Equation 3.23; a,b€ Z,
Output: abr~! mod n
1t=ab
2m=th & (’l"— 1)// for a non-negative integer, mod r is equivalent to computing AND
with 7—1. This line implements line 2 of Algorithm 3.16.
3 u= (t+mn) >>¥{,// for a non-negative integer, shift right by /¢, bits is
equivalent to division by r=2'". This line implements line 3 of
Algorithm 3.16.
4 if u > n then

5 L’UJ:’LL—TL

6 return u

“Note that when s = ¢, we have z >> s = 0.

133

Example 3.5.18. Let n = 15, Then

bo=4, r=2*=16, r—1=15.

We have
53modr =25, 53& 15 =110101& 1111 =101 = 5.
Furthermore,
24 24
—0 = TGO =15, 240 >>4=11110000 >> 4 = 1111 = 15.
r

Example 3.5.19. Let n = 23. Then £, = 5 and r = 2° = 32. In Example 3.5.15 we have discussed
that r~1 = 18 and 7 = 25. We will compute a few modular multiplications which will be useful for
Example 3.5.27.

Let a = 22, b = 22. Following Algorithm 3.16, we have

t = ab=122x22=484,

m = tnmodr =484 x 25 mod 32 = 4,
t+mn 48444 x 23
u = = =18,
r 32

and the output is 18. Indeed, abr~ mod n = 22 x 22 x 18 mod 23 = 18.
Leta = 18, b = 18. We have

t = ab=18 x 18 = 324,

m = thnmodr =324 x 25 mod 32 = 4,
t+mn 32444 x 23
u = = =13,
r 32

and the output is 13. We can verity that abr ~! mod n = 18 x 18 x 18 mod 23 = 13.
Leta =9,b=13. We have

t = ab=9x 13 =117,

m = tnmodr =117 x 25 mod 32 = 13,
t+mn 117413 x 23
u = = =13,
r 32

and the output is 13. We can verity that abr~! mod n = 9 x 13 x 18 mod 23 = 13.
Leta = 13, b = 13. We have

t = ab=169,
m = thmodr =169 x 25 mod 32 =1,
t+ mn 169+ 1 x 23
u = = = 6’
T 32

and the output is 6. We can verity that abr~* mod n = 13 x 13 x 18 mod 23 = 6.
Leta = 13, b = 1. We have

t = ab=13,

m = thmodr =13 x 25 mod 32 = 5,

t+mn 13+5x23
r o 32

u = =4,

and the output is 4. We can verity that abr—! mod n = 13 x 18 mod 23 = 4.
Leta=9,b=9. We have

t = ab=28l,
m = thmodr=2_81x25mod32=29,
t+mn 8149 x 23 9
u — = = s

r 32

134

and the output is 9. We can verity that abr ' mod n =9 x 9 x 18 mod 23 = 9.
Leta =9, b= 22. We have

t = ab=198,
m = thimodr =198 x 25 mod 32 = 22,
t+mn 198 + 22 x 23
u = pr fr 227
r 32

and the output is 22. We can verity that abr~Ymod n =9 x 22 x 18 mod 23 = 22.

Example 3.5.20. Let n = 15, a = 3, b = 5. We have discussed in Example 3.5.14 that r = 24 = 16,
r~! =1and 7 = 1. Following Algorithm 3.16, we have

t = ab=3x5=15,

m = tnmodr=15x1mod 16 = 15,
t+mn 15415 x 15
u = = =15,
r 16

and the output is 0. Indeed, abr~' mod n = 15 mod 15 = 0.

Example 3.5.21. Let n = 57, a = 3, b = 5. We have discussed in Example 3.5.16 that r = 64, r 1 = 49
and n = 55. Following Algorithm 3.16, we have

t = ab=3x5=15
m = tnmodr =15 x 55 mod 64 = 57 mod 64,

t+mn 15457 x 57
u = = :517
T 64

and the output is 51. We can check that

abr~* mod n =3 x 5 x 49 mod 57 = 735 mod 57 = 51.
Example 3.5.22. Letn = 57, a = 21, b = 5. We know from Example 3.5.16 that
r=64, r '=49, @ =55
Following Algorithm 3.16, we have

t = ab=21x5=105

m = tinmodr =105 x 55mod 64 =15
t+mn 105—i—15><57715

r 64
and the output is 15. We can check that

u =

abr~' mod n =21 x 5 x 49 mod 57 = 5145 mod 57 = 15.
For any a € Z,,, we define the n—residue of a with respect to r as
a, := ar mod n.
Example 3.5.23. Let n = 15, and a = 3. Then r = 16 and
ar =armodn =3 x 16 mod 15 = (3 mod 15) x (16 mod 15) = 3 x 1 mod 15 = 3.
Example 3.5.24. Let n = 57, and a = 3, then r = 64 and
ar, = ar mod n =3 x 64 mod 57 = (3 mod 57)(64 mod 57) = 3 x 7 mod 57 = 21.
To compute R = ab mod n, we note that
R = abmod n = a,br ! mod n = MonPro(a,,b).

We refer to such a computation as Montogomery’s method for modular multiplication. Details are
given in Algorithm 3.18.

135

Algorithm 3.18: Montgomery’s method for computing modular multiplication.

Input: n, r a, b// n an odd integer of bit length /,; r= 2 a.b € Zn
Output: ab mod n
1 Compute a positive 7 with the extended Euclidean algorithm (Algorithm 1.2)
2 a, = ar modn
3 u=MonPro(n,r,n,a,,b)// rAlgorithm 3.16 or 3.17
4 return u

Example 3.5.25. Letn = 15, a = 3, and b = 5. We have discussed that a,, = 3 (see Example 3.5.23) and
MonPro(3,5) = 0 (see Example 3.5.20). Then by Algorithm 3.18, ab mod n = 0. Indeed, ab mod n =
3 x 5mod 15 = 0.

Example 3.5.26. Let n = 57, a = 3, and b = 5. We know that a, = 21 (see Example 3.5.20) and
MonPro(21,5) = 15 (see Example 3.5.22). Then by Algorithm 3.18, ab mod n = 15. We can check that
abmod n =3 x 5mod 57 = 15.

Utilizing MonPro for computing modular multiplication as in Algorithm 3.18 is not optimal as
it requires computing ar mod n for each multiplication. Even though 7 can be precomputed by the
extended Euclidean algorithm, it is time-consuming. MonPro will be more useful when multiple
multiplications are computed. We will discuss a more efficient way of using MonPro.

By Corollary1.4.2, the set

Z' ={a=armodn | a€Z,}

contains the same elements modulo n as in Z,,. We define addition +y,, and multiplication Xuqn
operation on Z as follows:

ar +yon br := (@ +b)p, ar Xyon by := (ab), mod n.
Then we have the following lemma.

Lemma 3.5.1. (Z, +on, Xmon) i @ commutative ring with additive identity 0, and multiplicative
identity 1,.

Proof. Firstly, (a + b), = (a + b)r mod n and (ab), = abr mod n are both in Z*. Thus Z" is closed
under +yon and Xyon.

Associativity and commutativity of +y., follows from that for addition in Z,,. The identity ele-
ment for +.n is 0, = 0 mod n since for any a, € Z},

a, + 0, = ar mod n + 0 mod n = a,.

The inverse of a, with respect to +yon is (—a),, where —a is the inverse of a in Z,, with respect to
addition modulo n:

ar + (—a), = ar mod n + (—a)r mod n = ar — ar mod n = 0 mod n = 0,.

We have proved that (Z], +110,) is an abelian group.
Now, for any a,, b, ¢, € Z].

(ar Xyon br) Xpon ¢ = (ab)y Xyon ¢ = (abe), = aber mod n

ar Xyon (br Xyon €)= @ Xyon (be), = (abc), = aber mod n.

Hence
(ar X Mon br) XMon Cr = Gy XMon (br X Mon CT)
and Xy, 1S associative. Moreover,
Ay XMon (br +Mon CT) = Qar XMon (b + C)r = (a(b + C))r = (ab + CLC)T = (ab)r +Mon (bC)r
= @y Xmon br Fmon @r Xwon Cr,
so the distributive law holds for X, and +uon. The identity element for xye,, is 1, = » mod n since
ar Xyon 1r = 1 Xuon @ = ay.

Hence, (Z), +uon, Xmon) is @ commutative ring (see Definition 1.2.8). O

136

Remark 3.5.2. We note that
ar Xpon by = (ab), = abr mod n = arbrr ' mod n = a,b,r ' mod n = MonPro(ay, by).
Thus, MonPro(a,, b,) implements the multiplication in the ring (Z)", +won, Xmon)-

Now we can apply the Montgomery product algorithm MonPro (Algorithm 3.16 or 3.17) for com-
puting multiplications in the right-to-left (Algorithm 3.7) and the left-to-right (Algorithm 3.8) square
and multiply algorithms. The details are listed in Algorithms 3.19 and 3.20.

Algorithm 3.19: Montgomery right-to-left square and multiply algorithm.

Input: n,T,M,a,d// n is an odd integer of bit length f,; r=2; A is given by
Equation 3.23; a € Zn; d& Zyy) has bit length fg

Output: ¢ mod n

result, = r mod n

» = ar modn

fori=0,i< {41+ + do

// ith bit of d is 1

@WON =

4 if d; = 1 then

5 L result, = MonPro(n,r,n,result,,t,)// result, = result, xu. L,
6 t, = MonPro(n,r, i, tr,ty)// t, =1, % by

7 t= MonPro(n,r,'fz,resultr, 1,)// t =t Xuop 1 = result, x r ' modn

return result

@

By Lemma 3.5.1 and Remark 3.5.2, lines 5 and 6 in Algorithm 3.19 compute
result, = result, Xyon & and &, =t Xyon tr
respectively. It follows from Algorithm 3.7 that lines 1 — 6 in Algorithm 3.19 calculate
t, = (a;)? mod n = (a%), mod n.

Then line 7 removes 7 from (a?), and outputs the final result.

Algorithm 3.20: Montgomery left-to-right square and multiply algorithm.

Input: n,r, ﬁ, a,d/ / m is an odd integer of bit length /,; r=2%; f is given by
Equation 3.23; a € Zn; d€ Zyw) has bit length fg

Output: ¢ mod n

1t =rmodn

2 a, = ar mod n

3fori=4¢;—1,1>0,i——do

4 t, = MonPro(n,r,f, te,ty)// t. =t %t

5 if d; = 1 then

6 L t, = MonPro(n,r,f,ty,ar)// t. =t Xu.. ar

7 t:MonPro(n,r,ﬁ,tr,l)/’/ t =t, Xuon 1 =t~ * mod n
8 returnt

Similarly, lines 4 and 6 in Algorithm 3.20 compute
tr =tr Xpon tr and ¢, =t, Xuon G
respectively. It follows from Algorithm 3.8 that lines 1 — 6 in Algorithm 3.20 calculate
t, = (a,)? mod n = (a?), mod n.

Then line 7 removes 7 from (a?), mod n and outputs the final result.

137

Example 3.5.27. Let
n=23, d=4=1002, a=>5.

In Example 3.5.2, we have computed
a’ mod n = 5" mod 23 = 625 mod 23 = 4

with square and multiply algorithm. In Example 3.5.12 we showed the steps when modular multipli-
cations in the square and multiply algorithm are done with Blakely’s method. Now we calculate the
same modular exponentiation with the square and multiply algorithm and Montgomery’s method
for modular multiplication.

According to Example 3.5.15 that

r=232, r1=18, A =25.

For the detailed computations with MonPro below, we refer to Example 3.5.19.
Following Algorithm 3.19, lines 1 and 2 give

result, =32mod 23 =9, . =5 x 32mod 23 = 22.
For ¢ =0, dgp = 0, line 6 computes
tr = MonPro(23,32, 25,22, 22) = 18.
Fori =1, d; = 0, line 6 computes
t, = MonPro(23,32,25,18,18) = 13.
Fori =2, dy = 1, line 5 computes
t, = MonPro(23,32,25,9,13) = 13.
Then line 6 computes (note that this computation does not affect the final output)
t, = MonPro(23,32,25,13,13) = 6.

Finally line 7 computes
t = MonPro(23,32,25,13,1) = 4.

Following Algorithm 3.20, lines 1 and 2 give
tr=32mod 23 =9, a, =5 x32mod 23 = 22.
Fori =2, dy = 1, line 4 computes
t, = MonPro(23,32,25,9,9) = 9.

Then line 6 computes
t, = MonPro(23,32,25,9,22) = 22.

Fori =1, d; = 0, line 4 computes

t, = MonPro(23,32,25,22,22) = 18.
Fori =0, d; = 0, line 4 computes

t, = MonPro(23,32,25,18,18) = 13.
Finally, line 7 computes the output

t, = MonPro(23,32,25,13,1) = 4.

138

Algorithm 3.21: Montgomery powering ladder with Montgomery’s method for modular
multiplication.

Input: n,r,M,a,d// n is an odd integer of bit length f,; r=2; A is given by
Equation 3.23; a € Zn; d € Zyw) has bit length fg
Output: a? mod n

1 Ry =rmodn

2 Ry =armodn

sforj=¢;—1,7>0,7——do

4 if d; = 0 then

5 Ry =MonPro(n,r,n, Ry, R1)// Ri = Ro % I
6 Ry =MonPro(n,r,n, Ry, Ro)// Ro = Ry %uen Ro
7 else

8 Ry = MonPro(n,r,n, Ry, R1)// Ro= Ro %o R
9 Ry =MonPro(n,r,n, Ry, R1)// Ri = Ri xu. R

10 Ry = MonPro(n,r,n, Ro,1)// Ro= Ry xu. 1 = Ry xr "modn
11 return R

We can also apply the Montgomery product algorithm (Algorithm 3.16 or 3.17) to Montgomery
powering ladder (Algorithm 3.9) for computing modular exponentiation. We have Algorithm 3.21.
By Lemma 3.5.1 and Remark 3.5.2, lines 5 and 6 in Algorithm 3.21 compute

R1 = Ro Xuon R1, Ro = Ro Xuon Ro
respectively. Similarly, lines 8 and 9 in Algorithm 3.21 compute

Ry = Ro Xuon R1, Ri = Ri Xuon Ri.
It follows from Algorithm 3.9 that lines 1 -9 in Algorithm 3.21 calculate

(a,)% mod n = (a?), mod n.
Then line 10 removes r from (a?),, mod n and outputs the final result.
Example 3.5.28. We repeat the computation in Example 3.5.27 with Algorithm 3.21. We have
n=23, a=5 d=4=100,, r=232, r 1=18, 7 =25.

For the detailed computations with MonPro below, we refer to Example 3.5.19.
Lines 1 and 2 in Algorithm 3.21 give

Ry=rmodn=32mod23 =9, R; =armodn =25 x 32mod 23 = 22.
For j =2, d, = 1, line 8 computes
Ry = MonPro(23,32,25,9,22) = 22.

Since dy = dy = 0, for the rest of the computations, only Ry is relevant for the result. For j = 1, line 6
calculates
Ry = MonPro(23,32,25,22,22) = 18.

For j = 0, line 6 calculates
Ry = MonPro(23,32,25,18,18) = 13.

Finally, line 10 gives the output

Ry = MonPro(23,32,25,13,1) = 4.

139

3.6 Further Reading

Figures. We note that figures in this chapter are adjusted versions of drawings from [Jeal6]. [Jeal6]
includes plenty of source files for various cryptographic-related illustrations.

Implementation of symmetric block ciphers. For more discussions on implementations of symmet-
ric block ciphers, we refer the readers to [Osw]. For a detailed analysis of algebraic normal form and
Boolean functions, we refer the readers to [O'D14].

Bitsliced implementation of DES can be found in e.g. [MPCO00, Kwa00]. For AES, [KS09] discusses
a bitsliced implementation for 64—architecture and [SS16] presents the design for 32—bit architec-
ture. More efficient bitsliced implementations of PRESENT can be found in [BGLP13] for 64—bit
architecture and in [RAL17] for 32—bit architecture.

A related novel way of implementing symmetric block ciphers called Fixslicing was introduced in
2020 [ANP20, AP20] to achieve efficient software constant-time implementations. The main idea is to
have an alternative representation of several rounds of the cipher by fixing the bits within a certain
register to never move.

RSA security. Currently, a few hundred qubits (a quantum counterpart to the classical bit) are pos-
sible for a quantum computer [Cho22]. To break RSA, thousands of qubits are required [GE21].
Nevertheless, post-quantum public key cryptosystems are being proposed (see e.g. [HPS98, BS08])
to protect communications after a sufficiently strong quantum computer is built.

Implementations of RSA. For more discussions on different methods for implementing RSA, we
refer the readers to [Ko¢94]. [Kog¢94] also discusses how Garner’s algorithm (Equation 3.20) can be
designed for solving simultaneous linear congruences in general. For a more efficient way to imple-
ment the extended Euclidean algorithm, see [Sti05, Algorithm 5.3].

Digital Signatures. There are other digital signatures based on different public key cryptosystems.
For more discussions, we refer the readers to [Buc04, Chapter 12].

Secret key. In Section 2.2.6 we have seen that exhaustive key search can be used to break shift cipher
and affine cipher. The lesson is that the key space should be big enough so the attacker cannot brute
force the secret key. This size is determined by the current computation power. For example, the
56-bit secret key of DES was successfully broken in 1998 [Fou98]. The U.S. National Institute for
Standards and Technology (NIST) issues recommendations for key sizes for government institutions
in the USA. According to those, 80-bit keys were “retired” in 2010 [BBB*07], and lesser than 112-
bit keys were considered insufficient from 2015 onward [BD16]. National Security Agency (NSA)
currently requires AES-256 for Top Secret classification since 2015 due to the emergence of quantum
computing [Agel5].

Chapter 4

Side-Channel Analysis Attacks and
Countermeasures

25 PO

Abstract

Side-channel analysis attacks target cryptographic implementations passively. The
attacks exploit the possibility of the attacker observing the physical characteristics
of a device that is running a cryptographic algorithm. The attacker obtains the side-
channel information, e.g. power consumption, electromagnetic emanation, execu-
tion time, etc, and then utilizes such information to recover the secret key.

In this chapter, we will focus on power analysis attacks that exploit power con-
sumption information. Different attack methodologies on symmetric block ciphers
and on RSA will be presented. Corresponding countermeasures will also be dis-
cussed.

Keywords: side-channel attacks, power analysis attack, simple power analysis, dif-
ferential power analysis, hiding, masking

Side-channel analysis attacks target cryptographic implementations passively. The attacks exploit
the possibility of the attacker observing the physical characteristics of a device that is running a
cryptographic algorithm. The attacker obtains the so-called side-channel information, e.g. power
consumption, electromagnetic emanation, execution time, etc, and then utilizes such information to
recover the secret key.

In this chapter, we will focus on power analysis attacks that exploit power consumption infor-
mation. The attack methodologies can be used in a similar manner when electromagnetic emanation
(EM) is analyzed.

Although side-channel analysis attacks can refer to a wide range of attacks, including timing anal-
ysis [Koc96], cache attacks [GMWM16], etc., in this book, we use the terminology side-channel analysis
attacks only in the narrower meaning which refers to power analysis attacks. In short, we also write
side-channel analysis as SCA.

Device under test. The device that the attacker takes measurements of is called the device under test
(DUT). For example, it can be a microcontroller, running a software implementation, an FPGA, or an
ASIC, realizing a hardware implementation.

For power analysis attacks we study in this chapter, we assume the attacker has certain knowl-
edge of the implementation. For example, how to interface with the encryption routine, whether
the computation is executed serially or in parallel, whether the implementation is round-based or
bit-sliced, or whether some types of countermeasures are present. Generally, this type of information
can also be obtained by reverse engineering, visual inspection of the side-channel measurements, or
sometimes just with a simple trial-and-error technique.

Attacker goal. The ultimate goal of the attacker is to recover the master key of a symmetric block
cipher or the private key of a public key cipher.

140

141

Attacker’s assumptions. Based on the assumption of whether the attacker can obtain a similar device
to the target device, we distinguish two types of SCA attacks:

* Non-profiled SCA. If the attacker does not have access to a similar device, just the target device
or just the measurements coming from the target device, we talk about a non-profiled SCA. In a
general scenario, this attack utilizes a set of measurements where a fixed secret key is used to
encrypt multiple (random) plaintexts.

* Profiled SCA. If we assume the attacker has access to a clone device of the target device, then
they can carry out a profiled SCA. This attack operates in two phases. In the profiling phase, the
attacker acquires side-channel measurements for known plaintext/ciphertext and known key
pairs. This set of data is used to characterize or model the device. Then in the attack phase,
the attacker acquires a few measurements from the target device, which is usually identical to
the clone device, with known plaintext/ciphertext and an unknown key. These measurements
from the target device are then tested against the characterized model from the clone device.

Source code

The source code and measurement data for this chapter can be found in the following
link

https://github.com/XIAOLUHOU/SCA-measurements—and—-analysis——-
—Experimental-results-for-textbook

4.1 Experimental Setting

Power analysis measures the power consumption of the DUT in the form of a voltage change. The
most convenient device to capture the voltage change over time is a digital sampling oscilloscope— a
device that takes samples of the measured voltage signal over time. We refer to each sample point as
a time sample. More information on measurement setups is provided in Section 6.1.

To be able to target the correct time slot, in our experiments, a trigger signal is raised to high (5V)
during the computation that we want to capture and lowered afterward. One measurement consists
of the voltage values for each time sample in this duration. It can be stored in an array of length equal
to the total number of time samples in the measured time interval. It can also be drawn in a graph
where the r—axis corresponds to time samples and the y—axis records the voltage values.' Thus, we
refer to the result of one measurement as a (power) trace.

Device under test and oscilloscope. For the experiments in this chapter, we used a ready-to-use
measurement platform NewAE ChipWhisperer-Lite. The program code was running on a 32—bit
ARM Cortex-M4 microcontroller (STM32F3) with a clock speed of ~ 7.4 MHz. ADC was set to cap-
ture the samples at 4x that speed, i.e. ~ 29.6 MHz with a 10—bit resolution. However, for plotting
purposes, we normally reduced the number of time samples. The measurement setup is depicted
in Figure 4.1. The Chipwhisperer-Lite board is in the middle of the picture in black color, handling
the communication with the DUT and the acquisition. The red PCB on the right is the CW 308 UFO
board — a breakout board with the DUT — ARM Cortex-M4 (blue board) mounted on top. The con-
trolling and data processing were done from a laptop, from the Jupyter environment available for the
ChipWhisperer platform. In the back, there is a Teledyne T3DSO3504 benchtop oscilloscope that was
used mainly for convenience purposes — to precisely locate the time intervals in the initial analysis
stage.

Figure 4.2 shows one power trace for the first five rounds of PRESENT encryption. In order to see
the trace more clearly, we have added a sequence nop instructions before and after the five rounds
cipher computation. This trace has in total 18500 time samples. Certain patterns can be seen from
the trace and we can deduce the corresponding operations in each time interval. For example, from
time sample 0 — —1434 and from time sample 17514 — —18500 we have nop instructions. We can

"Note that, in the case of ChipWhisperer, which will be used for our experiments and analysis, the y—axis does not
show the actual voltage value but a 10-bit value proportional to the current going through the shunt resistor.

https://github.com/XIAOLUHOU/SCA-measurements-and-analysis----Experimental-results-for-textbook
https://github.com/XIAOLUHOU/SCA-measurements-and-analysis----Experimental-results-for-textbook

142

Figure 4.1: Side-channel measurement setup used for the experiments: a laptop, the ChipWhisperer-
Lite measurement board (black), and the CW308 UFO board (red) with the mounted ARM Cortex-
M4 target board (blue). Note that the benchtop oscilloscope in the back was only used for the initial
analysis — all the measurements were done by the ChipWhisperer.

also see the five repeated patterns in the figure and deduce the duration of each round, as indicated
in the figure by red dotted lines. In terms of time samples, one round takes on average 3216 time
samples. In this particular case, we reduced the number of samples by a factor of 3 (simply by taking
every third sample) so that the patterns would still be visible to the reader. That means, with the
ADC speed of ~ 29.6 MHz, one round takes (3216 x 3)/29.6 ~ 325.9us. It is important to note that
for presentation purposes, we used an unoptimized software implementation of PRESENT.

Datasets. Four datasets will be analyzed in more detail in the later parts of this chapter. All the
datasets capture one round of software implementation of PRESENT. The description of each of them
is given below:

¢ Fixed dataset A: This dataset contains 5000 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext ABCDEF1234567890.

e Fixed dataset B: This dataset contains 5000 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext 84216BA484216BA4.

* Random plaintext dataset: This dataset contains 5000 traces with a fixed round key
FEDCBA0123456789, (4.1)

and a random plaintext for each trace.

* Random dataset: This dataset contains 10000 traces with a random round key and a random
plaintext for each trace.

In each case, the execution of the cipher is surrounded by nop instructions so that the round operation
patterns can be clearly distinguished from the provided plots. While the raw traces are all 5000 time
samples long, for plotting and analysis purposes, we shorten them to 3600 time samples as the later
parts correspond to nop instructions and do not contain any useful information. We also note that
for these datasets, we reduced the number of collected time samples by a factor of 3.

4.1.1 Attack Methods

There are two main classical power analysis attack methods, simple power analysis (SPA) and differ-
ential power analysis (DPA). SPA assumes the attacker has access to only one or a few measurements

143

Power consumption

Time sample -10*

Figure 4.2: Power trace of the first 5 rounds of PRESENT encryption. A sequence of nop instructions
was executed before and after the cipher computation to clearly distinguish the operations.

corresponding to some fixed inputs. In DPA, we assume the attacker can take measurements for a
potentially unlimited number of different inputs. We will present several DPA attacks on symmetric
block ciphers (Sections 4.3.1, and 4.3.2) as well as DPA (Section 4.4.1) and SPA (Section 4.4.2) attacks
on RSA.

We will also discuss a newly proposed side-channel assisted differential plaintext attack (SCADPA) on
SPN ciphers (Section 4.3.3). The amount of traces needed is in between that for SPA and DPA, mostly
dependent on the measurement equipment.

4.2 Side-channel Leakages

In the later parts of the chapter, we will see that by analyzing the power consumption, we can deduce
the secret key. Consequently, we also refer to the power consumption as the leakage of the device. We
consider the leakage consists of two parts: signal and noise. Signal refers to the part of the leakage
containing useful information for our attack; the rest is noise. For example, suppose we would like to
recover the hamming weight of an intermediate value. In that case, the part of the leakage correlated
to the hamming weight of that intermediate value is our signal.

Before we see how leakage can be defined and modeled, we show that it is dependent on the
operations being executed and the data being processed.

We first take the Fixed dataset A described in Section 4.1. The average of those 5000 traces is
shown in Figure 4.3. As mentioned in Section 4.1, each trace in this dataset corresponds to one round
of PRESENT computation surrounded by nop operations. By visual inspection, we can deduce that
the beginning (time samples 0 — 209) and the ending (time samples 3381 — 3600) parts that consist of
relatively uniform patterns correspond to nop instructions. Other than that, we can see three distinct
patterns between them. Since one round of PRESENT consists of addRoundKey, sBoxLayer, and
pLayer (see Figure 3.8), we can roughly identify each of these three operations in the trace — they
correspond to the blue (time samples 210 — 382), pink (time samples 383 — 567), and green (time
samples 568 — 3380) parts of the trace, respectively. In this case, one round computation corresponds
to 3170 time samples, which is fewer than that in Figure 4.2. Such a difference can be caused by round
counter and loop operations, register updates of round keys, etc., that are additionally computed
in the five round PRESENT implementation. These observations demonstrate that the leakage is
dependent on the operations being executed in the DUT.

For another experiment, with the experimental setup described in Section 4.1, we have conducted
measurements for one round of PRESENT with a fixed round key. A total of 1000 traces were col-
lected, each for a random plaintext with the Oth bit equal to 0. The averaged trace is shown in
Figure 4.4. With the same key, we collected traces for 1000 plaintexts with the Oth bit equal to 1. And
the averaged trace is shown in Figure 4.5. We can see that those two averaged traces are very simi-
lar. Unsurprisingly, they also look similar to the trace in Figure 4.3. Thus, the time interval for each
operation in the first round of PRESENT corresponds to that in Figure 4.3 as well.

144

Leakage

0 382 1,000 2,000 3,000 3,380

Time sample

Figure 4.3: The averaged trace for 5000 traces from the Fixed dataset A (see section 4.1). The blue, pink,
and green parts of the trace correspond to addRoundKey, sBoxLayer, and pLayer, respectively.

0.2

O |

Leakage

| | |
0 1,000 2,000 3,000

Time sample

Figure 4.4: The averaged trace for 1000 plaintexts with the Oth bit equal to 0. The computation
corresponds to one round of PRESENT with a fixed round key.

We can gain more information when we take the difference between traces in Figures 4.4 and 4.5.
The difference trace is shown in Figure 4.6. There are a few peaks in this difference trace, and apart
from those peaks, most of the points are close to zero. Those peaks indicate that the Oth bit of the
plaintext is related to the computations at the corresponding time samples. Compared with Fig-
ure 4.3, we can see that the first and second peaks correspond to addRoundKey and pLayer op-
erations. In particular, these observations show that the leakage is dependent on the data being
processed in the DUT.

Note

In the SCA attacks we will see in this book, we will only be interested in operation
or/and data-dependent leakages.

SPA typically exploits the relationship between the executed operations and the
leakage (power consumption). DPA and SCADPA focus on the relationship between
the processed data and the leakage (power consumption).

To analyze the leakage better, we model the leakage, signal, and noise at a given point in time
as random variables. In particular, for a fixed time sample ¢, let L;, X;, and N; denote the random
variables corresponding to the leakage, signal, and noise, respectively. As we consider the leakage
consists of signal and noise, we can write

L =X, +N,. (4.2)

Since X; contains the part of the leakage that is useful to us and the rest is noise, we make the

145

Leakage

| | |
0 1,000 2,000 3,000

Time sample

Figure 4.5: The averaged trace for 1000 plaintexts with the Oth bit equal to 1. The computation
corresponds to one round of PRESENT with a fixed round key.

1073
2F | 3

| | | | |
0 376 569 1,000 2,000 3,000

Time sample

Figure 4.6: The difference between traces from Figures 4.4 and 4.5.

“independent noise assumption” (see e.g. [Pro13]) and assume N; and X; are independent random
variables. When X; is a constant, according to Equations 1.36 and 1.33, we have

Var(Lt) = Var(Nt), Xt =E [Lt] —E [Nt] s (43)

But how do we decide when X; is constant? That depends on the information we would like
to obtain from the traces. Let us consider one round of PRESENT computation. Suppose we are
interested in the Oth Sbox output of the sBoxLayer (the right-most Sbox in Figure 3.9), denoted by v.
If we want information revealing the exact value of v, then for any given time sample ¢, the signal
X is considered to be constant across the following dataset: measurements for computations of one
round of PRESENT with a fixed master key and plaintexts with a fixed Oth nibble. The identical Oth
nibble in plaintexts and fixed key guarantees the same 0th Sbox output. We can also use random
master keys that result in the first round key having the same Oth nibble. If we want information
revealing the Hamming weight of v, then measurements with master keys and plaintexts that result
in a fixed wt (v) would correspond to constant X;s.

421 Distribution of the Leakage

Since we are only interested in either data or operation-related leakages, for a given point in time ¢, if
we fix the operation and the data, we get a constant signal, i.e., X is a constant. In the following, we
will show that, in this case, the experimental results (histograms) demonstrate that it is reasonable to
consider the distribution induced by L, to be a normal distribution (see Example 1.7.23).

146

We note that since the noise comes from many sources, e.g., environment, other components in
the DUT, setup, etc, it can be considered as a combination of various independent random variables.
Thus, according to the central limit theorem [Dud14]?, it is reasonable to assume the distribution in-
duced by the noise is normal.

Let us take the Fixed dataset A described in Section 4.1. Figure 4.7 shows a small part from five
randomly selected traces. We can see that they are very similar, with minor differences. As the signal
is the same, the minor differences are caused by the noise. We will further characterize the noise
using histograms.

0.15 i
0.10 - i
&
E 0.05 - s
<
5
0.00 -
—0.05 |- \ |

| | | | | | |
383 384 385 386 387 388 389
Time sample

Figure 4.7: Part of five random traces from the Fixed dataset A (see Section 4.1).

Recall that the averaged trace of those 5000 traces in Fixed dataset A is shown in Figure 4.3. Take t =
3520. As we have mentioned in the discussion regarding Figure 4.3, this time sample corresponds to
nop operations. If we plot the histogram of leakages L3520 across those 5000 traces, we get Figure 4.8.
Most leakages are around 0.0435, and very few are below 0.037 or above 0.049.

800 |

600 |-

400 |- n
200 - II I n
ol __lll Il-__ |

| | | | |
3.750 4.050 4.350 4.650 4.950
Leakage 1072

Number of occurrences

Figure 4.8: Histogram of leakages at time sample ¢ = 3520 across 5000 traces from the Fixed dataset A.

Now we take another time sample ¢ = 2368, which gives the highest peak in Figure 4.3 and
corresponds to pLayer computation. The histogram of leakages Lo3ss across those 5000 traces is
shown in Figure 4.9. Most leakages are around 0.213 and very few are below 0.207 or above 0.219
Compared to Figure 4.8, we have much higher leakage values. This is because ¢ = 3520 corresponds
to nop operations, and for ¢t = 2368, we have PRESENT round computations.

For both cases, the shapes of the histograms are similar to the PDF of a normal distribution (see
Figure 1.2). If we take a different time sample, the histogram will be similar, with differences in the
values on the x-axis. In other words, the distribution induced by the leakages can be approximated
by normal distributions. As mentioned, all traces correspond to the same operation and data in the

*Roughly speaking, the central limit theorem says that if we combine different independent random variables, the
resulting distribution tends to be normal.

147

600 -

400 |- n
B II II 7
ok __-.I I.-__ i

| | | | | | | |
0.201 0.204 0.207 0.210 0.213 0.216 0.219 0.222
Leakage

Number of occurrences

Figure 4.9: Histogram of leakages at time sample ¢t = 2368 across 5000 traces from the Fixed dataset A.

DUT for a fixed time sample, resulting in a constant X;. Thus, the variants in the leakage are caused
by the noise.

Leakage Models. One important concept for a power analysis attack is the leakage model, namely a
model that estimates how the leakage is related to the data being processed. A good leakage model
can make the attack more efficient (see Section 4.3.2).

Three commonly used leakage models are identity leakage model, Hamming distance leakage model,
and Hamming weight leakage model. Assume a value v is being processed in the DUT, and right before
it, another value u was used by the DUT. Then, according to the identity leakage model, the leakage is
correlated (see Definition 1.7.8) to v. The Hamming distance leakage model assumes that the leakage
is correlated to dis (v, u), the Hamming distance between v and u (see Equation 1.24). Following the
Hamming weight leakage model, the leakage will then be correlated to wt (v), the Hamming weight
of v (see Definition 1.6.10). We refer the readers to subsection 6.1.1 for more explanations of why
there are side-channel leakages when the data in the DUT is changed.

In particular, let noise ~ N(0, 02) be a normal random variable with mean 0 and variance o. For
the identity leakage model, the modeled leakage is given by

L(v) = v + noise.
For the Hamming distance leakage model, we have
L(v) = dis (v, u) + noise.
Similarly, for the Hamming weight leakage model,
L(v) = wt(v) + noise. (4.4)

Even though the actual leakage may not be exactly equal to the modeled leakage £(v), those leakage
models can be used to approximate the behavior of the actual leakages or for statistical analysis (see
Section 4.3.1). For example, our previous experiments have demonstrated that the identity leakage
model is realistic since when the data is fixed, the distribution of leakages is close to a normal dis-
tribution. It can be shown that the other two leakage models are also realistic (see [MOP08, Section
4.3]).

In this book, we will focus on two leakage models: the identity leakage model and the Hamming
weight leakage model.

4.2.2 Estimating Leakage Distributions

In this subsection, we look at the analysis of leakages from a statistical point of view and provide con-
crete examples of methods for analyzing unknown distribution parameters discussed in Section 1.8.2.
We consider the DUT computing PRESENT encryption with a fixed plaintext and a fixed key. We

148

have shown that in this case, we can assume L; induces a normal distribution for a given time sam-
ple t. Let u; and o7 denote the mean and variance of this normal distribution.

For the running example, we focus on the Fixed dataset A as described in Section 4.1. Let t = 2368,
which gives the highest peak in Figure 4.3 and corresponds to the computation of pLayer. We have
seen the histogram of the leakages at this time sample in Figure 4.9. With the terminologies from
Section 1.8.2, a sample for Lasgg is given by all leakage values at ¢ = 2368 from those 5000 traces in
Fixed dataset A. We can use our sample to estimate the mean (u;) and variance (07) of the distribution
induced by La3ss (assuming it is normal) using point estimators given by sample mean and sample
variance (see Remark 1.8.4). Let M = 5000 denote our sample size.

Example 4.2.1 (Example of approximating mean and variance with sample mean and sample vari-
ance). By Equation 1.49, the sample mean is given by the average of leakages at time sample 2368
across those 5000 traces. We have

lo368 =~ 0.2132.

Following Equation 1.53, we have also computed the sample variance
53368 ~ 8.5196 x 107°. (4.5)

Then the sample mean 0.2132 is an estimate for 1123653, and the sample variance 8.5196 x 1079 is an
estimate for 03,4

We can also estimate the mean with an interval estimator.

Example 4.2.2 (Example of interval estimator for the mean). Since we do not know the variance of
Loses, by Equation 1.59, a 100(1 — «) percent confidence interval for pa36s is given by

<l2368—t o.M 182& l236s + to/2.m 182368>-
a/2,M— \/M s o/2,M— \/M
Take a = 0.01. Then according to Remark 1.8.2 and Table 1.4, we get

10.005,4999 ~ 20.005 = 2.576.

By Equation 4.5,
S9368 = V/8.5196 x 10—6 ~ 2.9188 x 1075.

And a 99% confidence interval for po3es is

2.9188 x 1073 2.9188 x 1073
<0.2132 2576 x 220 X 2T ().2132 4 2,576 x X) ~ (0.2131, 0.2133). (4.6)
/5000 /5000

Assume we know the variance of Lagss is actually given by 03545 = 8.5196 x 107%. Suppose we want
to find an estimate for p; with precision ¢ = 0.001 and 99% of confidence. By Equation 1.58, the
number of traces we need to collect is given by

03368 o 8.5196 x 107°
2 /2T T 0012
where 1 — a = 0.99 gives a = 0.01 and as mentioned above, 2 o5 = 2.576. Thus, we should collect
at least 57 traces to get a 99% percent confidence interval for ji236s.

Since the number of traces to be collected is more than 30, according to Equation 1.60, if we do
not know the variance of L;, we can use the sample variance 55368 to compute the number of traces
required. In this case, we will get the same result as in Equation 4.7 since we have assumed the
variance to be equal to this sample variance.

X 2.576% ~ 57, (4.7)

Now we take the Fixed dataset B described in Section 4.1. We again look at the time sample ¢ =
2368. Let L)344 denote the random variable corresponding to the leakage at time sample 2368 for one
round encryption of the plaintext 84216BA484216BA4 with round key FEDCBA0123456789. Let
{thaes and o 2 denote the mean and variance of Ll respectively. Then the Fixed dataset B provides a
sample for L}s4s. Similarly to Example 4.2.1, we can compute the sample mean and sample variance
for Liqsq with this sample, and we have

lyaes = 0.2133, 55365 ~ 8.6198 x 1076, (4.8)

149

Example 4.2.3 (Example of interval estimator for the mean). Let us assume La3gs and Lfggq are inde-
pendent. We further assume that we know that the actual variances for Lasgs and Lis44 are equal to
the sample variances we have computed. Suppose we want to find an estimation for 2368 — f5368-
By Equation 1.62, a 99% confidence interval estimate for pases — 15365 i given by

2 2 2 2
g g g g
2368 2368 2368 2368

N S
l2368 — l5368 — 20.005 l2368 — l5365 + 20.005

= (0.2132 —0.2133 — 2.5761/(8.5196 x 106 + 8.6198 x 10-6) /5000,

0.2132 — 0.2133 + 2.576+/(8.5196 x 106 + 8.6198 x 10—6)/5000)
= (—2.5082 x 107%, 5.0820 x 107°)

On the other hand, by Equation 1.63, to achieve an estimation with precision, say ¢ = 0.001, and
100(1 — o) confidence, the number of data required to collect is given by

2 (.2 >
25 /2(02368 + 03368)
c2 ’

Take o« = 0.01, then zg.gp5 = 2.576 and we have

22 005 (03368 + Todes) _ 2.576 x (8.5196 x 10~° + 8.6198 x 10~°
c? 0.0012

) ~ 114.

If we assume we do not know the variances, but we know that o363 = 09365, by Equation 1.67,
the number of traces to collect is given by

22’&/2p_2><2.5762><8.5697><10_6N114
2 0.0012 T
where
M—1)s24+ (M —1)s2 2 +5s2 51 1076 + 8.61 10-6
32:()52+ ()y:z y _ 85196 x 1070 +8.6198x 106 _ . g
P M+ M —2 2 2

Remark 4.2.1. We note that the sample variances of L2368 and L2368 are very close. This is expected
as it has been shown in Equation 4.3 that the variances 03,45 and 0,344 are both equal to the variance
of the noise at time sample 2368.

For now, we have seen how to analyze the leakage at one particular time sample by approximat-
ing its distribution with a normal distribution. Similarly, we can also approximate the distribution
of leakages across different time samples. In this case, we consider a random vector (see Defini-
tion 1.7.9) instead of a random variable. Thus, we would approximate the distributions induced by
the leakages as multivariate normal distributions (Gaussian distributions). It can be seen from Defi-
nition 1.7.10 that to find a good Gaussian distribution for approximating the noise/leakage, we just
need to approximate the mean vector and covariance matrix. We will see in Section 4.3.2.3 that the
profiling phase of the template attack is exactly to calculate estimations for the mean vector and the
covariance matrix. In reality, leakages at different time samples are correlated (see Definition 1.7.8).
However, the effort to calculate the covariance matrix grows quadratically with the number of con-
sidered time samples. Thus, in practice, only a small part of the traces would be profiled with a
non-diagonal covariance matrix (see Example 1.7.24).

4.2.3 Leakage Assessment

In the rest of this chapter, we will see various attacks on cryptographic implementations. As a devel-
oper, one might want to evaluate the implementation and conclude if it is vulnerable to SCA. On the
other hand, different new attacks are being developed, and it is impractical to verify the security of
our implementation against all of them. Leakage assessment aims to solve this problem by analyz-
ing the power trace and answering whether any data-dependent information can be detected in the
traces of the DUT.

150

Note

We note that the leakage assessment methods do not provide any conclusions in
cases where data-dependent leakage is not detected. Therefore, the absence of data-
dependent leakage indicated by a particular method does not prove that the imple-
mentation is leakage-free.

In this part, we discuss a method for leakage assessment based on student’s t—test and Welch’s
t—test (see Section 1.8.3). The methodology is also referred to as test vector leakage assessment (TVLA).

Consider a DUT running PRESENT encryption and fix a time sample ¢. We also fix an interme-
diate value v. For example, the input plaintext or one Sbox output. We take the signal as the part
of the leakage related to v. Let L; and L} denote the leakages at time sample ¢ corresponding to two
encryptions with different fixed values of v.

Example 4.2.4 (Example of L; and L}). If we take v to be the plaintext, following the convention, we
require the key to be the same, then L, and L; would correspond to encryptions of two different fixed
plaintexts with the same key. For example, we can take Fixed dataset A and Fixed dataset B as samples
of L; and L] for the first round of the encryption.

If we take v to be the Oth Sbox output in the first round of PRESENT, then L, and L; would
correspond to encryptions that result in two different Oth Sbox outputs. For example, let us take
Random dataset, we have 634 traces corresponding to v = 0 and 651 traces corresponding to v = F.
Those two sets of traces provide us with samples of L; and L} for the first round of the encryption.

As discussed before, when the signal is fixed, we assume a normal distribution can approximate
the distribution induced by L;. We can write

Li=X;+ Ny, L,=X/+N,

with
Ly~ N(Mta Jt2)7 L:ﬁ ~ N(M;fa Ut2)'

Since (see Equation 4.2)
Ly = X; + Ny,

and the signal X; is a constant, the variance of L; is given by the variance of N; and the mean of L; is
given by the sum of the constant X; and the mean of V;, as shown in Equation 4.3. In other words,

w =X +E[Ny], o}f = Var(V,). (4.9)

Similarly, we have
ny = X{+E[N], 022 = Var(NN;)

As the noise is independent of the signal, we have V; = N/. Consequently,
pe—Xe = py— Xp, of =0’ (4.10)

Before going into details about the TVLA methodology, we recall hypothesis testing techniques
from Section 1.8.3. We can use those techniques to test hypotheses about y; and 1.

Example 4.2.5 (Example of a hypothesis). If we are interested in whether y; = 0, we can set a hy-
pothesis that p; = 0.

Example 4.2.6 (Example of two-sided hypothesis testing concerning ;). Let v be the plaintext and
we use Fixed dataset A (see Section 4.1) as a sample for L; (i.e. L; denotes the leakage at time sample ¢
for one round encryption of the plaintext ABCDEF 1234567890 with round key FEDCBA0123456789).
Fix t = 2368, which gives the highest peak in Figure 4.3 and corresponds to the computation of
pLayer. Recall that in Example 4.2.1, we have calculated a sample mean of lo36s ~ 0.2132 for Loses.
We would like to know if 1123635 = 0. Following Equation 1.68, we have null and alternative hypothe-
ses given by
Hy : piozes = 0, Hiy @ pages # 0.

151

Suppose we know the variance is equal to the sample variance we have computed in Exam-
ple 4.2.1, namely we assume

03365 = 8.5196 x 107¢, which gives 09365 ~ 2.9188 x 107>,

There are in total 5000 traces in Fixed dataset A. For a test with significance level o = 0.01, the critical
region is given by Equation 1.69, with (see Equation 1.72)

%020 2.9188 x 1073 _4
c= = 2576 x " ~1.06 x 1074,
v/5000 v/5000

where 2. g05=2.576 (see Table 1.4). Since the sample mean
loggs ~ 0.2132 > ¢,

we reject the null hypothesis and conclude that 112365 7# 0. The probability that our decision is wrong
is given by av = 0.01.

Example 4.2.7 (Example of one-sided hypothesis testing concerning (). With the same notation as
in Example 4.2.6, suppose we know that the mean of Lasss, (12363, is at least 0, we would like to know
if it is bigger than 0. We set 119 = 0 in Equation 1.75 and get the following null hypothesis and the
alternative hypothesis
Ho : poses = 0, Hi : pages > 0.
First, let us assume we know the variance is equal to the sample variance we computed in Exam-

ple 4.2.1. There are in total 5000 traces in Fixed dataset A, for a test with significance level v = 0.01,
the critical region is given by Equation 1.76, with (see Equation 1.77)

2.326 x 2.91 10-3
o268 _ 2.326 X 29188 X 1077 g 1 o 1075,

C = %
001 /5000 /5000

where 2001 = 2.326 (see Table 1.4). Since our sample mean

losgs ~ 0.2132 > ¢,

we reject the null hypothesis and conclude that 12368 > 0. The probability that our decision is wrong
is given by av = 0.01.

Furthermore, we also would like to check how many traces are required for a test with significance
level o = 0.01. For this, we need to choose a value of c. Considering the value of the sample mean and
sample variance, let us choose ¢ = 0.001 in Equation 1.78. According to Equation 1.79, the number of

traces to collect is then) .
Od368 o 8.5196 x 10~ 9
2 Fa= 00012 X 2.326° ~ 46. (4.11)
Now, suppose we do not know the variance 02;45. Since the number of traces is big, according to
Equation 1.80, we compute

12368 0.2132
v/5000 = v5H000 X ——— = ~ 5165
" sa368 X 90188 x 103)

which is bigger than zp.01 = 2.326. Thus, we can reject the null hypothesis and conclude that z12365 >
0. The probability of a wrong decision is given by a = 0.01. As for the number of traces needed, by
Equation 1.81, we will use the sample variance and reach the same result as in Equation 4.11.

Example 4.2.8 (Example of two-sided hypothesis testing about 1, and p,). The same as in Exam-
ple 4.2.3, we take the leakages at ¢ = 2368 from the Fixed dataset B as a sample for Lf,s5. We have
computed the sample mean and sample variance for this random variable, given in Equation 4.8. We
would like to know if the mean of Lagss (1236s) and the mean of Liq (1hsgs) are the same. We set the
following hypotheses (see Equation 1.82)

) _ !
Hy : pyses = poses, Hi : flozes 7 12368

152

Assume we know the variances for both random variables are equal to the sample variances
that we have computed (see Equations 4.5 and 1.82). There are in total 5000 traces in both Fixed
dataset A and Fixed dataset B, for a test with significance level o = 0.01, the critical region is given by
Equation 1.83, with (see Equation 1.86)

8.5196 x 1076 + 8.6198 x 106
5000

02 0—/2
= 200051 | 22368 | TI68 _ o 576

~ 0. 1
5000 5000 0.00015,

where 2 005 = 2.576 (see Table 1.4). Since our sample mean

l,2368 — o368 =~ 0.0001 < ¢,

we accept the null hypothesis and conclude that 153455 = p236s. The probability that our decision is
wrong is given by a = 0.01.

Moreover, to check how many traces are needed for a test with significance level a = 0.01, we
choose ¢ = 0.001 in Equation 1.86. According to Equation 1.87, the number of traces to collect is then

5 028 + Ooies o 52 5 55196 % 1076 4 8.6198 x 1076
Tazm 2 T 0.0012

~ 114. (4.12)

In case we do not know the variances, since the number of traces in both datasets is 5000, follow-
ing the student’s t—test, we compute (see Equation 1.89)

I — lo368 0.0001
| 2368 / | = ~ 1.7 < 20.005-
35368—&-82%68 8.5196x10—64+8.6198x10—6
5000 5000

We accept the null hypothesis and conclude that p5355 = p236s. The probability that our decision is
wrong is given by a = 0.01.

Set ¢ = 0.001, then the number of traces needed for a student’s t—test with significance level
a = 0.01 is given by (see Equation 1.90)

2 2 -6 -6
+ 8.5196 x 10 + 8.6198 x 10
z§.005 52368 T 52368 2.5762 %

~ 114.
c? 0.0012

Example 4.2.9 (Another example of two-sided hypothesis testing about ;i and (). Similar to Exam-
ple 4.2.8, let us now look at a different time sample ¢ = 392. We can compute the sample mean and
sample variance of L3go with Fixed dataset A. They are given by

I392 =~ —0.0525, 5295 ~ 1.5141 x 107°.
With Fixed dataset B, we get the sample mean and sample variance of L4y, as follows
Thoy = —0.0501, s, ~ 1.4801 x 1075,
Similar to Example 4.2.8, we set the following hypotheses (see Equation 1.82)
Ho @ pagr = pao2, Hi : psgs # p3ge-

Let @ = 0.01. Then according to student’s t—test with significance level «, we compute (see Equa-
tion 1.89)

lho — 392 0.0024
5%92"’53292 1.5141x10—641.4801x10—6
~ 5000 5000

We reject the null hypothesis and conclude that pfg, # p1392. The probability that our decision is
wrong is given by a = 0.01.

Set ¢ = 0.001, then the number of traces needed for a student’s ¢—test with significance level
a = 0.01 is given by (see Equation 1.90)

2 2 —6 —6
o Shgo Sy o 15141 x 1076 4+ 1.4801 x 1076 _
200525 = 25767 x e ~ 20.

153

Example 4.2.10 (Example of one-sided hypothesis testing about ji, and f,)). With the same notations
as in Example 4.2.9, suppose we know that

/
H390 = 1392.

We would like to know if jifg, > fi392. Then we have the following hypotheses

Hy : pigy = pag2, Hi @ pigy > 1392

Firstly, suppose we know the variances for both random variables are equal to the sample vari-
ances that we have computed. There are 5000 traces in both Fixed dataset A and Fixed dataset B. For a
test with significance level a = 0.01, the value of c in the critical region given by Equation 1.92 is (see
Equation 1.93)

2 2 —6 —6
|62, + 02, \/1.5141 % 106 + 1.4801 x 10 iy
= ooy 93279802 5 506 ~ 5.692 x 10
€= %o 5000 % 5000 x5

where zg 01 = 2.326. Since

léQQ — l3920 = 0.0024 > ¢,
we reject the null hypothesis and conclude that 5, > pi392. The probability of this choice being
wrong is given by ae = 0.01.
Set ¢ = 0.001. Then, the number of traces to collect for a hypothesis test with a level of significance
a = 0.01 (2o = 2.326) is given by (see Equation 1.94)

Za(0392 + 058s) _ 2.326% x (1.5141 x 1079 + 1.4801 x 10-5)
c? 0.0012

Remark 4.2.2. According to Equation 4.10

~ 17.

Xi=X;, = = (4.13)

Then Example 4.2.8 concludes that when we take the signal to be part of the leakage related to the
plaintext value, the signals at time sample 2368 for one round encryption of plaintexts ABCDEF1234567890
and 84216BA484216BA4 with the same round key FEDCBA0123456789 are very likely to be equal,
according to our measurements Fixed dataset A and Fixed dataset B. The probability of the conclusions
being wrong is 0.01. On the other hand, Example 4.2.9 concludes that the signals at time sample 392
are likely to be different (with a probability of 0.01 being wrong).

Furthermore, we see that to decide if the signals are different at a particular time sample with
¢ = 0.001° and significance level 0.01 (i.e., probability of making wrong conclusions) we do not need
that many traces.

Next, let us consider v being the Oth Sbox output in the first round of PRESENT. In this case, we
can take L; to be the leakages for a fixed value of v at time sample ¢ and L; to be the leakages for
another fixed value of v at t.

Example 4.2.11. When we consider v to be the 0th Sbox output in the first round of PRESENT, there
are 16 different values of v that we can consider. Let L; and Lj denote the random variable for
leakages corresponding to v = 0 and v = F at time sample t. We would like to know if the signals at
time sample ¢t = 392 are the same for those two values of v.

Take the Random dataset. As mentioned in Example 4.2.4, we have 634 traces for v = 0 and 651
traces for v = F. We take those 634 (resp. 651) traces as a sample for L; (resp. L}). The same as in
Examples 4.2.8 and 4.2.9 we make the following hypotheses:

Hy : pingy = pi3e2, Hi @ pisgy # [1392.
Firstly, we compute the sample means and sample variances for L3gy and Lg,:

Tagg = —0.0425, 8299 ~ 2.2962 x 1070, Thy, ~ —0.0539, s, ~ 2.7378 x 107°.

*We note that this value of ¢ can be considered as a precision.

154

Let o = 0.01. Then following student’s {—test with significance level a we compute (see Equa-
tion 1.65)

o (634 —1)s3g, + (651 — 1)sgh, 633 x 2.2962 x 1076 + 650 x 2.7378 x 1076 —6
§2 = = ~ 2.5199 x 1075
P 634 + 651 — 2 1283

and (see Equation 1.88)

302 — lho| |—0.0425 + 0.0539)
~ = _
\/S%(L) V25199 %1070 x 31134 x 10

~ 128.7 > 20005 (20.005 = 2.576).

634

We reject the null hypothesis and conclude that p4g, # psg2. The probability that our decision is
wrong is given by a = 0.01.

Remark 4.2.3. Note that in Examples 4.2.8 and 4.2.9, the sample sizes (number of traces) are the same
(both are 5000), but in Example 4.2.11, the sample sizes are different for L; and Lj. Thus, instead of
using Equation 1.89 as in Examples 4.2.8 and 4.2.9, we applied Equation 1.88. But those two equations
are the same when the sample sizes are equal.

We have seen before that the leakage L; is dependent on the data being processed in the device.
In fact, as mentioned at the beginning of Section 4.2, some SCA attacks (see Sections 4.3.1, 4.3.3,
and 4.4.2) exploit the dependency of the leakage on certain intermediate values. If the leakage is not
exploitable, we would expect, at least, that the signals at time sample ¢ should be the same when the
only difference is the values of the data being processed. With our notations above, this means that
we would like to test if X; = X/, or equivalently u; = p} ((see Remark 4.2.2), for two different fixed
values of a certain intermediate value v.

Example 4.2.12. Continuing Remark 4.2.2 and the above discussion, we can conclude that the leak-
ages at time sample 392 for our implementation of PRESENT on our DUT are very likely to be vul-
nerable to SCA attacks.

Another approach to analyzing whether the leakage is exploitable is to consider the signals for a
tixed value of v and that for random values of v. Let L] denote the random variable corresponding
to the leakage at time sample ¢ for encryptions corresponding to random values of v. Let X and N/
be the random variables for the corresponding signal and noise. We have

LT = X! + N/

With our assumptions and modeling, the signal X; is a constant for a fixed value of v at time ¢.
When the value of v is random, X7 is itself a random variable that varies depending on v. It is not
easy to approximate the distribution induced by Lj in this case. However, following the convention,
we still use a normal distribution for the approximation.

To see that this makes sense, let us take the Random plaintext dataset and plot the histogram of
leakages at t = 392 across 5000 traces from this dataset. We get Figure 4.10. This corresponds to
random values of v when v is taken to be the plaintext. As another example, the histogram for
leakages at ¢ = 392 across the 10000 traces from the Random dataset is shown in Figure 4.11. In this
case, we can consider the leakage corresponds to random values of v when v is taken to be the Oth
Sbox output. Those two figures demonstrate that it is reasonable to approximate the distribution
induced by the leakage Lj with a normal distribution.

Suppose

L} ~ N1, 07?).

Since the noise is independent of the signal, we have N; = N/. By Equations 1.33, 1.36 and 4.9,
1 =E[X]]+E[N;], o2 = Var(X]) + Var(N}) = Var(X}) + 7.

We have
pe — Xe = py — E[X{], U;?#@?- (4.14)

155

600 |- n
<
=
o

5 400| |
3
5]
hS

g 200 8
Q0
g

0 — I I . - -

—9. 500 —5. 000 —4.50 —4. 000
Leakage 1072

Figure 4.10: Histogram of leakages at time sample ¢ = 392 across 5000 traces from the Random plain-
text dataset.

=
o
o
S

1 I|I“‘|‘I |
0 _-lII III.-__ |

| | | | |
—6.000 —5.500 —5.000 —4.500 —4.000
Leakage 1072

Number of occurrences

Figure 4.11: Histogram of leakages at time sample ¢t = 392 across 10000 traces from the Random
dataset.

Same as before, in case the leakage is not exploitable at time sample ¢, we expect the signal to be a
constant at ¢, namely
Xy = X{, andequivalently p = . (4.15)

Consequently, our hypotheses will be the same as in Examples 4.2.8,4.2.9, and 4.2.11. The difference
is that in this case, 072 # o7. For this reason, we apply Welch'’s ¢ —test instead of the student’s t—test.

Example 4.2.13. We consider the signal given by the plaintext value, i.e. v = plaintext. Let ¢t = 392.
Then we can take Fixed dataset A as a sample for L3go and Random plaintext dataset as a sample for L5,
We know that (see Example 4.2.11)

I302 = —0.0525, 8395 ~ 1.5141 x 1075,

We can also compute L
Iy ~ —0.0488, kg, ~ 1.1700 x 107°.

We would like to test if ;1; = p7. Thus, we set the following hypotheses
Hy : pgo = p3e2, Hiy : pisg0 # 1392
Let o = 0.01. Then following Welch’s ¢ —test with significance level & we compute (see Equation 1.91)

lago — 1T —0.0525 4 0.0488
e - L . 72.0 > 20.005-

5290 s52, 15141106 | 1.1700x10-5
5000 T 5000 5000 5000

156

We reject the null hypothesis and conclude that ujg, # p392. The probability that our decision is
wrong is equal to o = 0.01.

Example 4.2.14. Now we consider the signal to be given by the Oth Sbox output. For the fixed signal
we choose v = 0. Take the Random dataset. Let L; and L] denote the random variables corresponding
to leakages for v = 0 and random values of v at time sample ¢ respectively.

We know that there are 634 traces for v = 0. Fix ¢t = 392. In Example 4.2.11 we have computed

I302 = —0.0425, 8395 ~ 2.2962 x 1075,

For the random values of v, we can take the whole dataset, which contains 10000 traces, as a sample
for Lj. We have
5o ~ —0.0487, 8395 &~ 1.1624 x 107°,
Let o = 0.01. Then according to Welch’s t—test with significance level « we compute (see Equa-
tion 1.91)
lsg2 — lgo| | —0.0425 + 0.0487|

/2, N s12, \/2.2962x10—6 | L1624x10°5
634 T 5000 634 10000

We reject the null hypothesis and conclude that u3g, # p392. The probability that our decision is
wrong = o = 0.01.

~ 89.6 > 20.005-

The rationale of the TVLA methodology is that if the leakage is not exploitable, the encryptions
corresponding to two different intermediate values (or the encryption corresponding to one fixed
intermediate value and that to a random intermediate value) should exhibit identical signals. Then
according to Equation 4.13 (or Equation 4.15), the corresponding leakages will have the same means.
With the help of the student’s ¢—test (or Welch’s ¢t—test), we make hypotheses about means of leak-
ages and test if they are equal.

Recall that for student’s ¢t—test and Welch’s t—test (when the sample size is big), we need to
choose a significance level a and compare computations using our samples with a threshold 2, /; (see
Equations 1.88 and 1.91). For TVLA, following the convention, we set z,/, = 4.5. By Equation 1.43,
this threshold corresponds to
% =1—®(2,) = 1 — ®(4.5) = 1 — 0.9999966023268753 = 3.4 x 107,

The significance level is given by
ar~6.8x107°

This means that there is a 6.8 x 10~ percent chance that we would reject the null hypothesis (i.e.
conclude that the means are different) in case it is true (i.e. the means are in fact the same).
The steps for TVLA are as follows

TVLA Step 1 Identify the cryptographic implementation for analysis. In principle, TVLA can be used
for analyzing leakages of implementations for any type of algorithm. In practice, they are
mostly used for the analysis of symmetric block cipher implementations.

TVLA Step 2 Choose the intermediate value v. The choice of v determines how we measure our traces.
TVLA tests if different values of v result in different signals.

TVLA Step 3 Experimental setup and measure leakages. As we can imagine, for the actual attacks, ex-
perimental setups are crucial factors for success. For leakage assessment, it would be better
to carry out measurements with equipment that is expected to be used by attackers that we
would like to protect against.

We will prepare two datasets, denoted by 77 and Ts. To get the first dataset T, we choose a
fixed value for v. Then we randomly take M inputs for the cryptographic implementation
such that the value of v is equal to this fixed value. One trace is taken for each input.

For the second dataset T5, there are two options.

157

TVLA Step 4

a) Fixed versus fixed. Choose a different fixed value for v. Then randomly take M5 inputs
for the cryptographic implementation such that the value of v is equal to this fixed
value. One trace is collected for each input.

b) Fixed versus random. Randomly take M inputs for the cryptographic implementation
so that the value of v is random. One trace is collected for each input.

Let us represent those two sets of traces as follows
1) ,01 1 2) ,(2 2
7= (e,), ey, T =D e e

@ _ @ ;@ (@)
Each trace £ = (lj1 sl
For our illustrations, we will consider two choices of v — the plaintext and the Oth Sbox

output. When v is given by the plaintext, we take
T1 = Fixed dataset A, Ty = Fixed dataset B

) contains ¢ time samples (i = 1, 2).

for the fixed versus fixed setting and
Ty = Fixed dataset A, Ty = Random plaintext dataset

for the fixed versus random setting. For both cases, we will demonstrate the results for
M1 = M2 = 5000 and M1 = M2 = 50.

When v is given by the Oth Sbox output, we take
T1 = traces in Random dataset for v = 0, To = traces in Random dataset for v = F

for the fixed versus fixed setting. As discussed in Example 4.2.4, M; = 634, M, = 651. For
the fixed versus random setting, we choose

TJ1 = traces in Random dataset for v =0, Ty = Random dataset

and M; = 634, M = 10000. For all our traces, ¢ = 3600.

t-test for one time sample. Fix a time sample ¢. Let Lgl) and L§2) denote the random variable
corresponding to leakages at time sample ¢ for computations resulting in datasets 7; and T
respectively. Suppose

1 1 1)2 2 2 2)2
LY ~ N o), L ~ N o).

By definition (see Equations 1.49 and 1.53), we compute the sample mean and sample vari-

ance for Lgl) (resp. L§2)), denoted by lt(l) and s§1)2 (resp. lt(z) and 5§2)2);
Wl o @ 15
1 1 2
= Mlzljw Ly :Ezlﬁa
J=1 Jj=1
and
(1)2 1 < (1) m 2 (2)2 1 Mz) @ 2
5t :M1—1;<ljt _lt) y St :Mz—ljz;(ljt _lt >

Then we propose the following null and alternative hypotheses:
Hy: iV =, Hyp # . (4.16)

Depending on our setting, we choose between the student’s t—test and the Welch’s ¢ —test.
As we have discussed above, for the fixed versus fixed setting, the noise for both cases is
assumed to be the same and (see Equation 4.10)

1)2 2)2
W2 _ @2

hence the usage of student’s ¢t—test. In the fixed versus random setting, the noises are dif-
ferent, and we have (see Equation4.14)

0_151)2 75 0_(2)2

t 9

hence the application of Welch’s ¢ —test.

158

a) student’s t—test for the fixed versus fixed setting. When the second dataset 75 is measured
according to the fixed versus fixed setting, following the student’s ¢t —test, we compute
(see Equation 1.65)

(M — 1) 4 (M — 1)

2
p M+ My —2

and (see Equation 1.88)
l£1) B l§2)

. (4.17)
\/35(1/M1 1 1/M,)

t — value; :=

b) Welch's t—test for the fixed versus random setting. When the second dataset 75 is measured
according to the fixed versus random setting, following Welch’s t—test, we compute

D _ @
t — value; := — ¢ . (4.18)
S§1)2 S£2>2
o Ve

Then we compare the ¢t—value; with our threshold 4.5. In case
t —value; > 4.5, or t—value; < —4.5

we reject the null hypothesis. Following the previous discussions, this means that the signals
at time sample ¢ are different for computations with two fixed values of v (or for a fixed value
of v and random values of v). We conclude that there is a high chance that data-dependent
leakage appears at time sample ¢.

TVLA Step 5 Repeat TVLA Step 4 for all time samples ¢.

We note that when the t—value is between —4.5 and 4.5 for all time samples 1,2, ..., g, we cannot
conclude that the implementation is safe. As there might be other attacks that do not exploit the
dependency of leakages on the chosen v.

Now, we show some results of the TVLA on our datasets. Let us first take v to be the plaintext. For
the fixed versus fixed setting, we take Fixed dataset A and Fixed dataset B as samples for our analysis.
The t—values with student’s t—test (Equation 4.17) are shown in Figure 4.12, where we have used the
entire datasets and M = M» = 5000. We can see that most of the time samples have t—values outside
of the threshold. This is not surprising as the implementation does not have any countermeasures.
In Section 4.3.1 we will see that using this implementation, with just a few traces, we can recover the
first round key. If we reduce the number of traces for computing the t—values, we will get different
results. For example, when we take 50 traces, i.e., M1 = M = 50, we have Figure 4.13. Compared to
Figure 4.12, the absolute values of t—values are much smaller. This this shows that when the sample
size is bigger, it is more likely for us to capture information about the inputs from the leakages.

For the fixed versus random setting, t—values with Welch’s t—test (Equation 4.18) are computed
with Fixed dataset A and Random plaintext dataset. The results are shown in Figures 4.14 and 4.15 for
M, = M, = 5000 and M; = M = 50 respectively. Similarly, we also observe higher |t|—values
with more traces. Furthermore, compared to Figures 4.12 and 4.13, the |t|—values are much lower.
This shows that it is more likely for us to distinguish between leakages corresponding to two fixed
plaintexts rather than between leakages for a fixed plaintext and for random plaintexts.

Next, we take v to be the Oth Sbox output. We use Random dataset as samples for our random
variables corresponding to leakages. For the fixed versus fixed setting, we take the M; = 634 traces
for v = 0 as 71 and My = 651 traces for v = F as T». The t—values with student’s ¢t—test (Equa-
tion 4.17) are shown in Figure 4.16. For the fixed versus random setting, we take the M = 634 traces
for v = 0 as 7} and the whole dataset as T2 (M2 = 10000). Following Welch's ¢—test, the t—values
(Equation 4.18) are shown in Figure 4.18. Again, we also show the results when fewer traces are used
for the computations. The t—values can be found in Figures 4.17 and 4.19.

In summary, we have the following observations:

159

400
g 200
=
)
>
L
~200
—400

|
1,000

|
2,000

Time sample

|
3,000

Figure 4.12: t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with Fixed dataset
A and Fixed dataset B. The signal is given by the plaintext value and the fixed versus fixed setting is

chosen. Blue dashed lines correspond to the threshold 4.5 and —4.5.

60

40

20

t—value

—20

—40

Figure 4.13: t-values (Equation 4.17) for all time samples 1,2, ..

0

s M A AL Nl

|
1,000

|
2,000

Time sample

|
3,000

., 3600 computed with 50 traces from

Fixed dataset A and 50 traces from Fixed dataset B. The signal is given by the plaintext value and the

fixed versus fixed setting is chosen. Blue dashed lines correspond to the threshold 4.5 and —4.5.

* When more traces are used (i.e. when the sample size is bigger), it is more likely for us to cap-
ture information about the intermediate values from the leakages. We will see in Section 4.3.2.4
that more traces indeed indicate higher chances for the attacks to be successful.

* When v is given by the Oth Sbox output, the highest |t|—value is obtained at 392 for all cases we
have analyzed. We will see that this is the point of interest (POI) for our attack (Section 4.3.2).

e Compared to v being the plaintext, the |t|—values are in general smaller with much fewer time
samples crossing the threshold when v is given by the Oth Sbox output. This is unsurprising
as we would expect more computations to be correlated with the plaintext rather than a single

Sbox output.

160

150 |- N
100 - N
90 |- N

\l\

- ‘ i ") L | |
‘.gm:lluu‘v gt N PRI AR V) Lo S 1F TR o 1Y i

t—value

—100 - 8

| | |
0 1,000 2,000 3,000

Time sample

Figure 4.14: t-values (Equation 4.18) for all time samples 1,2, ..., 3600 computed with Fixed dataset A
and Random plaintext dataset. The signal is given by the plaintext value and the fixed versus random
setting is chosen. Blue dashed lines correspond to the threshold 4.5 and —4.5.

10

iR

(IR

t—value

—10

| | |
0 1,000 2,000 3,000

Time sample

Figure 4.15: t-values (Equation 4.18) for all time samples 1,2, ..., 3600 computed with 50 traces from
Fixed dataset A and 50 traces from Random plaintext dataset. The signal is given by the plaintext value
and the fixed versus random setting is chosen. Blue dashed lines correspond to the threshold 4.5 and
—4.5.

4.2.4 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is commonly used in electrical engineering and signal processing, and the
general definition is
Var(signal)

R =
SN Var(noise) ’

where Var refers to the variance of a random variable (see Equation 1.35).
In our case, for a fixed time sample ¢, X; represents the signal, which is part of the leakage relevant
to our attack. And the SNR at time ¢ is given by

Var(X;)

R; = .
SNR; Var (V)

(4.19)

Var(X;) measures how much the leakage varies at time sample ¢ due to the signal. Var(/V;) measures
how much the leakage varies due to the noise. Thus, SNR quantifies how much information is leaked
at time sample ¢ from the measurements. The higher the SNR, the lower the noise.

Example 4.2.15. Suppose we are interested in the Hamming weight of an 8—bit intermediate value at
time sample ¢. In particular, the intermediate value we would like to analyze is from F3. We further
assume that the leakage L, is equal to the modeled leakage following the Hamming weight leakage

161

100 |- N

t—value

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.16: t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. Ty contains M; = 634 traces and T, contains My = 651 traces. The signal is given by
the Oth Sbox output and the fixed versus fixed setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and —4.5.

40 n

t—value

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.17: t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. Both T and T> contain 50 traces (i.e. M; = My = 50). The signal is given by the
Oth Sbox output and the fixed versus fixed setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and —4.5.

model (Equation 4.4). Thus X; = wt(v) for v € F5. Then the variance of the signal is given by
Var(wt (v)) for v € F3. By definition (Equation 1.31),

L (8) 1¢ 8!
E[wt(v)] = |2| %F:Bwt _8; <Z>_28;(21)|(8@)1
8§ 7! 8 o~ [T\ 8x27
- @—1)'(7—(1—1))'28;(;)_ x !
And
W@ = LS wie) o iye(B)oly 8
E[t()} |Fz23|v€ZFg t() 28; <Z> 28; (i—l)!(S—z’)!

162

100

80

60

t—value

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.18: t-values (Equation 4.18) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. T1 contains M = 634 traces and T contains My = 10000 traces. The signal is given
by the Oth Sbox output and the fixed versus random setting is chosen. Blue dashed lines correspond
to the threshold 4.5 and —4.5.

10

i il hd

t—value

e H|h|||'|u||||\.|“ Imlﬂu i

—10

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.19: t-values (Equation 4.17) for all time samples 1,2, ...,3600 computed with traces from
Random dataset. Both T and T3 contain 50 traces (i.e. M; = My = 50). The signal is given by the
Oth Sbox output and the fixed versus random setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and —4.5.

- > 7i<¢_2><66iz—2 +i(> -5 27”]-26%(?)

i=2 Jj=0
— ?15(27-1-7><26):22+7><2:18.
By Equation 1.35,
Var(wt (v)) = E [wt (fv)ﬂ —Efwt(@)? =18 — 42 =2.
Let 07 denote the variance of the noise N;. We have

Var(X;) Var(wt(v)) 2
SNR = = = —.
Var(NV;) o? o?

Example 4.2.16. In this example, let L, denote the random variable corresponding to the leakage of
one round of PRESENT encryption at time ¢t. We take the Random dataset (see Section 4.1) as a sample
for L;. Suppose we are interested in the exact value of the Oth Sbox output in the first round of
PRESENT. Let us denote this intermediate value by v.

163

Fix a time sample ¢. X; is given by the part of the leakage related to the value of v. To compute
Var(X;), we first divide the traces in Random dataset into 16 sets according to the value of v. Let us
denote those 16 sets of traces by A1, A, ..., A6, where A, contains traces corresponding tov = s —1.

As discussed in Section 4.2.1, for a fixed value of v, X; is a constant, the leakage and the noise can
be modeled by normal random variables. Let L; ; and IV; ; denote the random variables correspond-
ing to leakage and noise at time sample ¢ for v = s — 1. Let X; 5 denote the constant leakage in this
case.

Similar to Example 4.2.1, we can approximate the mean of L, ; using sample mean computed with
set As. For example, take ¢t = 600, we have

l600’1 ~ 008212, l600,2 =~ 008221, l60073 ~ 008209,

By Equation 4.3, for any s,
Xt,s =E [Lt,s] —E [Nt,s] . (4:20)

Variance of X; is given by variance of X; ; values, we have
Var(X;) = Var(E [L; s] — E [N¢s]).

Since any information related to v is contained in X;, which is independent of N, E [V,] is a constant
for all s. We have (see Equation 1.36)

Var(X;) = Var(E [L s]),
which can be estimated with the sample variance of E [L; |. For ¢ = 600, we have
X0 ~ 1.0088 x 107%.

By Equation 4.2,
Var(N;) = Var(L; — Xy).

On the other hand, since E [V, 4] is a constant for different values of s, by Equations 1.36 and 4.20,
Var(L; — E[L;,]) = Var(L; — X; s — E[Nys|) = Var(L; — Xy 5) = Var(L; — Xy).
Thus Var(/V;) can be approximated by the sample variance of L; — E [L; 5]. For ¢t = 600, we have
$Ngoy & 6.4184 x 107°.

And the SNR at time sample 600 is given by

Var(Xeoo) _ 5%ge _ 1.0088 x 107%

SNRgoo = ~ _
07 Var(Neoo) ~ 8%, 64184 x 106

~ 0.00157.

Example 4.2.17. For now, we have discussed the definition of SNR for one point in time. With the
same method as in Example 4.2.16, we can compute the sample variance for Var(X;) and Var(V;), as
well as SNR values for all time samples. They are shown in Figures 4.20, 4.22, and 4.21, respectively.

We can see that the shape of variance of noise has similarities to one round of PRESENT compu-
tations (e.g. Figure 4.3). This is reasonable since most of the leakage is not related to v.

Furthermore, the peaks for the variance of signal and SNR correspond to each other. The first two
peaks are likely related to AddRoundKey and sBoxLayer. The peaks after 1000 are probably caused
by the permutation of the 4 bits of v (the Oth Sbox output). These observations can be confirmed by
comparing them to Figure 4.3. In particular, we can deduce that the peak at ¢ = 392 is related to the
Oth Sbox computation — as observed in Figure 4.3, sBoxLayer starts from around time sample 382.

Example 4.2.18. We again look at the Random dataset. Instead of the exact values of v as in Exam-
ple 4.2.16, we focus on the Hamming weight of the Oth Sbox output, i.e. wt (v). Then, in this case, for
a fixed time sample ¢, we divide the traces into five sets according to the value of wt (v). Let us denote
those five sets of traces by A, Ag, ..., A5, where A, contains traces corresponding to wt (v) = s — 1.
Following similar computations as in Example 4.2.16, for ¢t = 600, we have

l60071 =~ 0.08212, 1600,2 =~ 0.08206, l60073 ~ 0.08214, l60074 ~ 0.08211, l60075 ~ 0.08206.

164

10-°
T
=2
=]
g
wn
£) f
Gy
o
5
=]
o]
205 .
>
2
o,
N O A P N e
| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.20: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the exact value of the Oth Sbox output.

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.21: SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the Oth Sbox output.

And

$Xee & 11043 x 1072, s}, ~6.4271 x 107°, SNRgoo ~ 0.0001718.

The results for all time samples are shown in Figures 4.23, 4.24, and 4.25.

The sample variance of the noise is very similar to Figure 4.22 and also resembles the leakage of
PRESENT computation since most of the leakage is not related to wt (v). The peaks in the variance
of signal and SNR also correspond to each other. Compared to Figure 4.21, the locations of the peaks
are similar. It is worth noting that the highest peak in both Figures 4.21 and 4.24 are at time sample
392. As mentioned in Example 4.2.17, this time sample corresponds to the computation of the Oth
Sbox in sBoxLayer. We also note that Figure 4.24 has a higher SNR value than Figure 4.21 at this
point. This suggests that the Hamming weight leakage model is closer to our DUT leakage than the
identity leakage model.

Normally in DPA attacks, we would like to focus on time samples where the corresponding SNRs
are high. We refer to those time samples as points of interest (POls).

Example 4.2.19. Continuing Example 4.2.17, the time sample with the highest SNR is given by ¢ =
392. We can then take this point as our POL Or, we can also take a few time samples that achieve the
higher SNRs. For example, the top three SNRs are obtained at ¢t = 392,218, 1328.

Similarly, suppose we focus on the Hamming weight of the Oth Sbox output. Following the results
from Example 4.2.18, in case we take just one POI, we have ¢t = 392. And for three POIs, we have
t = 392,1309, 1304.

Those POlIs will be further used for our attacks in Section 4.3.2.

165

1070

Sample variance of the noise

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.22: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the exact value of the Oth Sbox output.

.107°
T
2
=]
%0 1.5 B
(]
4
2 4] |
g
g
ke
—
T 051 |
2
o
2 N I
- B e L
| | | |
0 392 1,000 2.000 3.000

Time sample

Figure 4.23: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the Hamming weight of the Oth Sbox output.

Example 4.2.20. As another example, suppose instead of the exact value or Hamming weight of the
Oth Sbox output v, we are interested in the Oth bit of v. With the same dataset Random dataset, we
divide the traces into two sets A;, Ay, corresponding to the Oth bit of v equal to 0 and 1 respectively.
Following similar computations as in Example 4.2.16, for ¢t = 600, we have

l60071 ~ 0.08206, l60072 ~ 0.08216.

And
$Xe & 2-6879 x 1077, s, ~ 6.4256 x 107°, SNRggo ~ 0.0004183.

The results for all time samples are shown in Figures 4.26, 4.27, and 4.28.

We can see that Figure 4.28 is similar to Figures 4.22 and 4.25. Compared to Figures 4.21 and 4.24,
there are fewer peaks in Figure 4.27. Furthermore, the highest peak is not around the sBoxLayer, but
during pLayer computation. This is expected since now we only consider one bit instead of four bits
of v.

4.3 Side-Channel Analysis Attacks on Symmetric Block Ciphers

In this section, we will discuss two types of attacks on symmetric block cipher implementations: dif-
ferential power analysis (DPA) in Sections 4.3.1, and 4.3.2, as well as side-channel assisted differential
plaintext attack (SCADPA) in Section 4.3.3.

166

6 N
4+ N
et
Z,
n
2 N
0 “LLL N A A e .
| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.24: SNR for each time sample, computed using Random dataset. The signal is given by the
Hamming weight of the Oth Sbox output.

1070

Sample variance of the noise

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.25: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the Hamming weight of the Oth Sbox output.

4.3.1 Non-profiled Differential Power Analysis Attacks

As mentioned in Section 4.2, DPA exploits the relationship between leakages at specific time samples
and the data being processed in the DUT. In this subsection, we will focus on the non-profiled setting,
where we assume the attacker only has access to the target device (or measurements from the target
device) and they aim to analyze the side-channel leakages to recover the master key of a symmetric
block cipher.

Attacker assumption. In more detail, we assume the attacker has the knowledge of the plaintext and
the goal is to recover the very first round key used at the beginning of a symmetric block cipher —
for some ciphers, e.g. PRESENT, this is the first round key; for some ciphers, e.g. AES-128, this is
the whitening key, which is equal to the master key. We note that after getting this round key, for
some ciphers, e.g. AES-128 (see Remark 3.1.4), the master key can be found. For some ciphers, e.g.
DES and PRESENT-80 (see Remarks 3.1.1 and 3.1.5), part of the master key can be found, and the
remaining bits can be recovered by brute force. Otherwise, with the knowledge of this round key, the
same attack method can be used to recover the next round key. In most cases, two round keys are
enough to reveal the full master key using the reverse key schedule.

Similar attack strategies apply if we assume the attacker has the knowledge of the ciphertext and
aims to recover the last round key. Furthermore, we also assume that the attacker has certain knowl-
edge of the implementation. For example, how to interface with the encryption routine, whether
the implementation is round-based or bit-sliced, whether the computation is executed serially or in

167

106

Sample variance of the signal

O i It Al r LL

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.26: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the Oth bit of the Oth Sbox output.

1 [.
faiet
Z
n
0.5 i
O " LL 4 "
| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.27: SNR for each time sample, computed using Random dataset. The signal is given by the
Oth bit of the Oth Sbox output.

parallel, or whether some types of countermeasures are present.

4.3.1.1 Non-profiled DPA Attack Steps

A non-profiled DPA attack on symmetric block cipher implementations consists of the following

steps:

DPA Step 1

DPA Step 2

DPA Step 3

Identify the target cryptographic implementation. DPA attacks can be applied to unprotected
implementations of any symmetric block ciphers that have been proposed so far. As a running
example, we will look at the computation of PRESENT.

Experimental setup and measure leakages. The efficiency and success of the attack are highly
dependent on the measurement devices the attacker has access to. For our illustrations, we
follow the experimental settings as described in Section 4.1.

Suppose we have taken measurements of the target implementation with M, plaintexts. For
J=1,...,M,letl; = (l{, lé, e lg) denote the power trace corresponding to the jth plaintext,
where ¢ is the total number of time samples in one trace. For our attacks, we will use the
Random plaintext dataset (see Section 4.1). In particular, we have ¢ = 3600 and M,, = 5000.

Choose the part of the key to recover. DPA attack is normally carried out in a divide-and-
conquer manner. In particular, we focus on a small part (e.g. a nibble, a byte) of a round key in
each attack and each part of the round key can be recovered independently. With the inverse

168

1070

Sample variance of the noise

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.28: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the Oth bit of the Oth Sbox output.

DPA Step 4

DPA Step 5

DPA Step 6

key schedule, one (e.g. for AES) or two (e.g. for PRESENT, DES) round keys will reveal the
master key (see Remarks 3.1.1, 3.1.4, and 3.1.5). Let k denote the target part of the key and let
M}, denote the number of possible values of k. For our attacks, we will focus on the Oth nibble
of the first round key for PRESENT and M, = 16.

Choose the target intermediate value. To recover the part of the key chosen in the last step, we
exploit relationships between leakages and a certain intermediate value being processed in the
DUT. The goal is to gain information about this intermediate value, which reveals information
about our chosen part of the key. Let v denote the target intermediate value. We require that
there is a function ¢, such that

v = ¢(k,p),

where p denotes (part of) the plaintext. For our attack, to recover the Oth nibble of the first
round key of PRESENT, we will target the Oth Sbox output of the first round. Then we have

v = SBpresent (k @ p),
where k and p denote the Oth nibble of the first round key and that of the plaintext.

Compute hypothetical target intermediate values. By our choice of the target intermediate
value, a small part of the key is related to it. Thus, when we make a guess of this part of
the key, with the knowledge of the plaintext we can obtain a hypothetical value for our target
intermediate value. In particular, for each key hypothesis &; of k, and each (part of the) plaintext
pj, we can compute a hypothesis for v, denoted v;;, as follows:

i)ij:go(k:i,pj), i:1,2,...,Mk, j:1,2,...,Mp.

For our illustration, with each key hypothesis of the Oth nibble of the first round key, and each
plaintext, we have a hypothetical value for the Oth Sbox output:

~

ﬁij = SBPRESENT(ki EBpj), 1=1,2,...,16, j7=1,2,...,5000,

where p; is the Oth nibble of the plaintext corresponding to the attack trace £;. Furthermore, we
set
ki=i-1, i1=1,2,...,16.

Choose the leakage model. For each hypothetical target intermediate value, we can compute
the hypothetical signal depending on our leakage model

g‘fij ::L(@ij)—noise, i:1,2,...,Mk, jZl,Q,...,Mp,

169

where we subtract the noise component from the leakage model. For example, if we choose the
Hamming weight leakage model, according to Equation 4.4, we have

j'fij:Wt('iJij), i:1,2,...,Mk, j:1,2,...,Mp.

In our analysis, we will consider the identity leakage model and the Hamming weight leak-
age model. In Section 4.3.2.2 we will discuss another leakage model obtained by profiling the
device.

DPA Step 7 Statistical analysis. In this step, we aim to use a statistical distinguisher to distinguish the
correct key hypotheses from the rest. In this book, we will focus on correlation coefficient (see
Definition 1.7.11). For other methodologies, we refer the readers to, e.g. [MOP08, Chapter 6].

For a fixed key hypothesis k;, we view the modeled signal as a random variable J{; that varies
when the plaintext changes. If we fix a time sample ¢, we also consider the leakage at this time
sample as a random variable L;. Then a sample for this pair of random variable (3(;, L;) is
given by

{(J{ij,z{) ‘ j:1,2,...,Mp}.

We would like to know how good the modeled signals are compared to the actual leakages
for each key hypothesis. For the correct key hypothesis and the time samples corresponding to
POlIs, we expect the modeled signals to be “most” correlated to the actual leakages as compared
to other key hypotheses and time samples. To measure how correlated are the leakages and
modeled signals, we adopt the notion of correlation coefficient for further analysis. For each
key hypothesis k; (t =1,2,..., M) and each time sample ¢ (t = 1,2,...,q), we compute the
sample correlation coefficient (see Example 1.8.1), denoted by r; ¢, of H; and L;:

Pyt (wa 36) (1 — 1)

\/Z \/ZMP ZJ

In our case,
S0P (3 — I —)
\/25000 4 — 70) \/Zsooo lj B E)Q,

Since the target intermediate value v we have chosen will be processed in our DUT at certain
points in time, we expect the leakages at those corresponding time samples to be correlated to v.
Those time samples are our POIs. If a good leakage model (i.e. a model that is close to the actual
leakage of the DUT) is chosen, we expect H; and L; to be correlated for the correct key hypothesis k;
and POlIs t. Thus, the key hypothesis that achieves the highest absolute value of r;; is expected to be
the correct key. Furthermore, the time samples that achieve higher absolute values of r; ; will be our
POlIs in the attack.

In practice, if all r;;s are low, we will need more traces for the attack.

i=1,2,...,16, t=1,2,...,3600. (4.21)

Note
According to Equation 4.1, the correct value of the Oth nibble of the first round key
is given by 9.

Example 4.3.1. As a simple example to illustrate how the sample correlation coefficient can be com-
puted, suppose we obtained a sample

{(1,11),(0,9), (1,12), (1, 14), (0,9) }
for a pair of random variables (U, W). Then the sample mean for U is given by

140414140 3

) S

170

And the sample mean for W is given by

. 114+9+124144+9 55
w = 3 :€:11.

The sample correlation coefficient for U and W is given by

iy (ui — W) (wi — W)

V2 (- 022 (w; —)2
0.4 %0+ (—0.6) x (—2) + 0.4 x 1+ 0.4 x 3+ (—0.6) x (—2)

~ (0.861.
V042 x 34+ 0.62 x 2¢/22 + 1 432 422
4.3.1.2 Identity Leakage Model
Let us first consider the identity leakage model. Then in DPA Step 6, we have
Hij = vy, i=1,2,...,16, j=1,2,...,5000.
Example 4.3.2. For the Random plaintext dataset, we have
pP1 = 97 P2 = C.
As mentioned in DPA Step 5, 1%1 =0, 1%2 = 1. Then according to Table 3.11,
H11 = D11 = SBpresent(k1 @ p1) = SBpresent(0 @ 9) = SBpresent(9) = E = 14
2 = 12 = SBpresenT(k1 © p2) = SBpresenT(0 © C) = SBpresENT(C) = 4 = 4
Ho1 = 21 = SBpresent(k2 © p1) = SBpresenT(1 © 9) = SBprEsEnT(8) = 3 = 3,
Haa = w22 = SBpresenT(k2 © p2) = SBpresenT(1 @ C) = SBpresent(D) = 7 = 7.
The sample correlation coefficients r;; (¢t = 1,2,...,3600) for ¢ = 1,2,...,16 are shown in Fig-

ure 4.29. We can see that the blue plot has much bigger peaks than the rest, which correspond to
k10 = 9. This is the correct Oth nibble of the round key as given in Equation 4.1. The plot of 70 (cor-
responding to the correct key hypothesis 9) is shown in Figure 4.30. We can also deduce that time
samples that achieve those peaks in Figure 4.30 correspond to the time when v (the Oth Sbox output)
is being processed. The first cluster of peaks is most likely caused by sBoxLayer computation and
the other peak clusters are related to permutations of bits of v in pLayer. Those observations agree
with the duration of each PRESENT round operation in Figure 4.3. We also notice that the biggest
peak in Figure 4.30 is obtained at ¢ = 392, which corresponds to the point with the highest SNR from
Figure 4.21 (Example 4.2.17).

For further illustration, the plots of 7;; (t = 1,2,...,3600) for i = 1,5, 14 (corresponding to key
hypotheses 0, 4, D) are shown in Figures 4.31, 4.32, and 4.33 respectively. Comparing those figures
with Figure 4.30, we can see some peaks appear at similar time samples in all figures. This is due
to the fact that 7(;s are not independent random variables and for those time samples ¢, J(;s are also
correlated with [, for i # 10.

Remark 4.3.1. The correlation between };s also influences the magnitude of the correlation coeffi-
cients for the wrong key hypotheses. If the correlation between J{;s is higher, we would also see
higher peaks in some wrong key hypotheses. For AES, the correlations between the first AddRound-
Key outputs are higher than correlations between the first SubBytes operation outputs, that is why
in DPA Step 4, we chose the target intermediate value to an Sbox output.

4.3.1.3 Hamming Weight Leakage Model

In this part, let us consider the Hamming weight leakage model. In DPA Step 6, we have

Hij = wt(dy;), i=1,2,...,16, j=1,2,...,5000.

171

Sample correlation coefficient

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.29: Sample correlation coefficients r; ; (i = 1,2, ..., 16) for all time samplest = 1,2, ..., 3600.
Computed following Equation 4.21 with the identity leakage model and the Random plaintext dataset.
The blue line corresponds to the correct key hypothesis k19 = 9.

1
=

k3

(]

€ 05] .
3

o

3

£ 0

<]

&

S

< 05 .
o

g

<

wn

_1 | | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.30: Sample correlation coefficients 719 ; (corresponds to the correct key hypothesis 9) for all
time samples ¢t = 1,2,...,3600. Computed following Equation 4.21 with the identity leakage model
and the Random plaintext dataset.

Example 4.3.3. Continuing Example 4.3.2, in this case, we have

Hip = wt (ﬁll) =wt (E) =3
Hip = Wt(’f)ll) :Wt(4) =1
j‘fgl = wt (@11) = Wt(3) =2
Hoy = Wt(’ﬁll) :Wt(7) =3
The sample correlation coefficients r;; (t = 1,2,...,3600) for ¢ = 1,2,...,16 are shown in Fig-

ure 4.34. The same as in Figure 4.29, the blue plot has much bigger peaks than the rest, which corre-
sponds to k19 = 9. The plot of 710, is shown in Figure 4.35. The time samples that achieve peaks in
this plot are similar to those in Figure 4.30. Plots of r; ; for 7 = 1, 5, 14 are shown in Figures 4.36, 4.37,
and 4.38.

Remark 4.3.2. We note that the attacks we have seen recover one nibble of the first-round key. The
other nibbles can be recovered independently with a similar method using the same traces.
4.3.2 Profiled Differential Power Analysis

In this subsection, we will consider a profiled setting. In particular, we assume the attacker has ac-
cess to a clone device and can characterize the leakages of the clone device in the profiling phase before

172

0.5 .

Sample correlation coefficient
o

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.31: Sample correlation coefficients r; ; (corresponds to a wrong key hypothesis 0) for all time
samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity leakage model and
the Random plaintext dataset.

1
=

g

O

£ 05] .
g

g

3

0

]

1

S

g —05| .
[oN

g

3]

wn

_1 | | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.32: Sample correlation coefficients 75 ; (corresponds to a wrong key hypothesis 4) for all time
samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity leakage model and
the Random plaintext dataset.

attacking the target device in the attack phase.

Attacker assumption. We assume the attacker has knowledge of the plaintext and the goal is to
recover the very first round key used in the encryption of a symmetric block cipher — for some ciphers,
e.g. PRESENT, this is the first round key; for some ciphers, e.g. AES, this is the whitening key, which
is equal to the master key. Similar attack strategies apply if we assume the attacker has knowledge
of the ciphertext and aims to recover the last round key. We also assume the attacker has knowledge
of the detailed implementation so that the same program can be implemented by the attacker on the
clone device. This is different from the non-profiled setting where only certain basic knowledge of
the implementation is required.

For our illustrations, we suppose the Random dataset is obtained from a clone device and the
Random plaintext dataset is from the target device. Then before the attack, we can analyze the Random
dataset to obtain more information about the leakage behavior of the DUT in the profiling phase.

The first major step in the profiling phase is to find the POIs, namely, time samples that will give
us more information or with better signal. After identifying the POlIs, in the attack phase, instead of
computing the sample correlation coefficients for all time samples, we can just focus on the POls.

173

0.5 |

Sample correlation coefficient
o

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.33: Sample correlation coefficients 714, (corresponds to a wrong key hypothesis D) for all
time samples t = 1,2,...,3600. Computed following Equation 4.21 with the identity leakage model
and the Random plaintext dataset.

1

Sample correlation coefficient

_1 | | | |
0 392 1,000 2,000 3,000
Time sample
Figure 4.34: Sample correlation coefficients r; ; (i = 1,2, ..., 16) for all time samplest = 1,2, ..., 3600.

Computed following Equation 4.21 with the Hamming leakage model and the Random plaintext
dataset. The blue line corresponds to the correct key hypothesis kg = 9.

4.3.2.1 Profiled DPA Attack Steps
The detailed steps for a profiled DPA attack are as follows:

P-DPA Step 1 Identify the target cryptographic implementation. This step is the same as DPA Step 1 in
Section 4.3.1.1. As a running example, we will look at the computation of PRESENT.

P-DPA Step 2 Measurement of profiling traces. We first collect a set of traces for profiling using the clone
device with random plaintexts and random keys. Those traces are called the profiling traces.
Note that we assume the attacker has knowledge of the plaintexts and the keys. Suppose
there are in total M), profiling traces and each trace contains ¢ time samples. For our illus-
trations, we will use the Random dataset as profiling traces, then M, = 10000, and ¢ = 3600.

P-DPA Step 3 Choose the part of the key to recover. This step is the same as DPA Step 3 in Section 4.3.1.1.
Let k denote the target part of the key and let M/}, denote the number of possible values of .
For our attacks, same as in Section 4.3.1.1, we will focus on the Oth nibble of the first round
key for PRESENT and M;, = 16.

P-DPA Step 4 Choose the target intermediate value. This step is the same as DPA Step 4 in Section 4.3.1.1.
Let v denote the target intermediate value. We require that there is a function ¢, such that

v = ¢(k,p),

174

1
=

kS

(]

£ 05] .
8

=}

3

£ 0

4]

3

S

L 05 .
o)

g

<

wn

_1 | | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.35: Sample correlation coefficients 719+ (corresponds to the correct key hypothesis 9) for
all time samples ¢t = 1,2,...,3600. Computed following Equation 4.21 with the Hamming leakage
model and the Random plaintext dataset.

1
=

kS

Q

£ 05] .
8

g

3

£ 0

<]

&

S

g —05| .
o

g

<

wn

_1 | | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.36: Sample correlation coefficients r; ; (corresponds to a wrong key hypothesis 0) for all time
samplest = 1,2, ...,3600. Computed following Equation 4.21 with the Hamming leakage model and
the Random plaintext dataset.

P-DPA Step 5

P-DPA Step 6

where p denotes (part of) the plaintext. For our attack, to recover the Oth nibble of the first
round key of PRESENT, we will target the Oth Sbox output of the first round. Then we have

v = SBpresent(k @ p),
where k and p denote the Oth nibble of the first round key and that of the plaintext.

Decide on the target signal. Before we do further analysis of the profiling traces, we need
to choose what information related to the target intermediate value v we are looking for.
For example, the Hamming weight of v; or the Oth bit of v. In our illustrations, we will look
at two types of target signals, one given by the exact value of v and the other one given by
wt (v), the Hamming weight of v.

Group the profiling traces. We take our set of profiling traces and divide them into Mj;gyq;
sets according to the target signal from P-DPA Step 5. Let us denote those sets by A;, Ay,
s AMyignar

For our illustrations, when the target signal is given by v, the exact value of the output of
the Oth Sbox in PRESENT, we will divide our profiling traces Random dataset into 16 sets,
Ay, As, ..., A1s, where A contains traces corresponding to v = s — 1. When the target signal
is given by wt (v), the Hamming weight of v, we will divide the profiling traces into five
sets, A, Aa, ..., As, where A, contains traces corresponding to wt (v) = s — 1.

175

1
5

k3

(]

£ 05] .
8

=}

3

£ 0

4]

£

S

g 05| .
o)

g

<

9}

_1 | | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.37: Sample correlation coefficients 75 ; (corresponds to a wrong key hypothesis 4) for all time
samplest = 1,2,...,3600. Computed following Equation 4.21 with the Hamming leakage model and
the Random plaintext dataset.

1

0.5 |

—-0.5 8

Sample correlation coefficient
o

| | | |
0 392 1,000 2,000 3,000

Time sample

Figure 4.38: Sample correlation coefficients 714, (corresponds to a wrong key hypothesis D) for all
time samples t = 1,2,...,3600. Computed following Equation 4.21 with the Hamming leakage
model and the Random plaintext dataset.

P-DPA Step 7

P-DPA Step 8

Modelling leakage, signal and noise. Let us fix a time sample ¢ (1 < ¢t < ¢), and let L;, X3,
N; denote the random variables corresponding to leakage, signal, and noise at ¢ respectively.
When we fix the signal, as discussed in Section 4.2.1, the leakage L; and the noise N; can
be modeled by normal random variables. When we focus on one particular target signal,
i.e. when we only consider computations that result in the traces belonging to a particular
set A, let L; ; and N, denote the random variables corresponding to leakage and noise
at t respectively. We further denote the constant signal as X; ;. Then L, and IV; , can be
modeled by normal random variables and traces from A give us a sample to analyze L;
and NV s.

For example, in our attack, if we only look at computations that result in v = 1, we denote
the leakage and noise at a given time sample ¢ as L; 2 and Ny ».

Compute SNR. The SNR values for each time sample t = 1,2,...,¢ can be computed in a
similar manner as in Example 4.2.16. In more detail, by Equation 4.3, for any s,

Xis =E[Lis] — E[Ne]. (4.22)

Hence
Var(X;) = Var(X; s) = Var(E [L¢ s] — E [Nt 4]).

176

P-DPA Step 9

P-DPA Step 10

P-DPA Step 11

P-DPA Step 12

Since any information related to the target signal is contained in X;, which is independent
of Ny, E[N; 4] is a constant for all s. Consequently, we have (see Equation 1.36)

Var(X;) = Var(E [L¢ s]).
Together with Equations 1.36, 4.22 and 4.2, we also have
Var(Lt —E [Lt,s]) = Var(Lt — Xt7s —E [Nt7s:|) = Var(Lt — Xt7s) = Var(Lt — Xt) = Var(Nt).

Using our profiling traces, Var(X;) and Var(/V;) can be approximated by the sample vari-
ances of E [L;] and L; — E [L;] respectively. We can then approximate the SNR at time
sample ¢ using

Var(X;) _ sample variance of E [L;]

"~ Var(N;) ~ sample variance of L, — E [L; |

The same computations can be done for all time samples ¢.

For our attacks, SNR values following the above steps have been computed in Example 4.2.17
when the target signal is the exact value of v and in Example 4.2.18 when the target signal
wt (v).

Identify the point of interest. The point of interest is given by the time sample that achieves
the highest SNR value. For our attacks, in Example 4.2.19, we have analyzed the Random
dataset and identified one POI for the target signal given by the exact value of v: t = 392.
The same POl is also for the case when the target signal is given by wt (v).

Measurement of attack traces. After getting our POI, we are ready to carry out the attack.
This step is the same as in DPA Step 2 from Section 4.3.1.1. Suppose we have taken mea-
surements of our target device with M,, plaintexts. For j = 1,..., M, let £; = U, 5,....10)
denote the corresponding power trace, where ¢ is the total number of time samples in one
attack trace. Note that the measurements should be done in such a way that attack traces
and profiling traces (see P-DPA Step 2) are aligned in the time domain so that the POI we
have identified is the actual POL In particular, one attack trace contains the same number
of time samples as one profiling trace. We argue that this is achievable since we assume the
attacker has the knowledge of the implementation and is in procession of a clone device.
For our illustrations, we will use the Random plaintext dataset as our attack traces. We have
M, = 5000.

Compute hypothetical target intermediate values. This step is the same as DPA Step 5
from Section 4.3.1.1. For each key hypothesis k; of k, and each (part of the) plaintext p;, we
compute a hypothesis for v, which is given by

'f)ij:gp(ki,pj), i:1,2,...,Mk, j:1,2,...,Mp.

For our attacks, with each key hypothesis of the Oth nibble of the first round key and each
known plaintext, we have a hypothetical value for the Oth Sbox output:

A~

’IA)ij :SBPRESENT(ki@pj>7 1=1,2,...,16, 5 =1,2,...,5000,

where p; is the Oth nibble of the plaintext corresponding to the attack trace £;. Furthermore,
we set
oi=i—1, i=1,2,...,16.

Identify the leakage model and compute the hypothetical signals. By our choice of the
target signal from P-DPA Step 5, we have a corresponding leakage model. For example, if
the target signal is the exact value of v, a natural choice of leakage model will be the identity
leakage model.

For each hypothetical target intermediate value, we can compute the hypothetical signal
depending on our leakage model

\'H:Z’j = L(f)ij)—noise, i:1,2,...,Mk, j:1,2,...,Mp.

177

P-DPA Step 13

The main difference in this step as compared to DPA Step 6 in Section 4.3.1.1 is that our
leakage model cannot be randomly chosen. We should choose a leakage model based on
our target signal chosen in P-DPA Step 5. In our illustrations, we will consider the identity
leakage model and the Hamming weight leakage model corresponding to the signal given
by v and wt (v) respectively.

Statistical analysis. For a fixed key hypothesis k;, we view the modeled signal as a random
variable J(; that varies when the plaintext changes. Take the time sample ¢ = POI as iden-
tified in P-DPA Step 9. We consider the leakage at this time sample as a random variable

Lpo.
Then a sample for this pair of random variables (3;, Lpoy) is given by

{(}cij,lf;OI) ‘ j:1,2,...,Mp},

where lf;OI is the POI-th entry of the attack trace £; obtained in P-DPA Step 10 (j = 1,2, ..., M),)
and 2 < M, < M,.* With this sample, we can compute the sample correlation coefficient
between H; and Lpoy for each key hypothesis k; (i = 1,2,..., My):

M R .
I > 2 (g — 3G) (lpop — lpor)
i,POI *= - —— .
b M . M
\/Zj:ﬁ(jﬁj - jfz‘)g\/zj:pl(l%m — Ipor)?

(4.23)

Figure 4.39 presents the values of T;']t/I[fOI (t=1,2,...,16) for POI = 392 computed with the identity

leakage model. The x-axis indicates the number of traces M, used. The figure shows that with just
roughly 20 traces, we can clearly distinguish the correct key hypothesis from the wrong ones.

—05 N \a—?’ﬂ i} L ——— |

"
7&'
éf
Il |

Number of traces

Figure 4.39: Sample correlation coefficients 7"%12)1 (t=1,2,...,16) for POI = 392. Computed follow-
ing Equation 4.23 with the identity leakage model and the Random plaintext dataset. The blue line
corresponds to the correct key hypothesis k19 = 9.

Similarly, the results for the Hamming weight model are shown in Figure 4.40. In this case, we
need less than 5 traces to identify the correct key. This indicates that the Hamming weight leakage
model is closer to our DUT leakage compared to the identity leakage model.

Note

A good leakage model is beneficial to our attack.

Remark 4.3.3. Except for computing SNR in P-DPA Step 8 to identify the POlIs, other methods, e.g.
t—test (subsection 4.2.3) with a properly chosen intermediate value, can also be used for this purpose.

*When M, = 1, the denominator in Equation 4.23 is equal to 0

178

Sample correlation coefficient

5 10 15 20 25 30 35 40 45 50
Number of traces

Figure 4.40: Sample correlation coefficients r%pOI (t=1,2,...,16) for POI = 392. Computed follow-
ing Equation 4.23 with the Hamming weight leakage model and the Random plaintext dataset. The
blue line corresponds to the correct key hypothesis k19 = 9.

4.3.2.2 Stochastic Leakage Model

To fully utilize the cloned device in the profiled setting, we can further characterize the leakages
instead of just identifying the POL. In this part, we will study a leakage model that assumes each bit
of the target intermediate value (P-DPA Step 4 from Section 4.3.2.1) results in a different signal. In
particular, suppose the target intermediate value v = vy, —1vm,—2 . . . V100 has bit length at most My,
the stochastic leakage model assumes that

my—1
L(v) = Z a5V + Noise, (4.24)
5=0
where noise ~ N(0, 02) denotes the noise with mean 0 and variance o2. a5 (s = 0,1,...,m, — 1) are

real numbers. We refer to «; as the coefficients of the stochastic leakage model.

The attack with stochastic leakage model follows the same steps as described in Section 4.3.2.1.
The only difference is in P-DPA Step 12, where we need extra effort to find our leakage model by
profiling. We note that since the stochastic leakage model assumes each value of v has different
signals, to identify the POI, we will choose the target signal to be the exact value of v in P-DPA Step
5. Then using the leakages at the POI we will find estimations for o values. Those estimated values
together with Equation 4.24 provide us with hypothetical signals in P-DPA Step 12.

To estimate o, we adopt the ordinary least square method from linear regression [DPRS11]. Let

&F =P g, e

denote the jth profiling trace, where j = 1,2,..., M, . The steps for computing estimations of coef-
ficients « for the stochastic leakage model are as follows:

SLM Step a Compute the vector of leakages. We only focus on the leakage at the POI from each profiling

trace. Let Mot
Lpf 12, P
bpy = (lPoplfleop{’ o lpoi)

be the vector of leakages at time sample ¢ = POI from all M, profiling traces.
For our illustrations, we aim to recover the same part of the key and take the same target
intermediate value as in Section 4.3.2.1. We also use the Random dataset as our profiling traces,
hence M,y = 10000. As discussed in P-DPA Step 9, our POI = 392, which corresponds to the
target signal being the exact value of v.

SLM Step b Construct matrix M, for the target intermediate values. For the jth profiling trace £/ 7, let

f _ . pf f.pf s
vy _Ui(qu)“'vﬁ')lvﬁ?m j=1,2,..., My

*When the bit length of v is less than m,, some bits v, —1, . . ., are zero

179

be the corresponding target intermediate value. Then the matrix M, is given by

f f f
1 v Uf(mv—l)
Pl .
T B 425)
pJ; pJ; . pf
U0 UMl UM p(me—1)

Since the stochastic leakage essentially assumes each value of v has a different leakage, we
require that all possible values of v appear in M,,. Furthermore, in this case, we can guarantee
that the matrix M, M, is invertible (see Appendix A.2). In particular, we should take enough
random plaintexts so that all values of v appear. For our illustrations, v is the Oth Sbox output.
Hence m, = 4 and we need all 16 values of v to appear.

SLM Step ¢ Compute estimated values of coefficients o;. The estimated values &, for o are given by

(6o a1 ... dmv,l)T:<MJM,,)71MJ£;f. (4.26)

For each actual leakage I/ 7, define

Mmy—1
ljypf _ Z dsvﬁc
s=0
And let X .
R

Then by the ordinary least square method from linear regression, d; values computed with Equa-
tion 4.26 minimize the Euclidean distance (Definition A.2.1) between £,; and £, (see e.g. [Ros20,
Section 9.8)).

Example 4.3.4. The first trace in Random dataset corresponds to the plaintext with the Oth nibble= 4
and the key with the Oth nibble= 7. Then in SLM Step b we have (see Table 3.11 for PRESENT Sbox)

v = SBpgesenT(4 @ 7) = SBpresent(3) = B = 10115,
And the first row of our matrix M, is given by
(110 1).

With POI = 392 and the Random dataset, we got the following estimated values for the coefficients
ag:
& ~ —0.02019, &1~ —0.02027, &2~ —0.01920, a3~ —0.02039.

According to the stochastic leakage model in Equation 4.24, the estimated leakage of v = v3vavi vy is
given by
L(v) = dgvo + d1v1 + davy + d3v3 + noise.
For example,
L(E) = £(1110) = a1 + da + a3 + noise = —0.05986 + noise.

And the estimated signal of E = 1110 according to the stochastic leakage model is given by —0.052.
Similarly, we can compute the estimated signals for all 16 possible values of the target intermediate
value 0,1,...,F:

0 —0.02020 —0.02027 —0.04046 —0.01920 —-0.03940 —0.03947 —0.05966

—0.02039 —0.04059 —0.04066 —0.06086 —0.03959 —0.05979 —0.05986 —0.08006 (4:27)

We take the Random plaintext dataset as our attack traces.

180

Example 4.3.5. As mentioned in Example 4.3.2, lAcl =0, l;‘g = 1, and for the Random plaintext dataset,

p1=9, p2=C.

Then following computations from Example 4.3.2 and the estimated signals given in Equation 4.27,
with the profiled stochastic leakage model, in P-DPA Step 12 we have

H1 = L(E)— noise = —0.05986,
Hiz = £(C)—noise = —0.03959,
Ho1 = L(8) —noise = —0.02039,
Hoe = L(D) —noise = —0.05979.

Following P-DPA Step 13 from Section 4.3.2.1, the attack results are shown in Figure 4.41. Com-
pared to Figures 4.39 and 4.40, the attack results based on the stochastic leakage model are similar
to that based on the Hamming weight leakage model, better than the results based on the identity
leakage model. This shows that both the stochastic and the Hamming weight leakage models are
better approximations of the DUT leakage than the identity leakage model.

T T T
+ |
=
<
Q
=
b} |
S ——
[} qv
= =2 —_— N
= —_—
= S o —
S
—_
—
3 I
9 N ———
. .4—
g
<
= i
| | | | | |

Number of traces

Figure 4.41: Sample correlation coefficients r%%l (t=1,2,...,16) for POI = 392. Computed follow-
ing Equation 4.23 with the stochastic leakage model and the Random plaintext dataset. The blue line
corresponds to the correct key hypothesis k19 = 9.

4.3.2.3 Template-based DPA

We have seen how to characterize the leakage assuming each bit of the target intermediate value leaks
differently focusing on one POI. We can also characterize/profile the leakages of each possible value
of the target intermediate value (P-DPA Step 4 from Section 4.3.2.1) at several POIs. The result of this
profiling process is a set of templates. Then during the attack phase, instead of computing correlation
coefficients, we use those templates to see which of them fits better to the measured power trace and
deduce a probability for each key hypothesis.

As discussed in Section 4.2, for a computation with constant signal, the distribution of leakages at
a single time sample can be modeled with a normal distribution. And leakages at a few time samples
can be considered as a Gaussian random vector. The goal of profiling in template-based DPA is to
estimate the mean and variance (resp. mean vector and covariance matrix) of the normal random
variable (resp. Gaussian random vector). The resulting estimations are our templates.

The steps for template-based DPA are similar to those in Section 4.3.2.1, except for P-DPA Step
9, P-DPA Step 12 and P-DPA Step 13. P-DPA Step 9 will be replaced by two steps (Template Step a
and Template Step b below), P-DPA Step 12 will be removed and P-DPA Step 13 will be replaced by
the following Template Step c:

Template Step a Identify point(s) of interest. Same as in P-DPA Step 9, POISs are given by time samples that
achieve the highest SNR values. The difference is that we can choose more than one POL

181

With more POIs, the effort for building the templates will increase, but the attack results will
be better. Normally the attacker decides on the number of POIs based on experience.

Let gpor denote the total number of chosen POIs and let ¢1, to, . . . , 4, denote the time sam-
ples that have been identified as POIs. For our illustrations, we will discuss the results of
using just one POl and using three POlIs. It follows from Example 4.2.19 that when the target

signal is the exact value of v, the three POIs are given by
t =392, 1y =218, t3= 1328.
And when the target signal is wt (v), we have

t1 =392, ty=1309, t3=1304.

Template Step b Build the templates. Let us fix a particular target signal value and only consider inputs
to the cryptographic algorithm that result in traces belonging to the corresponding set A,
(see P-DPA Step 6 from Section 4.3.2.1). Let L; ; denote the random variable representing
the leakage for such encryption computations at time sample ¢. Then the random vector

I/S = (Lt1757Lt2,57"'LthOpS) (4:28)

can be modeled by a Gaussian random vector. By Definition 1.7.10, to find the PDF of a
Gaussian random vector, we need to identify its mean vector and covariance matrix. Using
our profiling traces from set A;, we can compute an approximation for the mean vector,
denoted p,, using sample means of Ly, ,:

Hs = (lt1757 lt2757 s 7lt‘1POI’s)‘

Similarly, an approximation for the covariance matrix is then given by @), where the (u1, uz)—entry
of Qs is the sample covariance between Lt,, s and Ly,, s (1 < uy,u2, < tgy). The pair

(g, Qs) is called a template. With our profiling traces, we can compute Mg;4nq templates.

For our illustrations, when the target signal is v, we will have 16 templates. And when the
target signal is wt (v), we will have 5 templates.

Template Step ¢ Statistical analysis. In this step, we would like to compute a probability for each key hy-
pothesis given the attack traces. For a fixed key hypothesis k;, we divide the M,, attack
traces from P-DPA Step 10 into Mg;gnq sets, A1, Ag,..., A Maignats depending on the hypo-

thetical target intermediate value ¥;; obtained in P-DPA Step 11. In particular, for an attack
trace £;, let s;; denote the index of the set that it belongs to. Namely

¢j € As,; given key hypothesis k.
We are only interested in the leakages at the POISs for each attack trace £; = (H,18,....10).
Define o '
ej,POI = (lgl 5 lg2, ey lngOI). (429)

With the mean vector p, . and the covariance matrix (5,; obtained in Template Step b, we

can compute the probability of £; given &; using the PDF of the Gaussian random vector (see
Definition 1.7.10) L,

. 1 1 _

(QW)@w/dethij 2
(4.30)

Furthermore, we can assume the measurements are independent and compute the probabil-
ity of a set of M), (1 < M,, < M,) traces given the key hypothesis k;:

P <{fj}?4=p1 k‘z> = [P&slka). (4.31)
j=1

182

By the generalized Bayes’ theorem (Theorem1.7.2), the probability of the key hypothesis ks
given a set of M, (M, < M,) traces is given by:

o (i 05 - MkP ({ej}ﬁ”;jl i) P |
;P@}?ﬁa fn) Plin)

Typically, the key hypothesis follows a uniform distribution in the key space, and we have
P(km) = P(k;)

in the above equation, which gives

P<’“ {ej}%) N Mkp GQ% k> : (4.32)
;P({ej}% km>

For the attack, we expect the correct key hypothesis to have the highest probability. In other

words, we are mainly interested in the ordering of the values P (ff, {¥; }j\/[:”l> Since the

denominators are the same for all key hypotheses in Equation 4.32, we can ignore them.
Then Equation 4.32 is reduced to Equation 4.31, which can be further simplified by leaving
out the common term (see Equation 4.30)

And we get
My 1 1
—=————¢exp <—(£j,POI —) Q5 (€ p01 — ll»si-)) -
jI;[1 \/det Q sij 2 J J J
By taking the natural logarithm, the ordering does not change, and we have
1
D) > In (det Q) + (£p01 — ;) | Q5 (£ P01 — Bs).
j=1

Finally, we define the probability score of k;, denoted P . tO be

My
i =— > In(det Qs,,) + (£ipor — ps,,) " Q5 (801 — Bs,)- (4.33)
Jj=1

The higher the score, the more likely the hypothesis is equal to the correct key.

Remark 4.3.4. Since the computation of covariances grows quadratically with the number of chosen
PQOlIs, in practice, it is also common to assume leakages at different time samples are independent. In
this case, the covariance matrix @); in Template Step b becomes a diagonal matrix.

First, let us choose the target signal to be the exact value of v. We have built 16 templates. Three
POIs (time samples 392, 218, 1328) were chosen as described in Template Step a. Thus for each tem-
plate, the mean vector has length 3, and the covariance matrix has dimension 3 x 3. For example, the
template for L;, corresponding to the intermediate value v = 0, is given by

1.6110 x 1076 —6.2968 x 1072 —1.0592 x 10~ 7
py = (—0.04924, —0.04246, —0.07146), Q1 = | —6.2968 x 1072 2.2925 x 10~¢ 3.7191 x 107
—1.0592 x 10~7 3.7191 x 10~7 2.2567 x 10~

183

As another example, the template for Ly, corresponding to the intermediate value v = B, is given
by

1.6390 x 1076 1.6328 x 10~7 6.3454 x 108
pio = (—0.04996, —0.05241, —0.07221), Q12 = [1.6328 x 10~7 2.0256 x 107¢ 1.7985 x 10~ 7
6.3454 x 10~% 1.7985 x 10~7 2.1778 x 1076

The probability scores for each key hypothesis are shown in Figure 4.42, where the blue line corre-
sponds to the correct key hypothesis k19 = 9. We can see that with just a few traces, the correct key
hypothesis can be distinguished from the other key hypotheses.

600 [E

S
[aw]
o

200

Probability score

Number of traces

Figure 4.42: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of v, the Oth
Sbox output. Three POlIs (time samples 392, 218, 1328) were chosen. The blue line corresponds to the
correct key hypothesis kjg = 9.

Next, we take the target signal to be the Hamming weight of v, wt (v). Then we have 5 tem-
plates. The POIs were chosen as described in Template Step a: 392,1309, 1304. The template for L1,
corresponding to wt (v) = 0, is given by

2.2025 x 1076 —8.7422 x 1078 1.9156 x 107
—8.7422 x 1078 1.4864 x 1076 —4.9987 x 1078/ °

py = (—0.04245,0.08036, —0.03465) Q; = (

The probability scores for each key hypothesis are shown in Figure 4.43. Similar to Figure 4.42, with
just 2, 3 traces we can distinguish the correct key hypothesis from the rest.

Attack results on other nibbles. For now, we have seen practical demonstrations of how the Oth
nibble of the PRESENT first round key can be recovered. As we have mentioned, DPA attacks work in
a divide-and-conquer manner, recovering parts of the key in parallel using the same set of traces. As
an example, we will detail the attack that recovers the 1st nibble of the first round key for PRESENT.

In P-DPA Step 1, our target cryptographic implementation is the same as before. The profiling
traces from P-DPA Step 2 will still be the Random dataset. The chosen part of the key, k, in P-DPA
Step 3 is now the 1st nibble of the first round key. Consequently, the target intermediate value, v, in
P-DPA Step 4 will be the 1st Sbox output. We have the same relation between £, p and v:

v = SBpresent(k @ D),

where k£ and p denote the 1st nibble of the first round key and that of the plaintext. For the target
signal in P-DPA Step 5, let us choose the exact value of v. Following P-DPA Step 6 — P-DPA Step 8,
the SNR values are shown in Figure 4.44. We will choose one POI in Template Step a, which is given
by the time sample corresponding to the highest point in the figure — 404.

Following Template Step b, 16 templates were computed. For example, the template correspond-
ing to the 1st Sbox output v = 0, is given by

p1 = —0.039027, o2 =2.1679112 x 1075,

184

600

400

200

Probability score

1 5 10 15
Number of traces

Figure 4.43: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by wt (v), the Hamming weight
of the Oth Sbox output. Three POlIs (time samples 392, 1309, 1304) were chosen. The blue line corre-
sponds to the correct key hypothesis kg = 9.

| | | |
0 404 1,000 2,000 3,000

Time sample

Figure 4.44: SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 1st Sbox output.

As for attack traces in P-DPA Step 10, we use the same traces — Random plaintext dataset. Then accord-
ing to P-DPA Step 11 and Template Step c, the probability scores for each key hypothesis are shown
in Figure 4.45. By Equation 4.1, the correct value of the 1st nibble of the first round key is given by
8. We can see that similar to the template-based DPA attacks on the Oth key nibble (see Figures 4.42
and 4.43), with just a few traces, we can recover the correct key nibble value.

As another example, the attack results for attacking the 6th nibble of the first round key are shown
in Figure 4.46, where by profiling, we have identified POI = 464. By Equation 4.1, the correct value
of the 6th nibble of the first round key is given by 3.

4.3.2.4 Success Rate and Guessing Entropy

Comparing Figures 4.42 and 4.43 to Figures 4.39 and 4.40, we cannot draw a clear conclusion about
which attack method is better. In fact, a different ordering of the traces in Random plaintext dataset may
affect our attack results. For example, by arranging the traces in reverse order, we get Figures 4.47
and 4.48 instead of Figures 4.39 and 4.40.

To have a fair comparison between different attack methods (e.g. different choices of leakage
models, POIs, etc.), we introduce the notion of success rate and guessing entropy [SMY09].

185

200 -

100

Probability score

—100 :
1) 10 15

Number of traces

Figure 4.45: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of the 1st
Sbox output. One POI (time samples 404) was chosen. The blue line corresponds to the correct key

hypothesis 8.

200 -

100

Probability score

—100

Number of traces

Figure 4.46: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of the 1st
Sbox output. One POI (time samples 464) was chosen. The blue line corresponds to the correct key

hypothesis 3.

Note

In this part, our aim is to evaluate the DUT and our implementation against DPA

186

+ 1 —

2 Mo

g 05| “ e

T o Sm———

i e

: mﬁ*ﬁf-‘w

S _os IS A—.—~—~7

2 w'.b“/

;= ,
% 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50

Number of traces

Figure 4.47: Sample correlation coefficients r%’bl (¢t =1,2,...,16) for POl = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset arranged in
reverse order. The blue line corresponds to the correct key hypothesis k19 = 9.

T
EOIIN—y |
% 0.5 " ‘g‘v‘ﬁb ~—
o S = -~]
kE Q\’
;; 0 .\"“V"p\ — ‘QW‘—““' B
3 = N =~ = S =
N
& -1]

5 10 15 20 25 30 35 40 45 50
Number of traces

Figure 4.48: Sample correlation coefficients 7"?/1[912)1 (t=1,2,...,16) for POI = 392. Computed follow-
ing Equation 4.23 with the Hamming weight leakage model and the Random plaintext dataset arranged
in reverse order. The blue line corresponds to the correct key hypothesis k19 = 9.

attacks with different settings. Thus, we assume we have the knowledge of the key
for the evaluation after the attack.

Fix a number of attack traces Mp, for each profiled DPA attack that we have discussed, we can
assign a score to each key hypothesis after the attack: for leakage model based DPA attacks, the
score of a key hypothesis k; is given by the absolute value of the corresponding sample correlation
coefficient (Equation 4.23); for template-based DPA attacks, the score of a key hypothesis is given by

its corresponding probability score (Equation 4.33). Let s cpr denote the score for the key hypothesis
I%i. We have

M,

leakage model based DPA attack, where r%’bl is computed following Equation 4.23
sc; ' = '

M,
T POl
P, template-based DPA attack, where p; is computed following Equation 4.33

) (4.34)
We further define score?r to be a vector consisting of the scores obtained for each key hypothesis
with our DPA attack, sorted in descending order:

MP:(Posc. P sc; .’

N, M, .
i1 9SCiy s iMk>’ wherescij 2scij+1forj—1,2,...,Mk—1.

The key rank of a key hypothesis k;, denoted rankgf" , is given by the index of sci‘/f” in scoreM. In

187

particular, let k. denote the correct key hypothesis. We have

My, . My .
rankk”:mdexof sce” in scoreMr, (4.35)

c

With the same number of traces, we may also get different key ranks for the correct key hypothesis

due to the different plaintexts/measurements. We consider rank]icw” as a random variable whose

c

randomness comes from the different plaintexts and measurements.

The ultimate goal of the attack is to achieve rankkM” = 1° so that we can retrieve the correct

c

key hypothesis. Thus, we say that an attack is successful with M, traces if rank]fyp = 1. Then the

suiccess rate of an attack method with M, traces, denoted SR N, 18 defined to be the probability that
My _ 7.
rank B 1: A
M,
SRy, =P (rankk » 1) : (4.36)

c

Empirically, we can estimate the value of SR N, by computing the frequency of rankg@ = lamong a

c

certain number of attacks.
For another metric, the guessing entropy for an attack method with M, traces, denoted GE; , is

P
given by the expectation of the random variable rankkM” :

C

GEy, =E [rankgp} . (4.37)

With the terminologies from Section 1.8.2, we can approximate GE;; with a point estimator (see
P

. M,
Remark 1.8.4) given by the sample mean of rank; ™.

C

Furthermore, when we vary the number of traces M, used for computing rank;f[" , we will get
different key ranks for the correct key hypothesis. Thus the probability for the random variable

rankéw” = 1 as well as its expectation will also vary. To analyze how SR; and GEj; change with

c

increasing values of M, we compute estimations for SR X, and GE N, according to Algorithm 4.1.

The input of Algorithm 4.1 takes two user-specified valuesmax_traceand no_of_attack. max_trace
is the maximum number of traces (or the biggest value of M) we would like to use for estimat-
ing SR N, and GE N, In line 3, sizes of S, and Sy are set to be max_trace+1 so that the Myth
entry of each array corresponds to the estimation for SRMp and GE N, respectively. For a fixed

value of Mp, no_of_attack is the number of attacks to simulate, or equivalently, the number of

elements in the sample of rank]]%w" for computing the sample mean (i.e. estimation of GEy;) and

c

frequency of rankéw" = 1 (i.e. estimation of SRM,,)' The set of attack traces from P-DPA Step 10 is

denoted by dataset (line 2). For each value of Mp between 2 and max_trace (line 4), we simulate
no_of_attack attacks (line 6). Thus we randomly select M, xno_of_attack traces from dataset.
Those traces are stored in an array A (line 5). Each simulated attack takes M, traces from the array A
without repetition (line 7). The key rank of the correct key hypothesis is computed following Equa-
tion 4.35 and the attack steps described in the earlier parts of the section. S,.[M,] stores the sum
of the key ranks of the correct key hypothesis for each attack (line 10), then the averaged value is
computed as an estimate for the guessing entropy GE X, (line 14). When the key rank of the correct

key hypothesis is 1, S, [M,] is increased by 1 (line 12). At the end S,,[M,] divided by the number of
total simulated attacks gives the frequency of successful attacks (line 13).

As discussed in Section 4.2.3, by comparing Figures 4.12 and 4.13 (or Figures 4.14 and 4.15), we
notice that with more traces, it is more likely for us to capture information about the inputs (or
intermediate values) from the side-channel leakages. Naturally, we expect the value of SR i, to be

We note that if the key rank is low enough, it is possible to use key enumeration algorithms [VCGRS13] that enable the

. M,
key recovery even in the case when rank; * > 1.
c

188

Algorithm 4.1: Computation of estimations for guessing entropy and success rate.

Input' max_trace,no_of_attack // ‘‘max.trace’’ is the maximum number of traces we
would like to use for estimating SRM/’ and GZA\\[/‘; for a fixed value of A\A/,),
‘‘no_of_attack’’ is the number u/f attacks, or equivalently, the number of
elements in one sample of rank}\‘l”.

Output: Estimations of success rate SR N, and estimations of guessing entropy GE N, for

Mp =2,3,...,max_trace
1 Follow P-DPA Step 1 — P-DPA Step 11 from Section 4.3.2.1 to do the profiling and set up the
attacks (Template Step a and Template Step b from Section 4.3.2.3 apply if we focus on a

template-based DPA)
2 Let dataset denote the set of attack traces obtained in P-DPA Step 10
3 zero array of size max_trace+1 Ssr/ Sge/ / variables to store estimations of success

rate and guessing entropy, initialized to zero

4 for Mp =2, Mp < max_trace, Mp + +do

. ~ randomly choose
5 array of size Mpxno,of,attack A<+———— dataset// randomly choose

* ‘A\A/,,><ro,of,att»:—<:k' ’ traces from ‘‘dataset’’ and store in A
6 fori=0,7 < no_of_attack,:+ + do
7 array of size Mp B = A[Z X M : (Z + 1) X M] // ta \Y,, traces from set A
without repetition for each ith attack
8 Using the dataset B as attack traces, follow P-DPA Step 12 — P-DPA Step 13 from

Section 4.3.2.1 (Template Step c from Section 4.3.2.3 applies if we focus on a
emplate—based DPA) to get the score of each key hypothesis given by Equation 4.34

9 rk = rank My // Key rank of the correct key hypothesis as given in

Equation 4.35

10 Sge[Mp) + = 7k

11 ifrk == 1 then

12 L Ssr[Mpl + =1

13 SST[MP] :Ssr[p]/no,of,attack// compute the frequency of successful attacks

14 Sge[Mp] = Sge[Mp]/no,of,attack/,/ compute the sample mean

15 return S, Sge// Ser[Mp] (resp. Sge[Mp]) contains the estimation for SRy, (resp.
GEyy,) -

higher and the value of GE; , to be lower when M, is bigger. And the attack method that achieves

SRy, =1lorGEy, =1with smaller M, is considered to be a better attack.

Now we are ready to compare our attack methods with attack traces from the Random plaintext
dataset. We have discussed in Example 4.2.19 that by analyzing the Random dataset, we identified
one POI for the identity leakage model as well as for the Hamming weight leakage model: 392. For
comparison, we also consider the attack with a different POI 1328 for the identity leakage model and
1304 for the Hamming weight leakage model.

As for template-based DPA, we consider two target signals: v and wt (v). For each target signal,
we look at two choices of POlIs: one POI (392), and three POIs (392, 218, 1328 for v and 392, 1309, 1304
for wt (v)). When three POIs are chosen, we also analyze the case when leakages at those POIs are
assumed to be independent (see Remark 4.3.4).

We note that when just one POl is considered, L from Equation 4.28 becomes a normal random
variable L. £;por (Equation 4.29) becomes one single point Z{,OI. According to the PDF of a normal
random variable (Equation 1.37), Equation 4.30 becomes

7 j 1 (lj — K i')2
P(¢;lk;) = P(Ls,; = lf’OI) = 726Xp <_P012025])
QJSZ_J_W Sij

where p;,; and a?ij_ are estimations (template) for the mean and variance of L;,,. Consequently, the

189

score of k; in Equation 4.33 is given by

2
0%

M, J 2
(lpor — Msiy)
Pki = — E 1n(a§i],) 4 == 7
J=1

Following Algorithm 4.1, we can compute estimations of SR; and GEy; for our profiled DPA
attacks with different settings. We have chosen

no_of_attack =100, max_trace = 50.

For a fair comparison, for a given value of M,, the same traces are used for all attacks.

The results for leakage model based profiled DPA are shown in Figures 4.49 and 4.50. We have
seen in Figures 4.39, 4.40 and 4.41 that with the Hamming weight or the stochastic leakage models, we
can distinguish the correct key using fewer traces as compared to using the identity leakage model.
As expected, we can see from Figure 4.49 that fewer traces are needed for SR to reach 1 with the
Hamming weight or the stochastic leakage models. Furthermore, we can also see that attack results
for the Hamming weight or the stochastic leakage models are similar, with the stochastic leakage
model giving slightly better performance. Similarly, Figure 4.50 shows that fewer traces are needed
for GE to reach 1 using the Hamming weight or the stochastic leakage models as compared to the
identity leakage model. Moreover, the results also demonstrate that the choice of POI is important
for the attack. When the chosen POI has a lower SNR, the attack will need many more traces.

o
o0

e
=N

Stochastic leakage model, POI= 392
—_— Identity leakage model, POI= 392
1 Identity leakage model, POI= 1328
—— Hamming weight leakage model, POI= 392
A Hamming weight leakage model, POI= 1304

o
=~

Success rate

o
o

o

5 10 15 20 25 30 35 40 45 50
Number of traces

Figure 4.49: Estimations of success rate computed following Algorithm 4.1 for profiled DPA attacks
based on the stochastic leakage model, the identity leakage model, and the Hamming weight leakage
model using the Random plaintext dataset as attack traces.

Stochastic leakage model, POI= 392
 — Identity leakage model, POI= 392
LT Sl e [PURTUPTTIU EERREE Identity leakage model, POI= 1328
—— Hamming weight leakage model, POI= 392
------ Hamming weight leakage model, POI= 1304

Guessing entropy

5 10 15 20 25 30 35 40 45 50
Number of traces

Figure 4.50: Estimations of guessing entropy computed following Algorithm 4.1 for profiled DPA
attacks based on the stochastic leakage model, the identity leakage model and the Hamming weight
leakage model using the Random plaintext dataset as attack traces.

The results for template-based DPA are shown in Figures 4.51 and 4.52. Note that in this case the
results are shown for up to 20 traces instead of 50 for leakage model based DPA attacks, since much
fewer traces are needed for a successful attack. We have the following observations:

190

* When the target signal is given by v, the attack requires fewer traces as compared to the case
when the target signal is given by wt(v). This is expected as for the former case we have
16 templates while for the latter we have 5. Of course, the attack results demonstrated that
we had enough traces for profiling to get good templates. Without enough profiling traces,

different attack results might appear.

¢ Assuming independence between the leakages at different POIs does not affect the attack re-
sults significantly. Especially for the case when the target signal is given by v with three POlIs,

those two lines are overlapping.

¢ Using three POIs gives better results than just one POL

e Compared to Figures 4.49 and 4.50, template-based DPA, in general, performs better than leak-
age model based DPA. This is not surprising as more information is retrieved from the profiling

traces using template-based attacks.

....... LIS

e
©

Success rate

o
o0

0.7

signal = v, 3 POIs

signal = v, 3 POls, assume independence |
signal = v, 1 POI

signal = wt(v), 3 POIs

signal = wt(v), 3 POIs, assume independence | |

....... Sjgnal = VVt(V)7 1 POI
T T I I I I

8 10 12 14 16 18 20
Number of traces

Figure 4.51: Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attacks using the Random plaintext dataset as attack traces and the Random dataset as profiling traces.

1.6

=
=

Guessing entropy
—_
)

—_— signal = v, 3 POIs i
signal = v, 3 POls, assume independence
------- signal = v, 1 POI
signal = wt(v), 3 POIs
signal = wt(v), 3 POls, assume independence
signal = wt(v), 1 POI

L= .

8 10 12 14 16 18 20
Number of traces

Figure 4.52: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks using the Random plaintext dataset as attack traces and the Random dataset as profiling

traces.

For easy comparison, we have also plotted the results for template-based DPA with one POI and
leakage model based DPA in Figures 4.53 and 4.54

4.3.3 Side-Channel Assisted Differential Plaintext Attack

Side-channel assisted differential plaintext attack (SCADPA) [BJB18] aims to recover a middle round
key of an SPN cipher (see Figure 3.2) with chosen plaintext and leakages from power traces. The mo-

191

Stochastic leakage model, POI= 392
—_— Identity leakage model, POI= 392
| —— Hamming weight leakage model, POI= 392
------- signal = v, 1 POI
------- signal = wt(v), 1 POI

|
2 4 6 8 10 12 14 16 18 20
Number of traces

Figure 4.53: Estimations of success rate computed following Algorithm 4.1 for leakage model based
and template-based DPA attacks with the Random plaintext dataset as attack traces.

Stochastic leakage model, POI= 392
— Identity leakage model, POI= 392
—— Hamming weight leakage model, POI= 392
------- signal = v, 1 POI R
------- signal = wt(v), 1 POI

[
o
T

Guessing entropy
ot

2 4 6 8 10 12 14 16 18 20
Number of traces

Figure 4.54: Estimations of guessing entropy computed following Algorithm 4.1 for leakage model
based template-based DPA attacks with the Random plaintext dataset as attack traces.

tivation for such an attack is that the developer might choose to protect only the first two/three and
the last two/three rounds of a cipher implementation in order to increase the speed (see e.g. [THMO07,
SP06]).

Before we continue our discussion on SCADPA, we introduce the notion of difference distribution
table of an Sbox.

Definition 4.3.1. For an Sbox SB: Fy' — F5?, the (extended) difference distribution table (DDT)” of SB is
a 2—dimensional table 7" of size (2“* — 1) x 2*2 such that forany 0 < § < 2** and 0 < A < 2*2, the
entry of T" at the Ath row and éth column is given by

TIA0)={a | acF5" SB(a®d)®SB(a) =A}.
We refer to ¢ as the input difference, and A as the output difference.

Example 4.3.6. The difference distribution table for PRESENT Sbox SBprgsent (Table 3.11) is detailed
in Table 4.1. The row corresponding to output difference A = 0 is omitted since it is empty. For
example

SBpresENT(9 @ 3) @ SBpresenT(9) = SBpresenT(A) @ E = 1111 @ 1110 = 0001 = 1.
Hence, 9 is in the entry corresponding to § = 3 and A = 1.

Remark 4.3.5. Suppose we know the input difference and output difference for a particular Sbox
input. Then with the DDT we can deduce the possible values of the input. For example, if we know
one PRESENT Sbox input a with input difference A gives output difference 2. Then by Table 4.1,
a = 5 or F. We will utilize such observations for SCADPA attacks as well as for certain fault attacks
in Section 5.1.

"In the original definition of DDT [BS12], the entries are |T[A, §]|, i.e. the cardinalities of T'[A, §].

192

A J 1 2 3 4 5 6 7 8 9 A B C D E F
1 9A 36 078F 5E 1C 24BD
2 8E 34 09 5F 1D 67AB 2C
3 CDEF 46 12 3B 0A 58 79
4 47 8D 35AC 0B 2F 169E
5 CDEF 0145 2389 67AB
6 9B CDEF 37 06 25 18 4A
7 67AB 03 8C 5D 2E 49 1F
8 17 AD 6F 4E 2389 0c 5B
9 0145 9D BE 2A 7C 3F 68
A 02 56 BF 9C 7D 1A 48 3E
B 8B 27 35AC 169E 4F 0D
C 8a 26 0145 9F BC TE 3D
D 2389 57 AF 4C 1B 6D OE
E 13 AE 24BD 6C 59 078F
F 24BD 169E O078F 35AC

Table 4.1: Difference distribution table for PRESENT Sbox (Table 3.11). The columns correspond to
input difference § and the rows correspond to output difference A. The row for A = 0 is omitted
since it is empty.

Attack assumption of SCADPA. For SCADPA, we have the following assumptions for the attacker’s
knowledge and ability:

¢ The attacker does not have the knowledge of the exact details of the implementation. However,
the attacker knows certain basic parameters of the implemented algorithm, e.g. whether the
implementation is round-based or bit-sliced. Such information may also be deduced by the
attacker with visual inspection of the traces.

¢ The attacker can query encryptions with chosen plaintext and a fixed unknown master key.

* We consider observable leakages in our analysis. Specifically, the adversary can deduce from
the side-channel information if a particular intermediate value is different between two dis-
tinct encryption operations. Optionally, the attacker may enhance the clarity of side-channel
measurements by employing techniques such as averaging, denoising, filtering, etc.

The goal of the attacker is to recover a middle-round key. SCADPA can be applied to any SPN cipher
that has been proposed up to now.

We first give the definition of several basic notations. Suppose our target SPN cipher has in
total Nr rounds. We consider the encryption of two plaintext blocks, denoted by Sy and 5. The
corresponding cipher states at the end of round 7 are represented by S; and S/ respectively. A small
part (e.g. a bit, a nibble, a byte) of the XOR difference between intermediate values of those two
encryptions is said to be active if it is nonzero. The exact value of this small part is called a differential
value.

Example 4.3.7. Let us consider AES-128. Figure 4.55 shows a possible sequence of XOR differences
between the cipher states of two encryptions, where colored squares correspond to active bytes. The
two plaintexts Sy and S|, differ in the four main diagonal bytes. After AddRoundKey and SubBytes
operations those four active bytes remain active. Then ShiftRows will move the positions of those
four active bytes. In this particular case, MixColumns operation changes four active bytes to just one
active byte. Finally, after AddRoundKey, this active byte remains.

Example 4.3.8. In this example, we consider PRESENT. Figure 4.56 shows an example of how the XOR
differences between the cipher states can change in the first three rounds. We adopt terminologies
from DDT (Definition 4.3.1) and refer to the value of the active nibble corresponding to the input
(resp. output) of an active Sbox as the input difference (resp. output difference) of this Sbox.

The plaintext pair Sy and S differ in the Oth— — 15th bits, corresponding to the rightmost four
Sbox inputs. In this particular case, the output differences of those four Sboxes are all equal to 1. In
other words, the differential value of the Oth— — 15th bit of sBoxLayer outputis 1111. Thus, after the
first round, S; @ S has four active bits which correspond to the Oth Sbox input of round 2. Then we

193

AK SR MC AK
SB

So @ 56 S1 @S
Figure 4.55: A possible sequence of XOR differences between the cipher states of two encryptions,

where colored squares correspond to active bytes. AK, SB, SR, and MC stand for AddRoundKey,
SubBytes, ShiftRows and MxiColumns respectively.

K AP YA
1 IANPN 7N IANPN 7N AN 7N

kAL LU LU LU L

R
<
.<

R
2

NN NN IZNPNZNPNZNPN NN Y NNV NN VNP N

SB%S SBh SB%g SB%Q SB%1 SB%O SBgl, SB% SB% SBé SB% SB}1
S _=S<_—

:
eﬂ
i
)

i
i
I
i
)
i
i
i
i

~=

)
)

b
i)
0
o.o:.

YT

K,

a

NP IPNPN IPNPN

SB2, || SB2, || SB2, || SB2, || SB, SB2 || SB2 || SB2 || SB2

Y Y TYTY YA Y Y TYTY YT Y Y Y Y Y I Y Y Y Y Y AT

R

Ka 684
3 TN

YT Y
IZNPNZNVNZANI NN

YT Y
IZNPNZNVNA NN

o

IZNPNVNVNANPN NN AN VN NNV NN

SB3, || SB?, || SB3, || SB3, || SB?, || SB3, || B3 || sB2 || B2 || sB2 || sB? || SB? || SB2 || SBS || SB?

Figure 4.56: An example of how the XOR differences between the cipher states can change after each
round operation of PRESENT. The output differences of the four active Sboxes in round 1 are 1. The
output difference of the single active Sbox in round 2 is also 1.

again get an output difference 1 for this Sbox, giving us just one active bit in Sy & S5. Consequently,
we have one active nibble after the sBoxLayer operation in round 3.

A cipher state can be written as the concatenation of several small parts of the same bit length w.
In particular, let ¢ = n/w, where n is the block length of the SPN cipher. We have

Si = siollsitl| - - - |sie—1, Si = sigllsiall - - - 1|51 (4.38)

where each s;; and s;; is a binary string of length w. A differential characteristic for round i, denoted
AS;, is a binary string of length ¢:

AS; = (Asjo, Asit, ..., Asy_1) € TS,

We say that the intermediate values of two encryptions S; and S} achieve the differential characteristic
AS; if

5ij @ 83 o Vj=0,1,...,0—1.
?é 0 if Asij =1
A sequence of AS;s
ASy, ASy,...,AS,, wherer <Nr

is called a differential pattern. If wt (AS,) = 1, we say that the differential pattern converges in round
r. A plaintext pair is said to achieve a differential pattern if the corresponding intermediate values
achieve each of the differential characteristics in this differential pattern.

Example 4.3.9. [Differential pattern — AES] Continuing Example 4.3.7, we choose w = 8§, then {/ =
128/8 = 16. Figure 4.55 corresponds to the following differential pattern:

ASp, AS; =1000010000100001, 1000000000000000. (4.39)

194

Since wt (AS7) = 1, this differential pattern converges in round 1.
For example, let us take the following pair of plaintexts:

Sy = 4C3C3F54C7AAD34E607110C753C5E990, S) = 033C3F54C725D34E607131C753C5E90F,

with the master key
34463146344638383341464542413731. (4.40)

Then
So 6956 =4F000000008F0000000021000000009F

and achieves the differential characteristic ASy from Equation 4.39. After one round of AES, we have
S; = 1F1DABAE4071BDD502563FBF63841BAE, S) = C81DABAE4071BDD502563FBF63841BAE,

and
S1 @Si =D7000000000000000000000000000000.

Hence S; and S archives the differential characteristic AS; from Equation 4.39. The differential
value for the two active bytes in S; & S} is D7. We can conclude that the pair of plaintexts Sy and S,
achieve the differential pattern given in Equation 4.39.

Remark 4.3.6. ¢ Following the convention for AES intermediate value representations (see [NIS01]),
the string of hexadecimal values is transferred to the four-by-four matrix of bytes (see Equa-
tion 3.2) column by column. For example, Sy = 4C3C3F54C7AAD34E607110C753C5E990 in

the matrix format is as follows:
4C C7 60 53

3C AA 71 C5
3Fr D3 10 E9
54 4E C7 90

¢ When PRESENT is considered, we write the indices j = 0, 1, ...,¢—1 in reverse order following
the notations for PRESENT cipher (see Section 3.1.3).

Example 4.3.10. [Differential pattern - PRESENT] Continuing Example 4.3.8, let w = 1, then ¢ =
64/1 = 64. Figure 4.56 corresponds to the differential pattern:

ASy=000000000000FFFF, AS; =000000000000000F, AS;=0000000000000001.

(4.41)
Since wt (AS2) = 1, this differential pattern converges in round 2.
For example, let us take the following pair of plaintexts
Sy = DCFC2D56F32EC070, S, = DCFC2D56F32E3F8F,
with the master key
1234567812345678. (4.42)

Then
So EBS(/) = 000000000000FFFF

and achieves the differential characteristic ASy as given in Equation 4.41. After the first round, we
get
S) = 0A93D18CAF9C888B, S = 0A93D18CAF9IC8884,

which achieves the differential characteristic AS; from Equation 4.41 since 4 ®B = F. In other words,
the differential value for the active nibble in S; @ S is F. Finally, after the second round, we get

S) = CO9BSDFC8AF48EF3, S5 = CO9B5DFC8AF48EF2,

which achieves the differential characteristic AS; from Equation 4.41.

195

Now, let us fix a differential characteristic ASy. With 2M» chosen plaintexts, we can construct
22My=1 plaintext pairs that achieve the differential characteristic ASy. Suppose the probability for
AS)j to result in a differential pattern that converges in round r is 27°*. Then if we would like to get
at least one pair of plaintext that achieves a differential pattern starting with ASy and converging in
round r, we should choose M, plaintexts such that

_pr+1l

M, = = (4.43)

Example 4.3.11. [Probability of convergence — AES] Let us consider AES and the differential charac-
teristic ASy given by
ASy = 1000010000100001. (4.44)

We would like to compute the probability that AS, results in a differential pattern that converges in
round 1, namely
P (wt(AS;) = 1|]ASy = 1000010000100001) .

If we take any plaintext pair that achieves differential characteristic ASy, after AddRoundKey and
SubBytes operations, those four active bytes in the main diagonal will remain active. ShiftRows
changes their positions to be all in the first column. Then after MixColumns and AddRoundKey, any
byte in the first column can be active. Thus, all the possible differential characteristics AS; following
the differential characteristic AS; are of the form

ASl = {E()OOOSClOOO:L‘QOOOl'g, (4.45)

where x = (29,1, 72,73) € F3 and = # 0. There are in total four possible differential characteristics
AS; satisfying wt (AS1) = 1, given by four values of x that satisfy wt () = 1. Those four differential
patterns are shown in Figure 4.57. We have seen one of them in Figure 4.55 (see Example 4.3.7).

AK SR MC . AK .
SB
AK SR MC H AK H
SB
AK SR MC AK
SB H H
AK SR MC AK
SB
I = =
So @ S} S1 @8]

Figure 4.57: Illustration of how active bytes change for all four differential patterns that start with
ASp = 1000010000100001 and converge in round 1. Blue squares correspond to active bytes. AK, SB,
SR, and MC stand for AddRoundKey, SubBytes, ShiftRows and MxiColumns respectively.

Furthermore, intermediate values S; and S} that can achieve AS; in Equation 4.45 satisfy
S1 @ S7 = ap000a;000a>000a3000,
where a; € F§ fori = 0,1,2,3 and a;, # 0 for some ig € {0,1,2, 3}. Then there are in total
(28 —1=2%2 1
possible values for S; @ S7. Out of which,

4x (28 —1)~2!" satisfy wt(AS;)=1.

196

There are in total 232 — 1 possible differential values for the four active bytes before MixColumns
operation. According to Remark 3.1.3, any value of S; @ S] comes from exactly one differential value
for those four active bytes. Suppose differential values of those four active bytes follow a uniform
distribution on F3?. Then the probability of any value of S; & S} to occur is ~ 2732, Consequently,

we have 0
2
P (wt(AS;) = 1]ASy = 1000010000100001) ~ o5 = 2722,
In this case, pr = 22. By Equation 4.43,

2241

M, =
2

=11.5.

Thus, we need 2'5 chosen plaintexts to get a differential pattern that starts with ASj as given in

Equation 4.44, and converges in round 1.

Example 4.3.12. [Probability of convergence — PRESENT] In this example, we consider PRESENT
and the following differential characteristic:

ASy = 000000000000FFFF. (4.46)

Let SB denote the PRESENT Sbox. We would like to compute the probability of a differential pattern
starting with ASjy and converges in round 2, namely

P(wt(ASy) = 1|ASy = 000000000000FFFF).

Let SB;- denote the jth Sbox in round ¢. Recall that the Oth Sbox is the right-most Sbox (see Figure 3.9).
Let dggi and Aggi denote the input and output differences of Sbox SB;- respectively.
J J

For AS; to have Hamming weight 1, we need to have just one active Sbox in round 2 with output
difference having Hamming weight 1. Let SB?O be the single active Sbox in round 2.
By the design of pLayer (see Table 3.12), the four active Sboxes in round 1

SBj, SBi, SB}, SB}
influence the following four Sboxes in round 2
SBZ, SB3, SBZ, SB,.

We also notice that the jth bit of all the four Sboxes in round 1 goes to the (4 * j)th Sbox in round
2. Since none of the output differences of those four Sboxes in round 1 is equal to 0, to have just one
active Sbox in round 2, the output differences of those four active Sboxes in round 1 should all be
the same with Hamming weight 1. This implies that the input difference of the single active Sbox in
round 2, SBJQ»O, is F. Furthermore, by Equation 4.46, those four active Sboxes in round 1 all have input
difference F.

According to Table 4.1, for input difference F, the possible output differences with Hamming
weight 1 are 1 and 4. By counting the number of elements in each entry of column F in Table 4.1, we
can get that the probability for the output difference to be 1, given that the input difference is F, is
4/16 = 1/4. The same result holds for output difference 4. The probability that all output differences
of the four active Sboxes in round 1 are equal to 1 is then given by

4
1 _

Similarly, we have

Nt g
P (ASB}) = Agpy = Agpy = Agpy = 4‘55135 = dgp} = Ogp} = Ogp} = F) - (4) =2

The probability for the single active Sbox in round 2 to have output difference with Hamming weight
1 is given by

1 1 _
P (wt (g) =1)og =F) = P Qg = 1]dsz =) + P (Agg = 1[dspz =F) = PRI

197

When the output differences of
SBy, SBi, SBi, SB3}

are all equal to 1 (resp. 4), the single active Sbox in round 2 is given by SB? (resp. SBZ). We have
P(wt(AS3) = 1|ASy = 000000000000FFFF)
—275P (wt (Agpz) = 1‘5533 =) +27°P (Wt (Aggz) = 1‘5533 =)
=2x27 ' +2 8 x 27 =270 279 =278

In this case, we have pr=8. By Equation 4.43,

8+1
-

M, = 4.5.

Thus we need 2% chosen plaintexts to get a differential pattern that starts with AS, as given in

Equation 4.46 and converges in round 2.
From the discussions above, we can see that there are in total four such differential patterns,
corresponding to

Agpy = Agpt = Agpy = Agpy = 1, Agpz = 1,
Agpy = Agpt = Agpy = Agpy = 1, Agpz = 4,
Agpy = Agpt = Agpy = Agpy = 4, Agpz = 1,
Agpy = Agpt = Agpy = Agpy = 4, Agpz = 4.

We have seen the first one in Figure 4.56 (see Example 4.3.8). The remaining three are shown in
Figures 4.58, 4.59, and 4.60 respectively.

K a YYYMMM\
1 O IPNPNPNPNZN 2N IPNFNPNPNPNPN PN PN PPN VNN PN PN PN PN 2N Al

SB%s SB%4 SB%?, SB%Q SB%I SB%O SB% SBé SB% SB}j SB% SB}1
S _=S<_—

b
0
li
\
!

(
i
é:
:
e@
!
I
i

R

YT
NN

SB2, || SB2, || SB2, || SB2, || SB2, || SB, || SB2 || sB2 || SB2 || SB2 || SB? || SB2 || SB2 || SB? || SB?
]]

Y Y TYTY YN

Y YT Y
IANPNZNVNPVNZ VNN

NN

Ky

i
<5
>
i
>.
g
g
<5
>
>
>
>.
g
g
g
>
&
i
i
5
R
g
g
>
&
>
>.
R
g
.

a

IANPN IZNPNVNVNANPN NN AN VN NNV NN

s —

e

PR Y Y Y Y Y Y Y Y Y Y Y Y Y Y I Y T TN TN TN

IZNPNZNINZNPN NN NN LN ZNPN LN NN VPNV NPN NN

R

K AP
3 T

&

Y TY Y TYTY T
7N AN

Y TY Y YT
IZNPNZNVNALNIN 7N AN

I NPNZ VNN

5
5
>
>
>
N>

SB3, ||sB?, || SB3, || SB3, || SB?, || SBS, || B3 sB? || sB? || sB? || sB? || SB3 || B3 || SB?

Figure 4.58: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with AS; given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 1. The output difference of the single active Sbox in round 2 is 4.

In SCADPA, the attacker queries the encryption with pairs of plaintexts that achieve a target dif-
ferential characteristic ASy and potentially result in a differential pattern that converges in round 7.
ASj and the round number r are chosen so that the probability of convergence is not too small. Then
by comparing side-channel leakages of a middle round from both encryptions for a pair of plaintexts,
the attacker tries to confirm if the convergence is achieved and identify the differential characteristic
AS, when convergence happens. Thus, we need to choose ASy and r in a way that we can find
a point for side-channel observation so that the leakages can tell us whether the convergence has
happened, and if yes, what is the value of AS,..

198

O e VN N Ve
1 1 1 1 1 1
SBL, |[sBY, || SBL, || SBL, || SBY, SB!L
Ky GODOOOODIDIC S S S
2 2 2 2 2 2 2 2 2 2
]] I []] [|
K3E\\\\\\\\\\\\BEBEBE\\\\ \\\\BEBE%\ LTI T T
3 3 3 3 3 3 3 3 3
SB3, || SB3, || SB2, || SB3, || SB3, SB? || B3 SB? || B3

Figure 4.59: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with ASy given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 4. The output difference of the single active Sbox in round 2 is 1.

Example 4.3.13. [Point for side-channel observation — AES] Let us consider AES with w = 8. As an
attacker, we choose the target differential characteristic ASy = 1000010000100001. Then we query
the encryption with plaintext pairs that achieve this ASy. For each plaintext, we take, say, IV, traces
and use the averaged trace as the leakages for this plaintext. By averaging, the noise can be reduced.
Then the difference between averaged traces of each pair of plaintext is computed.

As discussed in Example 4.3.11, there are four differential patterns that start with ASy and con-
verge in round 1. They are given by the following four values of ASi:

1000000000000, 0000100000000, 0000000010000, 0000000000001,

corresponding to the single active byte at the end of round 1 being the first, second, third, and fourth
bytes in the first column. Figure 4.61 shows how the active bytes change from round 1 to round
3 for all four differential patterns. In the second round, SubBytes does not change the position of
this single active byte. ShiftRows changes its position to a different column unless this active byte
is the first byte. Due to the property of MixColumns operation (see Remark 3.1.3), this single active
byte will influence four bytes, leading to four active bytes in one single column of the cipher state.
Finally, AddRoundKeys in round 2 and SubBytes operation in round 3 will not change the position
or number of active bytes.

As discussed in Example 4.3.11, all possible differential characteristics AS; are of the form as
given in Equation 4.45. In case wt(AS;) # 1, we will have more than one active byte at the end
of round 1, which will be in more than one column after the SubBytes and ShiftRows operations in
round 2. Consequently, there will be at least two active columns at the end of round 2. We can then
conclude that

AS; = 1000000000000
AS; = 0000100000000
AS; = 0000000010000
AS; = 0000000000001

AS5 = 1111000000000000,
AS3 = 0000111100000000,
AS3 = 0000000011110000,
AS3 = 0000000000001111.

1o

Suppose the SubBytes operation is implemented column-wise from the first column to the fourth
column. Then when we take the trace difference for a pair of plaintexts, we would expect to see
peaks around time samples corresponding to active columns and relatively small differences around
time samples corresponding to columns that are not active during the SubBytes operation in round

199

a

YT

o
o

YT

IZNPNI IPNPN

K

IPNPN

SBi. || SBi, || SBi; || SBi, || SB,

SB!

Y Y TY Y TN

Ko &4

&
>.
g
&
>
o

4l YT 4l
IANPNZNVNPVNZ VNN

o

IANPN

"

SBi; || SB1, || SBi; || SB, || SB%,
]]

sB2 |[sB2 |[sB2 || sB2 | sB2

K3 ¢ PSFSPS

PSPSFS
[TTTTTT T [T

SB3; |[SB3, || SB35 || SB3, || SB3,

SB? || sB2 || SBS || B3 || SB3

Figure 4.60: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with ASy given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 4. The output difference of the single active Sbox in round 2 is 4.

3. By identifying the active columns, we can deduce the value of AS;. In particular, the point of
side-channel observation should be SubBytes operation in round 3. Note that we assume using SPA
or other methods, the attacker can infer the timing for each operation.

As an example, with the master key from Equation 4.40 and the experimental setup as described
in Section 4.1. We adopted the Tiny AES® implementation for AES, which is widely used for academic
purposes. Measurements for the following four pairs of plaintexts were taken:

4C3C3F54C7AAD34E607110C753C5E990, 033C3F54C725D34E607131C753C5E90F; (4.47

)
3B06201F5EAAOBD6794C249610FBE927, 5F06201F5E750BD6794CB79610FBE995; (4.48)
2D2A49F26A79655214056A7B5F35A9E9, DI12A49F26ACC655214052D7B5F35A9C6; (4.49)

)

OEDB19A25C7EF1FDDED31178EE6E7478, FADB19A25C06F1FDDED30E78EE6E7415. (4.50

N, = 100 traces were collected for each plaintext. All pairs of plaintexts achieve the same differential
characteristic ASy = 1000010000100001. The AS; values are given by

1000000000000, 0000100000000, 0000000010000, 0000000000001,

respectively. Illustrations of the active bytes change for each pair correspond to the four rows of
Figure 4.61.

In Figure 4.62, the difference between the averaged traces of each pair of the plaintexts are in red,
blue, green, and yellow respectively. We have also plotted the averaged traces for the first plaintext
in Equation 4.47 (in gray), for the purpose of identifying the round operations. Similar to Figure 4.3,
we can find the rough time interval for the SubBytes operation in round 3, which is colored in pink.
This is the point for our side-channel observation. After zooming in, we get Figure 4.63. Recall that
the SubBytes operation was implemented column-wise starting from the first column. By the choice
of the plaintext pairs, the red, blue, green, and yellow traces correspond to a single active column
(see Figure 4.61) at the first, second, third, and fourth positions respectively. This agrees with what
we see in Figure 4.63 — the four colored peaks are in sequential order.

Example 4.3.14. [Point for side-channel observation - PRESENT] In this example, we look at PRESENT
encryption and let SB denote the PRESENT Sbox. We take w = 1 and we choose

ASy=000000000000FFFF.

®https://github.com/kokke/tiny-AES-c

https://github.com/kokke/tiny-AES-c

200

SB MC SB
SR AK

SB MC SB
SR AK

SB MC SB
H SR H_ AK
H SB H MC SB

SR AK

AL

So @ S), S1® 5] Sy @ 5% Leakages

Figure 4.61: Illustration of how active bytes change from round 1 to round 3 of AES computation, for
differential patterns that start with ASy = 1000010000100001.

Ill‘nl T I l.\l\|||

i,
"”|T Il | ‘l"l‘|‘|‘f I

Leakage

| | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time sample

Figure 4.62: The difference between the averaged traces of plaintext pairs from Equa-
tions 4.47, 4.48, 4.49, and 4.50, in red, blue, green and yellow respectively. The averaged trace for
the first plaintext in Equation 4.47 is in gray. With this gray plot, similar to Figure 4.3 we can find the
rough time interval for the SubBytes operation in round 3, which is colored in pink.

We aim to find a pair of plaintexts Sy and S; that achieves a differential pattern starting with ASy
and converging in round 2. For each plaintext, we take N, traces and use the averaged trace as the
leakages for this plaintext. Then the difference between averaged traces of each pair of plaintext is
computed. We assume that the sBoxLayer operation is implemented nibble-wise, starting from the
Oth nibble (right-most) to the 15th nibble (left-most).

Convergence in round 2 means that there is just one active bit at the end of round 2. Consequently,
we will have just one active Sbox before pLayer in round 3.

On the other hand, suppose there is just one active Sbox in round 3. As discussed in Exam-
ple 4.3.12, with ASy, the four active Sboxes in round 1 are

SBj, SBI, SBi, SB..
And they will influence four Sboxes in round 2:
SB2, SB%, SBZ, SB,.

By the design of pLayer we know each of those four Sboxes from round 2 will affect 4 Sboxes in

201

1 - .
o
Eo 0 ‘h,'\.r."\\’\é\w-ﬂnw...' Vmﬁ&wwﬂ "m'c. WMW'W”W'"‘WW“‘WWWWMW‘ —— first column is active
§ W V second column is active
third column is active
—1l | fourth column is active

| | | | | |
6,600 6,700 6,800 6,900 7,000 7,100

Time sample

Figure 4.63: Zoom in to the SubBytes computation (pink area) in Figure 4.62. The difference between
the averaged traces of plaintext pair from Equations 4.47, 4.48, 4.49, and 4.50 are in red, blue, green
and yellow respectively. They correspond to a single active column at the first, second, third, and
fourth positions respectively during the SubBytes operation in round 3.

round 3 as shown below:

SB(Q) : influences SBS, SB3, SBg, SB?,,
SBi: influences SBj, SBZ, SB3, SBi,
SBZ: influences SBj, SBi, SBi,, SB3,,
SBi, : influences SB3, SB:, SBj;, SBi;.

In particular, they all influence different Sboxes in round 3. Since there is just one active Sbox in
round 3, there is just one active Sbox in round 2. We also note that different bits of the output of an
Sbox in round 2 go to different Sboxes in round 3, we can then conclude that there is just one active
bit at the end of round 2. Moreover, with the position of the active Sbox in round 3, we can further
identify the position of the active bit in round 2 with our knowledge of pLayer.

Thus, by observing the leakages around sBoxLayer in round 3 we will be able to see if the con-
vergence has happened and identify the value of ASs.

As an example, let us take the master key to be the one given by Equation 4.42. We also take the
plaintext pair from Example 4.3.10, namely

Sp = DCFC2D56F32EC070, S = DCFC2D56F32E3F8F. (4.51)

The experimental setup is as described in Section 4.1, measurements were done for three rounds of
PRESENT computations. N,, = 2000 traces were collected for each plaintext. Recall that this pair of
plaintext achieves the following differential pattern:

ASy=000000000000FFFF, AS; =000000000000000F, AS,=0000000000000001.

In particular, there is one single active Sbox SB% before the pLayer operation of round 3.
For comparison, we also collected 2000 traces for each of the following four plaintexts:

8F5F8BD2E7CF5989, 8FS5F8BD2ETCFAG76; (4.52)

and
F2DCDC8341D45F79, F2DCDC8341D4A086. (4.53)

Where the first pair of plaintext (Equation 4.52) achieves the same differential characteristics ASy and
ASj, but at the end of round 2, the differential characteristic is given by

0000000100000000.

202

In this case, we have one single active Sbox SB before the pLayer operation of round 3.
The second pair of plaintext (Equation 4.53) also achieves the same ASjy and AS;, while the dif-
ferential characteristic at the end of round 2 is given by

0001000100010000.

Then for this pair of plaintext, there are three active Sboxes (SB}, SB3, SB3,) before the pLayer opera-
tion of round 3.

In Figure 4.64, the difference between the averaged traces of Sy and S, (Equation 4.51), plaintext
pair from Equation 4.52, as well as plaintext pair from Equation 4.53 are in red, blue, and green
respectively. We have also plotted the averaged traces for Sy (in gray) for the purpose of identifying
the round operations. Similar to Figure 4.3, we can find the rough time interval for the sBoxLayer
operation in round 3, which is colored in pink. This time interval corresponds to our point of side-
channel observation. After zooming in, we get Figure 4.65.

T T T T T T T T T T

0.2

0.1 ”l

0

Leakage

o1

-0.2

| | | |

| | | |

| |
0 01 02 03 04 05 06 07 08 09 1 1.1
Time sample 104

Figure 4.64: The difference between the averaged traces of Sy and S|, from Equation 4.51 (in red),
plaintext pair from Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53 (in green).
The averaged trace for Sy is in gray. With this gray plot, similar to Figure 4.3 we can find the rough
time interval for the sBoxLayer operation in round 3, which is colored in pink.

Recall that the sBoxLayer is implemented nibble-wise. From the above discussions, we know that
the red, blue, and green traces correspond to active Sboxes

SB3; SB3; SB3 SB SB3,

before round 3 pLayer operation respectively. This agrees with what we see in Figure 4.65. There is a
single peak in the red line and the blue line, while the green line has three peaks. The peak in the red
line (SB}) is at the beginning of the sBoxLayer. The first peak of the green line (SB}) is between the
peaks of the red (SBj) and blue (SB3) lines. The peak of the blue line coincides with the second peak
of the green line (SBY). The last peak of the green line (SB,) is in the last quarter of the whole time
interval.

Our ultimate goal is to recover information about the secret keys. Thus, another criterion for
choosing ASj and r is that the possible key hypotheses can be reduced once we find a pair of plain-
texts that achieves a converging differential pattern and we know the value of AS,.

Example 4.3.15. [Reduce key hypotheses — AES] Let us consider AES with w = 8. As an attacker, we
choose the target differential characteristic ASy = 1000010000100001. Then we query the encryption
with plaintext pairs that achieve this ASy. Suppose with the help of side-channel leakages, we have
identified a pair of plaintexts Sy and S; that gives a differential pattern converging in round 1 with
AS; = 1000000000000000. Let cr be the differential value of the single active byte at the end of round
1. Then, using InvMixColumns (see Equation 3.7), the differential value of the four active bytes right
after the SubBytes operation in round 1 is given by

OE-a, 09-c, OD-a, OB-a.

203

T T T T
— active Sbox SB}

b | — active Sbox SBS N
active Sboxes SB3, SBE, SB3,

o 051 B
g m
: (-
—
0 (oot AP A APy Aot e REAA
0.5 B

| | | | | | | | |
6,800 6,820 6,840 6,860 6,880 6,900 6,920 6,940 6,960

Time sample

Figure 4.65: Zoom in to the sBoxLayer computation (pink area) in Figure 4.64. The difference between
the averaged traces of Sy and S, from Equation 4.51 (in red), plaintext pair from Equation 4.52 (in
blue), as well as plaintext pair from Equation 4.53 (in green). They correspond to active Sboxes SBy;
SB3; SB3, SB3, SBY, before pLayer of round 3.

AK SR MC AK
SB

So @ S, Si @S

Figure 4.66: An illustration of differential values for the differential pattern ASy; = 1000010000100001
and AS; = 1000000000000000.

Let o, 51, B2, and [y be the differential values of the four active bytes in the main diagonal of the
plaintexts. An illustration is shown in Figure 4.66.
We represent the master key of AES (which is also the whitening key used at the beginning of the
encryption) as a matrix:
koo ko1 ko2 ko3
ko ki1 ki ki3
koo kor koo ka3
k3o k31 k32 k33

We represent the plaintext Sy as the following matrix (note that this representation follows the same
notation as in Equation 3.2, which is different from the notations in Equation 4.38):

500 So1 S02 So03
_ | S0 S11 S12 S13
So =
520 S21 S22 823
8§30 $S31 832 833

Then we have

SBaEs(s00 @ koo © B1) @ SBags(so0 @ ko) = OE-«
SBars(s11 @ k11 © B2) ® SBagps(s11 @ k11) = 09-«
SBags(s22 @ ko2 @ B3) © SBags(s22 ® k22) = 0D«
SBags(s33 © k33 @ (1) © SBags(s33 ® k33) = O0B-a.

Thus,
s00 @ koo, S11 D k11, S22 @ koo, 533 D k33

are AES Sbox inputs that give output differences

OE-ay, 09, OD-a@, OB-«

204

with input differences

617 /827 /837 /64

respectively. Then, by using the difference distribution table for AES Sbox and with the knowledge
of the plaintexts, we can reduce the key hypotheses (see Remark 4.3.5).

As an example, let us take the master key to be the one given by Equation 4.40. Continuing
Example 4.3.13, with side-channel leakages, we have identified the following pair of plaintexts that
achieves the differential pattern mentioned above, namely,

Sp = 4C3C3F54C7AAD34E607110C753C5E990, 56 = 033C3F54C725D34E607131C753C5E90F.

In this case, we have

b1 = 4C P03 =4F
B3 = 10431 =21
And
Soo = 4C, 811 = AA, 8922 =10, s33 = 90.
Thus,

4C D kog, AADKk11, 10D ko, 90D ks
are the AES Sbox inputs that give output differences
OE-a, 09-ca, OD-a, OB-«

with input differences
4F, 8F, 21, O9F

respectively. To find the possible values of koo, k11, k22, k33, we first find values of o such that the
following entries of the AES Sbox DDT are nonempty:

(OE-a,4F), (09-a,8F), (0D-a,21), (OB-a,9F).

There are in total 13 of them, as shown in Table 4.2. Each of those values gives a few hypotheses for
koo @ 4C, k11 @ AR, koo @ 10, k33 @ 90.

a | koo @ 4C ki1 @ AA koo ® 10 | k33 @ 90
1A | 16,59 65,EA CF,EE 62,FD
29 96,D9 3E,B1 85,24 78,E7
42 28,67 58,D7 59,78 16,89
5D AB,E4 40, CF 81, A0 45, DA
66 3,4cC 2C,A3 D8,F9 1D, 82
71 AF,EOQ 78,F7 DE, FF 39,A6
74 82,CD 5D, D2 7,26 4E,D1
95 7,48 43, CC 87,A6 65,FA
9C 97,D8 0,3D, 8F,B2 44,65 7F,EO
cC 1D, 52 37,B8 93,B2 5F, CO
D7 37,78 63,EC 56,77 3E,Al
E7 37,75 7B,F4 1B, 3A 63,FC
EB | BB,F4 34, BB CD,EC | 54,CB

Table 4.2: In the first column, we list the possible values of o such that the following entries of AES
Sbox DDT are nonempty (OE - v, 4F), (09-«,8F), (0D-a,21), (0B-«,9F). The corresponding
hypotheses for koo ® 4C, k11 @ AA, koo @ 10, k33 ® 90 are listed in the second, third and fourth column
respectively. The correct value of o is marked in blue. Detailed analysis are shown in Example 4.3.15.

205

Consequently, we can find all the possible values for the four key bytes, as shown in Table 4.3.
The correct master key in Equation 4.40 and the corresponding correct value of a are marked in blue.
We note that the remaining number of key hypotheses is given by

2% x 12+ 2% x 4 = 224,
while the number of all possible key hypotheses for those four bytes is
(28)4 — 232'

We can see that the attack can significantly reduce the key hypotheses.

o Koo k11 o) k33

1A | 57,15 Cr, 40 DF,FE | F2, 6D
29 | DA, 95 94,1B 95,B4 | E8, 77
42 | 64, 2B F2,7D 49,68 | 86,19
5D | E7,A8 EA, 65 91,B0 | D5, 4A
66 | 4F, 00 86,9 C8,E9 | 8D, 12
71 | E3,AC D2, 5D CE,EF | A9, 36
74 | CE, 81 F7,78 17,36 | DE, 41
95 | 4B, 04 E9, 66 97,B6 | F5, 6A
oc | DB, 94 | AR, 97,25,18 | 54,75 | EF, 70
CcC | 51,1E 9D, 12 83,A2 | CF, 50
D7 | 7B, 34 c9, 46 46,67 | AE, 31
E7 | 76,39 D1, 5E B,2A | F3,6C
EB | F7, B8 98, 11 DD, FC | C4, 5B

Table 4.3: Possible values of o and the corresponding key hypotheses for koo, k11, k22, k33, the main
diagonal of the AES master key. The correct key bytes are marked in blue. Detailed analysis are
shown in Example 4.3.15.

Example 4.3.16. [Reduce key hypotheses — PRESENT] Now we look at PRESENT encryption. Take
w = 1and let
ASy = 000000000000FFFF. (4.54)

We aim to find a pair of plaintexts Sy and S; that achieve a differential pattern starting with ASy and
converging in round 2. Suppose by analyzing the side-channel leakages, we have identified such a
pair of plaintexts Sy and S that gives a differential pattern converging in round 2 with

AS,; =0000000000000001. (4.55)

Since there is only one active bit (bit 0) at the end of round 2, we know by the design of PRESENT
that this means there is only one active Sbox in round 2 — Sbox SBj (see Figure 4.56). By analyzing
the pLayer operation, we know that the output differences of Sboxes SBj, SB], SB}, SB} are all equal
to 1. By our choice of plaintexts, we also know that the input differences of those Sboxes are all equal
to F. According to PRESENT Sbox DDT in Table 4.1, the inputs of those four Sboxes are among 2, 4,
B, and D. In other words, let

So = bgsbga . .. biby.

And let

denote the first round key. Then
bjysbjiabji1b; @ Ky gk ok k5 €{2,4,B,D}, forj=0,4,8,12. (4.56)

With the knowledge of the plaintexts, we can reduce the key hypotheses. In particular, the remaining
number of key hypotheses for the Oth— — 15th bit of K is

4% = 28 = 956,

206

while the total number of all possible key hypotheses for those 16 bits is 21°.
As an example, let us take the master key to be the one given by Equation 4.42. We can compute
that the first round key is given by

K1 =0000123456781234. (4.57)

Continuing Example 4.3.14, suppose with side-channel leakages, we have identified the following
pair of plaintexts that achieves the differential pattern starting with ASy in Equation 4.54 and con-
verging in round 2 with AS; from Equation 4.55:

So = DCFC2D56F32EC070, S(/) = DCFC2D56F32E3F8F.
In this case, Equation 4.56 gives:

0@ kikiking € {2,4,B,D}, 7@&%&%&%/&}16{2,4,]3@},
1.1 .1 .1
0@ Kiykighghs € {2,4,B,D}, C® Kiskishiakia € {2,4,B,D}.

We can then reduce all the possible key hypotheses for the Oth — 15th bits of K;:

11,11
kikskiky € {2,4,B,D}, rprgrgky € {5,3,C,A},

rirklokgrg € {2,4,B,D}, Kizkiskiskty € {E,8,7,1},
where the correct key nibbles given by Equation 4.57 are marked in blue.

Up to now, we have seen how SCADPA can reduce the key hypotheses on 4 bytes of AES master
key and 4 nibbles of the first round key for PRESENT. In general, the steps for SCADPA are as follows:

SCADPA Step 1 Choose the target cryptographic implementation. SCADPA applies to all SPN ciphers that
have been proposed so far. As running examples, we will continue to discuss the attacks on
AES-128 and PRESENT.

SCADPA Step 2 Choose the value w. Based on our chosen cipher, we need to decide the value of w for our
attack. This value is highly dependent on the cipher design. In general, for AES-like ciphers,
we would choose w to be the same as the size of the Sbox. And for bit permutation based
ciphers (e.g. PRESENT), we choose w to be 1.

SCADPA Step 3 Identify a target differential characteristic ASy, a round number r for convergence, and a
point for side-channel observation. We would like to look for plaintext pairs that achieve a
differential pattern starting with ASy and converging in round r. We also need to decide on
a point for side-channel leakage analysis during the computation after round r. The choice
of ASp, r, and the point for side-channel observation should satisfy the following conditions:

¢ The probability of convergence is not too small. In particular, if the probability is 2777,
we will need 2M» chosen plaintexts for the attack, where M,, = 0.5pr + 0.5.

* Using side-channel leakages at the chosen point of measurement, we should be able to
confirm if the convergence has appeared for the differential pattern between a pair of
plaintexts. Furthermore, it is possible to identify the value of AS, in case the conver-
gence appears.

¢ The possible key hypotheses can be reduced once we find a pair of plaintexts that
achieves a converging differential pattern and obtain the value of AS,.

SCADPA Step 4 Choose plaintexts. We choose 27 distinct plaintexts so that each pair of them achieves the
target differential characteristic ASy.

SCADPA Step 5 Side-channel measurement and observation. With each plaintext, we measure N, traces.
The average trace of those IV, traces is computed for each plaintext. For each pair of plain-
texts, we take the difference of the corresponding average traces and analyze the difference
trace at the chosen point of observation. Once we find one difference trace that indicates the
convergence has occurred, we deduce the value of AS, from the measurements and carry
on to the next step.

207

SCADPA Step 6 Reduce key hypotheses. Once we identify a pair of plaintexts that archives a converging
differential pattern, we can reduce the key hypotheses using the knowledge of AS, and the
plaintexts.

Example 4.3.17. In summary, a SCADPA attack on AES-128 starts with choosing
w=38, ASy=1000010000100001, 7 =1,

and the point for side-channel observation being the SubBytes operation in round 3. Then we query
AES encryption with 21 (see Example 4.3.11) chosen plaintexts such that each pair of them achieves
the differential characteristic ASy. With side-channel leakages, we can deduce if convergence has
happened, and if yes, we record the value of AS; (see Example 4.3.13). Finally with a similar com-
putation as in Example 4.3.15, we reduce the key hypotheses for the four bytes in the main diagonal
of the master key.

Similar attacks can be carried out on the other “diagonals” of the master key to reduce the key
hypotheses of the whole master key. In particular, the other values of ASj can be

0100001000011000, 0010000110000100, 0001100001000010.

The possible differential patterns for each ASy are shown in Figure 4.67, where each figure represents
4 different differential patterns starting with the same ASy. The blue colored squares represent active
bytes and only one of those four colored bytes is active in the last two cipher states (so that the
differential pattern converges in round 1).

AK SR we B aw B
SB
SR
m e
-

AK:.Eéi MC:. AK:.
SB.:

Tl
.i AK MC AK
. "
AK SR MC . AK .
SB
So @ S} S1® 5]

Figure 4.67: The possible differential patterns for AES encryption with ASp equal to
1000010000100001, 0100001000011000, 0010000110000100, 0001100001000010 respectively. Each fig-
ure represents four different differential patterns starting with the same ASy. The blue colored
squares represent active bytes and only one of those four colored bytes is active in the last two cipher
states.

Example 4.3.18. As for SCADPA attack on PRESENT, we start by choosing
w=1, ASy;=000000000000FFFF, 7 =2,

and point for side-channel observation being the sBoxLayer operation in round 3. Then we query
PRESENT encryption with 24 (see Example 4.3.12) chosen plaintexts such that each pair of them
achieves the differential characteristic ASy. With side-channel leakages, we can deduce if conver-
gence has happened, and if yes, we record the value of AS; (see Example 4.3.14). Finally with a
similar computation as in Example 4.3.16, we reduce the key hypotheses for the Oth — 15th bit of the
first round key. We have also computed that the remaining number of key hypotheses will be 2%
instead of the original 21°.

208

Similar attacks can be carried out on the other bits of the first round key to reduce the key hy-
potheses of the whole round key. In particular, the other values of ASj can be

00000000FFFFO0000, OOOOFFFF00000000, FFFEF000000000000.

The possible differential patterns for each of the three values of ASy are shown in Figures 4.68, 4.69
and 4.70. Each figure shows four differential patterns that converge in round 2. Each differential
pattern has one active nibble at the end of round 1 and a single active bit at the end of round 2.

K [a YVVVYVVVYVVYYVVYVVVYVVVYVVYVVVYV‘IV"V"V"V"Y"Y"V"V"V"V\flVl'Yl'\/‘lV‘lVVYVVYVVVYVVVYVV
1 IZNPN N NP N N N

<

AT IZNPNPNVNZNPN IZNPNPNVNPN NV N PNV NPV PNV NV NV PN NV PN IZNPNPNV NN NV NPV NN PNV NNV N

SBL, || sBL, || SBL, || SBL, || SBL, || SBY, || SBY || SBL SB! || sB! || sB! || B}

K, 64 o =
2

s ————

Ko A4 A
3 T

A

SB3, || sB3, || sB3, || SB3, || SB3, ||SB3, || SB? || SB? || sB? || SB? || sB? || SB? || SB? || SBE || SB?

Figure 4.68: The possible differential patterns for PRESENT encryption that start with ASy; =
00000000FFFF0000 and converge in round 2. There are in total four patterns — the single active
bit at the end of round 2 can be the 4th, 6th, 32nd, or 34th bit.

K A VYYYYVVVVYVYYVV\fl‘fl\fl\fl\/l\fl\fl\fl\fl‘fl‘fl\/l\fl\fl\fl\flvYYYVVVVYYYVVVVYVYYVVVYVYYVVVVYV\
| ANV NP NV NI NN PNV NV YNV NPNPNYNPN! NP NPNVNP NN NPV NNV NN PNV VNV NN PN NPV VN NN PN PN VNNV NNV
SBL, || sB1, || SBL, || SBL, SB! || SBY || Bt || sB! || SBY || B} || SB! || SB}

<

Y TY Y I TYTY]

Ko @Adad NYTYT N NYTY
3 T

o
&
S
>
>
o
&
>
S
&
&
>
>
o
o
N
D
S
>
>
>
>
&
U

IPNPN IPNPNVNZNZNZNVNVNVN VN PNZNSPNVNVNPVNPN

SB3, || SB2, || SB3, || SB, || SB?, || SB3, || SB2 || SB2 || B2 || sB2 || sB? || B2 || sB? || SBE || SB?

Figure 4.69: The possible differential patterns for PRESENT encryption that start with ASy =
0000FFFF00000000 and converge in round 2. There are in total four patterns — the single active
bit at the end of round 2 can be the 8th, 10th, 36th, or 38th bit.

Remark 4.3.7. As mentioned in Example 4.3.13, for the attack on AES, we assume the SubBytes
operation is implemented column-wise from the first column to the fourth column. We note that a
different ordering of the columns in the implementation is also vulnerable to the attack, provided

209

IZNZNVNPN AP NPV NPN PNV N VNV VNPV NN NN

<

SBL, ||sBY, || sBY || SBL || sB! || SBL || SBL || SB! || SBY || SB! || SB! || SBY

K> &4 B

"

SB3,

e

K3

a

Y TYTYT
A

NN

NN IZNPN AN

SB3, || sB3, || sB3, || SB3, || SB3, ||SB3, || SB? || SB? || sB? || SB? || sB? || SB? || SB? || SBE || SB?

Figure 4.70: The possible differential patterns for PRESENT encryption that start with AS, =
FFFF000000000000 and converge in round 2. There are in total four patterns — the single active
bit at the end of round 2 can be the 12th, 14th, 40th, or 42nd bit.

the attacker knows the ordering of the columns. Similarly, for our attack on PRESENT, we have
mentioned in Example 4.3.14 that the sBoxLayer operation is implemented nibble-wise from the Oth
nibble to the 15th nibble. A different ordering of the nibbles still can be attacked as long as the
attacker has the knowledge of the specific ordering.

210

4.4 Side-Channel Analysis Attacks on RSA and RSA Signatures

In this section, we will discuss one SPA and one DPA attack on implementations of RSA and RSA
signatures.

Following the same notations from Section 3.3, let p, ¢ be two distinct odd primes. n = pg and
e € Z,,, are the public keys. d = e~ mod p(n) is the private key. Furthermore, let

dy,—1dg, o ... dydy

be the binary representation of d.
We will show how SPA and DPA can be used to recover the value of d during the computation of

a? mod n (4.58)

for some a € Z,. For both attacks, we focus on one particular method for implementing the modu-
lar exponentiation — the left-to-right square and multiply algorithm (Algorithm 3.8). A similar SPA
attack can also be applied to the right-to-left square and multiply algorithm (Algorithm 3.7). We
note that the attacks can be carried out during either the decryption of RSA or the signature signing
procedure of RSA signatures.

For the experiments, we have set the values of the parameters as given in Examples 3.3.2%:

p=29, q=41, n=1189, ¢(n)=1120, e=3, d="T4T. (4.59)

Then our implementation of Algorithm 3.8 can be described by Algorithm 4.2.

Algorithm 4.2: Left-to-right square and multiply algorithm for computing modular expo-
nentiation (see Algorithm 3.8) with parameters from Equation 4.59.

Input: a// a € Ziiso
Output: a7 mod 1189
n = 1189
dbin = [1, 1,0,1,0,1,1,1,0, 1} // binary representation of d=747, do=1, dy =1
by = length of dbin// vit length of d
t=1
fori=4¢;—1,1>0,i— —do
t=txtmodn
// ith bit of d is 1
if d; = 1 then
L t=axtmodn

SN Ul R W N =

® 3

9 returnt

Remark 4.4.1. We note that since p(n) = (p — 1)(¢ — 1) is even and gcd(d, ¢(n)) = 1, d is odd. In
particular dy = 1.

4.4.1 Simple Power Analysis

We have seen that DPA exploits the relationship between leakages at specific time samples and the
data being processed in the DUT. SPA, on the other hand, analyzes leakages along the time axis,
exploiting relationships between leakages and operations. Similar to profiled DPA, SPA requires
knowledge of the exact implementation.

We have seen in the analysis of Figure 4.3 that different operations can be deduced from observing
the power traces. An SPA attack on the square and multiply algorithm works with a similar method
- we examine the traces to figure out if both square and multiplication are executed in one loop from
line 5 (the corresponding bit of d is 1) or not (the corresponding bit of d is 0). Following Kerckhoffs’
principle (see Definition 2.1.3), we assume the attacker has knowledge of Algorithm 4.2 except for
the values of bits of d in line 2.

Note that for easy illustration, the values we choose for p and q are much smaller than practical values.

211

With the experimental setting as described in Section 4.1, we measured one power trace for the
computation of Algorithm 4.2 on our DUT. The trace is shown in Figure 4.71. We can see ten similar
patterns. By examining Algorithm 4.2, we have two guesses:

Guess a Each pattern corresponds to one modular operation (modular square from line 6 or modular
multiplication from line 8);

Guess b Each pattern corresponds to one loop from line 5.

Let S denote the modular square operation from line 6 and M the modular multiplication from line 8.
We observe that the loop in line 5 contains either one square operation (S) or one square followed by
one multiplication operation (SM). We also have the following correspondence between operations
in loop ¢ and the ith bit of the secret key d:

loop i contains only S <= d; = 0, loop i consists of SM <= d; = 1.

| |
1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

Time sample

Figure 4.71: One trace corresponding to the computation of Algorithm 4.2. We can see ten similar
patterns.

We further notice that there are mainly two types of patterns in Figure 4.71, one with a single
cluster of peaks and one with more than one cluster of peaks. They are colored in green and blue in
Figure 4.72 respectively.

0.2

0.1

Leakage
=)

-0.1

—0.2

| |
1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

Time sample

Figure 4.72: Highlighted two types of patterns from Figure 4.71. One pattern with a single cluster of
peaks (colored in green) and one with more than one cluster of peaks (colored in blue).

Let us first assume that Guess a is correct. Based on the above observations, we have two possi-
bilities to consider:

¢ The (green-colored) single peaked patterns correspond to modular square operation (S) and the
(blue-colored) multiple peaked patterns correspond to modular multiplication operation (M).

212

* The (green-colored) single peaked patterns correspond to modular multiplication operation
(M) and the (blue-colored) multiple peaked patterns correspond to modular square operation

(S).

We know that dp = 1 (see Remark 4.4.1). Then we can deduce that the last blue-colored pattern in
Figure 4.72 does not represent a single modular square operation (S). On the other hand, the start
of the computation will always be a modular square operation, which then indicates that the first
blue-colored pattern corresponds to S. We have reached a contradiction and we conclude that Guess
a is not correct.

Next, we assume Guess b is correct. Similarly, we have two possibilities to consider:

¢ The (green-colored) single peaked patterns represent a single modular square operation (S), i.e.
the corresponding bit of d is 0; and the (blue-colored) multiple peaked patterns represent SM
and the corresponding bit of d is 1.

¢ The green-colored patterns correspond to SM and the blue-colored patterns correspond to S.

As discussed above, the end of the computation does not stop with dy = 0, thus the blue-colored
patterns represent SM, i.e. the corresponding bit of d is 1. Consequently, the green-colored patterns
correspond to loops with the bit of d being 0. We can then read out the value of bits d; (i = {4 —
1,...,0,1) from Figure 4.72:

101110101 1

Finally, we recover the secret key
d = 10111010119 = 747.

One might argue that the first green pattern in Figure 4.72 may also be a multiple peaked blue pattern.
We note that this pattern is shorter than the other blue patterns. Hence it is more likely to correspond
to one operation instead of two. Nevertheless, in a realistic attack, one could use brute force to
recover this bit.

Remark 4.4.2. By the design of the Montgomery powering ladder (Algorithm 3.9), there is always
a multiplication followed by a square operation, making it safe against our SPA attack presented
above.

44.2 Differential Power Analysis

For DPA attacks on RSA implementations, we focus on Montgomery’s method for implementing
modular multiplication MonPro (see Algorithm 3.17). Following Equation 4.59 and Example 3.5.17,

we have:
p=29, q=41, n=1189, ¢(n)=1120, e=3,

d="747, r=2048, r~'=717, n = 1235. (4.60)

Then our implementation of Montgomery left-to-right square and multiply algorithm (Algorithm 3.20)
can be described by Algorithm 4.4. Also, our implementation of MonPro (Algorithm 3.17) becomes
Algorithm 4.3.

We have implemented Algorithm 4.4 in our DUT. With experimental settings as described in
Section 4.1, one trace is shown in Figure 4.73. This trace is different from Figure 4.72 - we cannot see
two distinct types of patterns. If we take a closer look at the computation of MonPro in Algorithm 4.3,
we can see that the main difference between a square and a multiply is in line 3, which does not
involve modular n as compared to lines 6 and 8 in Algorithm 4.2. This missing modular n operation
might be the main reason for the missing pattern structure in Figure 4.73.

Nevertheless, we can still gain important information from the trace. First, we note that there are
18 similar patterns in Figure 4.73. By examining Algorithm 4.4, similar to Guess a and Guess b from
Section 4.4.1, we can assume each of those 18 patterns corresponds to either one execution of MonPro
or one loop from line 6. Since there is one extra MonPro operation in line 10, we know that the last
pattern will not represent a loop. If each of the other patterns corresponds to one loop, we will have
a secret key of bit length 17, which is longer than the bit length of n (bit length of 1189 is 10) and
hence impossible. We conclude that there is a high possibility that each pattern corresponds to one

213

Algorithm 4.3: MonPro, Montgomery product algorithm with parameters from Equa-

tion 4.59.
Input: a, b// a,b € Ziiso
Output: 717ab mod 1189

1n=1235

2 n=1189

3t=ab

4 m =tn AND 2047

5 u=(t+mn)>>11

6 if u > n then

7 LU:U—TL

8 return u

Algorithm 4.4: Montgomery left-to-right square and multiply algorithm with parameters
from Equation 4.59. MonPro is given by Algorithm 4.3.

Input: a//// a € Wl 1897
Output: a7 mod 1189

© 0 N3 S Ul R W N =

n = 1189, r = 2048
dbin = [1,0, 1,1,1,0,1,0,1, 1} // binary representation of d=747, dy=1, di =1
Ed:length of dbin// vit length of d
tr =rmodn
ar = ar mod n
fori=4¢;—-1,1>0,i— —do

tr = MonPro(ty,ty)// t. =1, Xuootr.

if dbin[i| = 1 then

L tr = MonPro(ty,ay)// t, =t Xue ar.

10 t = MonPro(tT, 1)// t=t, Xuon L =t xr ' modn.

11 returnt

execution of MonPro. Since when d; = 1 there are two executions of MonPro and when d; = 0 there
is one execution of MonP ro, our observations reveal that

g+ wt(d) =17.

We follow similar attack steps as DPA attacks on symmetric block ciphers presented in Sec-
tion 4.3.1.1. However, we will only describe one particular attack on RSA (originally proposed
in [AFV07]), while Section 4.3.1.1 outlines attack steps for a generic DPA attack on any symmetric
block ciphers.

DPA-RSA Step 1

DPA-RSA Step 2

DPA-RSA Step 3

DPA-RSA Step 4

Identify the target cryptographic implementation. As mentioned above, we focus on
the left-to-right square and multiply algorithm with Montgomery’s method for modular
multiplication. In particular, our attack will be on an implementation of Algorithm 4.4.
We remark that to have a better signal, most part of Algorithm 4.3 was implemented in
ARM assembly.

Experimental setup and measure leakages. With the same experimental setting as in Sec-
tion 4.1, we have measured M = 10000 traces, each for a random input a € Zi1g9. Let a;
(j =1,2,..., M) denote the jth input with corresponding power trace £; = (1,13, ...,1),
where the total number of times samples in one trace is ¢ = 9500.

Choose the part of the key to recover. In this attack, we aim to recover the full secret key
d.

Choose the target intermediate value. Our target intermediate value is the Oth byte of
the value a,, defined in line 5 of Algorithm 4.4. We note that a, is only used in the

214

Leakage

—-04

|
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Time sample

Figure 4.73: One trace corresponding to the computation of Algorithm 4.4. We can see 18 similar

patterns.

DPA-RSA Step 5

DPA-RSA Step 6

algorithm when d; = 1 (line 9), and thus we expect the correlation between the leakages
and information related to a, to be higher when line 9 is executed. Consequently, we will
know that d; = 1 for the corresponding loop. Since in practice, a, is a big integer, it is
more reasonable to focus on just part of a,. For our experiments, a, € Z11g9 has bit length
at most 11. We will focus on the Oth byte (bits 0,1,2...,7) of a,.

Compute the hypothetical signal for each target intermediate value. Our attack does
not rely on finding the best key hypothesis that achieves the highest absolute correlation
coefficient as in DPA attacks on symmetric block ciphers. The information we exploit is
that when the absolute correlation coefficient between leakages and the target intermedi-
ate value is high, the corresponding loop has secret key bit = 1. For each of the M inputs
a;, we compute the target intermediate value, denoted v}, as follows:

v; =bits 0,1,2,...,70of ajr modn, j=1,2,...,10000. (4.61)

As we have seen in Section 4.3.2.1, the Hamming weight leakage model (Equation 4.4)
is a good estimate for leakages of our DUT. We compute the hypothetical signal corre-
sponding to a;, denoted J;, as follows:

H; = wt(v;), j=1,2,...,10000. (4.62)

Statistical analysis. We view the hypothetical signal as a random variable J{ that varies
when the input a change