
Cryptography and Embedded Systems
Security

Xiaolu Hou
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

SLOVAK UNIVERSITY OF TECHNOLOGY, SLOVAKIA

Jakub Breier
TTCONTROL GMBH, VIENNA, AUSTRIA

2024

This is the authors’ copy. The published version (ISBN: 978-3-031-62205-2) can be found at:
https://link.springer.com/book/10.1007/978-3-031-62205-2

https://link.springer.com/book/10.1007/978-3-031-62205-2

For our Aurel

Foreword

In an era defined by interconnectedness, the importance of security is undeniable. Across billions
of devices and computing systems, cryptographic algorithms and protocols stand as sentinels, safe-
guarding the confidentiality, integrity, and non-repudiation of transactions. However, even with the
remarkable capabilities of cryptographic algorithms, the systems they safeguard are not necessarily
immune to vulnerabilities. These vulnerabilities frequently emerge during the transition from theory
to practical implementations, underscoring the pivotal role of cryptographic engineering in achiev-
ing comprehensive security measures. The present book serves to nicely bridge this gap and provide
practitioners and researchers interested in the world of embedded security a wide perspective of
secure implementations of cryptographic algorithms.

While strong cryptographic algorithms are an important starting point in the design of secured
systems, they also need to be efficiently implemented for real-life practical applications. While in
the early days they were implemented largely on general-purpose computers, it was gradually felt
necessary to realize them on hardware and embedded platforms. This shift was an outcome of mul-
tiple factors. The complexity of cryptographic algorithms and their real-time requirements to ensure
practical applications motivated researchers to implement the ciphers on hardware and embedded
platforms. Moreover, because of the various attacks on software platforms, designing security sys-
tems relying on hardware root-of-trusts became a popular design choice. Further, the growth of em-
bedded applications and thereof the advent of Cyber-Physical-Systems (CPS) and Internet-of-Things
(IoT), obviated the integration of cryptographic algorithms into special-purpose devices. However,
great care needs to be taken in such implementations, as apart from the classic design objectives, like
power, energy, throughput, and area, designers also need to tackle side-channel information leak-
ages which can be exploited by attackers with physical access to the devices. Common side-channel
attacks based on power/electromagnetic analysis and fault analysis have become one of the biggest
threats in deploying crypto algorithms on embedded devices. The ubiquitousness of such devices
and easy physical access by adversaries offer novel attack surfaces which can cripple the best of
crypto-algorithms if suitable countermeasures are not implemented along with.

The contribution of this book is to address these aspects of secured crypto-design and provide a
vivid description to develop an end-to-end understanding. The designs of cryptographic algorithms
and their analysis are often based on mathematical and statistical tools. The book starts with a nice
summary of important mathematical principles, which are needed to comprehend the cipher con-
structions and their attack analysis. Subsequently, the book provides a summary of both classical
and modern cryptosystems. The following chapters also stress on implementations of these mod-
ern cryptosystems, before delving into various forms of physical attacks on the implementations.
The book discusses techniques for side-channel analysis of both symmetric-key and public-key cryp-
tosystems, along with suitable countermeasures. The book then presents a contemporary summary
of various forms of fault attacks on cryptosystems, and countermeasures against them. The book con-
cludes with practical aspects of physical attacks, providing much-needed details of physical set-ups,
useful to develop practical set-ups for hardware security research.

Engaging and informative, this book is fine reading for anyone fascinated by the intricate realm of

ii

iii

embedded security and cryptographic engineering. It offers a compelling glimpse into the workings
of attacks on cryptosystems in embedded devices and provides actionable strategies for mitigation.
Enjoy the journey into the captivating world of security engineering!

Kharagpur, India Debdeep Mukopadhyay

April 2024

Starting my doctoral studies several decades ago, I found myself immensely interested in the
area of physical side channels and the resulting attacks, which at the time disrupted the way in
which cryptographers approached designing and analyzing ciphers. This was a fortunate encounter
for me: today my research is still driven by the challenge of efficiently detecting, quantifying, and as
far as possible mitigating physical side channels.

Research in the area of side channels has developed and grown, not only in volume but also in
maturity. In the early days, researchers playfully discovered how to tap into side channels, as well
as how to extract more information from available side channels, and to make side channels harder
to exploit. There was little emphasis on the development of a methodology. Countermeasures were
(re)invented, and applied to different types of cryptosystems, acknowledging, but not systematizing
that different discoveries were in fact related.

Only when, together with two colleagues, I wrote the first comprehensive research book on power
analysis attacks, a clearer picture emerged of the factors that contribute to the success of attacks and
how we can mitigate leakage. Other researchers pushed our initial attempts further, and today, we
have sound theories for many aspects of side-channel attacks and countermeasures. Similarly, the
area of fault attacks has seen significant progress over the past two decades.

This book here provides a contemporary summary of techniques for attacks and countermea-
sures. There are many good examples provided: I encourage all readers of this book to pay particular
attention to these and implement and extend as many as possible. The best way to understand the
foundational aspects of any field is by active learning: do as much as you can yourself!

Birmingham, United Kingdom Elisabeth Oswald

April 2024

Preface

Cryptography is an indispensable tool used to protect information in computing systems. Billions of
people all over the world use it in their daily lives without even noticing there is some cryptographic
algorithm running behind the scenes. Cryptographic computations can be found in any form of
electronic communication, electronic passports, security tokens, payment systems, etc.

Cryptographic algorithms in use nowadays are considered secure in theory. But in the real world,
these algorithms are implemented on physical devices in the form of integrated circuits. These cir-
cuits have their physical properties, such as power consumption dependent on the processed data,
emanation of electromagnetic waves, and susceptibility to computational errors due to environmen-
tal influences. To evaluate the security level of cryptographic implementations, it is necessary to
include the physical security assessment.

There are various physical attack methods, e.g. fault attacks, side-channel attacks, hardware
trojans, etc. Side-channel attacks can be divided into different specific attacks, depending on the
exploited information, e.g. electromagnetic/power analysis, timing analysis, cache attacks. In this
book, we will be focusing on fault attacks and electromagnetic/power analysis attacks on crypto-
graphic implementations.

We assume the readers have basic knowledge of real numbers, rational numbers, integers, and
complex numbers, which will be denoted by R, Q, Z, and C respectively in this book. We also assume
the readers have completed a course in linear algebra.

This book is primarily aimed at graduate students who take a course on hardware security and/or
cryptography. However, it provides useful resources for anyone willing to explore the exciting world
of physical attacks – designers, implementers, evaluators, as well as academic scholars.

Bratislava, Slovakia Xiaolu Hou
Vienna, Austria Jakub Breier

April 2024

iv

Acknowledgment

We would like to thank Debdeep Mukhopadhyay and Elisabeth Oswald for writing a nice and moti-
vating foreword for this book.

Our thanks also go to Mladen Kovačević, Romain Poussier, and Dirmanto Jap for proofreading
an earlier version of the book and for their detailed and constructive comments.

We would also like to acknowledge the editorial team of Springer Nature, especially Bakiyalak-
shmi R M, and Charles Glaser.

For the unwavering support and encouragement from our parents and especially our son, Aurel,
who turned our writing process into a wild adventure.

This project has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie grant agreement
No. 945478.

v

Contents

1 Mathematical and Statistical Background 1
1.1 Preliminaries . 1

1.1.1 Sets . 1
1.1.2 Functions . 2
1.1.3 Integers . 4

1.2 Abstract Algebra . 8
1.2.1 Groups . 8
1.2.2 Rings . 11
1.2.3 Fields . 13

1.3 Linear Algebra . 15
1.3.1 Matrices . 15
1.3.2 Vector Spaces . 18

1.4 Modular Arithmetic . 23
1.4.1 Solving Linear Congruences . 28

1.5 Polynomial Rings . 32
1.5.1 Bytes . 37

1.6 Coding Theory . 39
1.7 Probability Theory . 45

1.7.1 σ−algebras . 45
1.7.2 Probabilities . 46
1.7.3 Random Variables . 49

1.8 Statistics . 56
1.8.1 Important Distributions . 56
1.8.2 Estimating Mean and Difference of Means of Normal Distributions 58
1.8.3 Hypothesis Testing . 63

1.9 Further Reading . 68

2 Introduction to Cryptography 69
2.1 Cryptographic Primitives . 70

2.1.1 Hash Functions . 71
2.1.2 Cryptosystems . 71
2.1.3 Security of Cryptosystems . 72

2.2 Classical Ciphers . 74
2.2.1 Shift Cipher . 74
2.2.2 Affine Cipher . 75
2.2.3 Substitution Cipher . 76
2.2.4 Vigenère Cipher . 77
2.2.5 Hill Cipher . 78
2.2.6 Cryptanalysis of Classical Ciphers . 79
2.2.7 One-time Pad . 84

2.3 Encryption Modes . 85
2.4 Further Reading . 88

vi

vii

3 Modern Cryptographic Algorithms and their Implementations 89
3.1 Symmetric Block Ciphers . 89

3.1.1 DES . 92
3.1.2 AES . 96
3.1.3 PRESENT . 102

3.2 Implementations of Symmetric Block Ciphers . 104
3.2.1 Implementing Sboxes . 105
3.2.2 Implementing Permutations . 105
3.2.3 Bitsliced Implementations . 109

3.3 RSA . 113
3.4 RSA Signatures . 115
3.5 Implementations of RSA Cipher and RSA Signatures 116

3.5.1 Implementing Modular Exponentiation . 116
3.5.2 Implementing Modular Multiplication . 123

3.6 Further Reading . 139

4 Side-Channel Analysis Attacks and Countermeasures 140
4.1 Experimental Setting . 141

4.1.1 Attack Methods . 142
4.2 Side-channel Leakages . 143

4.2.1 Distribution of the Leakage . 145
4.2.2 Estimating Leakage Distributions . 147
4.2.3 Leakage Assessment . 149
4.2.4 Signal-to-Noise Ratio . 160

4.3 Side-Channel Analysis Attacks on Symmetric Block Ciphers 165
4.3.1 Non-profiled Differential Power Analysis Attacks 166
4.3.2 Profiled Differential Power Analysis . 171
4.3.3 Side-Channel Assisted Differential Plaintext Attack 190

4.4 Side-Channel Analysis Attacks on RSA and RSA Signatures 210
4.4.1 Simple Power Analysis . 210
4.4.2 Differential Power Analysis . 212

4.5 Countermeasures Against Side-channel Analysis Attacks 216
4.5.1 Hiding . 217
4.5.2 Masking and Blinding . 227

4.6 Further Reading . 240
4.6.1 AI-assisted SCA . 243

5 Fault Attacks and Countermeasures 245
5.1 Fault Attacks on Symmetric Block Ciphers . 246

5.1.1 Differential Fault Analysis . 246
5.1.2 Statistical Fault Analysis . 255
5.1.3 Persistent Fault Analysis . 259
5.1.4 Implementation Specific Fault Attack . 261

5.2 Fault Countermeasures for Symmetric Block Ciphers 262
5.2.1 Encoding-based Countermeasure . 262
5.2.2 Infective Countermeasure . 267

5.3 Fault Attacks on RSA and RSA Signatures . 270
5.3.1 Bellcore Attack . 270
5.3.2 Attack on the Square and Multiply Algorithm 273
5.3.3 Attack on the Public Key . 275
5.3.4 Safe Error Attack . 277

5.4 Fault Countermeasures for RSA and RSA Signatures . 283
5.4.1 Shamir’s Countermeasure . 283
5.4.2 Infective Countermeasure . 286
5.4.3 Countermeasure for Attacks on the Square and Multiply Algorithm 291
5.4.4 Countermeasures Against the Safe Error Attack 292

viii

5.5 Further Reading . 295

6 Practical Aspects of Physical Attacks 299
6.1 Side-Channel Attacks . 299

6.1.1 Origins of Leakage . 299
6.1.2 Measurement Setup . 300

6.2 Fault Attacks . 302
6.2.1 Fault Injection Techniques . 302

6.3 Industry Standards . 308
6.3.1 Common Criteria . 308
6.3.2 FIPS 140-3 . 309

A Proofs 310
A.1 Matrices . 310
A.2 Invertible Matrices for the Stochastic Leakage Model 311

B Long Division 313

C DES Sbox 314

D Algebraic Normal Forms for PRESENT Sbox Output Bits 316

E Encoding-based Countermeasure for Symmetric Block Ciphers 318

List of Tables

1.1 Correspondence between decimal and hexadecimal (base b = 16) numerals. 4
1.2 Addition and multiplication in F2[x]/(f(x)), where f(x) = x2 + x+ 1. 36
1.3 Addition and multiplication in F2[x]/(g(x)), where g(x) = x2. 36
1.4 Values of zα (see Equation 1.43) with corresponding α. 56

2.1 Converting English letters to elements in Z26. 72
2.2 Examples of methods for converting message symbols to bytes. The second column

in each table is the binary representation of the byte value and the third column is the
corresponding hexadecimal representation. 73

2.3 Shift cipher with k = 5. The second row represents the ciphertexts for the letters in the
first row. 74

2.4 Definition of σ, a key for substitution cipher. 76
2.5 Definition of σ−1, where σ ∈ S26 is a key for substitution cipher shown in Table 2.4. . . 76
2.6 Probabilities of each letter in a standard English text [BP82]. 80

3.1 Initial permutation (IP) and final permutation (IP−1) in DES algorithm. 92
3.2 Expansion function EDES : F32

2 → F48
2 in DES round function. The 1st bit of the output

is given by the 32nd bit of the input. The 2nd bit of the output is given by the 1st bit of
the input. 93

3.3 SB1
DES in DES found function. 93

3.4 Permutation function PDES : F32
2 → F32

2 in DES round function. The 1st bit of the
output is given by the 16th bit of the input. The 2nd bit of the output comes from the
7th bit of the input. 94

3.5 Left and right part of the intermediate values in DES key schedule after PC1. The 1st
bit of the left part comes from the 57th bit of the master key (input to PC1). 94

3.6 Number of key bits rotated per round in DES key schedule. 95
3.7 PC2 in DES key schedule. 95
3.8 Specifications of Rijndael design, where blue-colored values are adopted by AES. . . . 96
3.9 AES Sbox. 97
3.10 Inverse of AES Sbox. 98
3.11 PRESENT Sbox. 103
3.12 PRESENT pLayer. 103
3.13 The Boolean function φ0 takes input x and outputs the 0th bit of SBPRESENT(x). The

second last row lists the output of φ0 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal form of φ0. 110

4.1 Difference distribution table for PRESENT Sbox (Table 3.11). The columns correspond
to input difference δ and the rows correspond to output difference ∆. The row for
∆ = 0 is omitted since it is empty. 192

4.2 In the first column, we list the possible values of α such that the following entries of
AES Sbox DDT are nonempty (0E · α,4F), (09 · α,8F), (0D · α,21), (0B · α,9F).
The corresponding hypotheses for k00 ⊕ 4C, k11 ⊕ AA, k22 ⊕ 10, k33 ⊕ 90 are listed in
the second, third and fourth column respectively. The correct value of α is marked in
blue. Detailed analysis are shown in Example 4.3.15. 204

ix

x

4.3 Possible values of α and the corresponding key hypotheses for k00, k11, k22, k33, the
main diagonal of the AES master key. The correct key bytes are marked in blue. De-
tailed analysis are shown in Example 4.3.15. 205

4.4 Relation between the output bits of Sboxes from the Quotient group Qji and the input
bits of Sboxes from the corresponding Remainder group Rji+1. For example, the 0th
input bit of SBi+1

j+4 in Rji+1 comes from the 1st output bit of SBi
4j in Qji. 231

4.5 An example of T2, which specifies the output mask mout,SB for each input mask min,SB
of PRESENT Sbox [SBM18] such that all possible values of min ⊕mout appear 232

5.1 Part of the difference distribution table for SB1
DES (Table 3.3). 246

5.2 Part of the difference distribution table for AES Sbox (Table 3.9) corresponding to out-
put differences 0C, 69, 8C, and ED. 254

5.3 Fault distribution tables for fault models (a) stuck-at-0, (b) bit flip, (c) random fault. . 255
5.4 Fault distribution tables for fault models (a) stuck-at-0 with probability 0.5, (b) random-

AND with δ, where δ follows a uniform distribution. 256
5.5 Lookup table for carrying out XOR between a, b (a, b ∈ F2) using 01 as the codeword

for 0 and 10 as the codeword for 1. 264
5.6 Lookup table for error-correcting code based computation of AND between a, b (a, b ∈

F2), using the 3−repetition code { 000, 111 }. 000 is the codeword for 0 and 111 is the
codeword for 1. 266

C.1 Sboxes in DES (Section 3.1.1) round function. 315

D.1 The Boolean function φ1 takes input x and outputs the 1st bit of SBPRESENT(x). The
second last row lists the output of φ1 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal form of φ1. 316

D.2 The Boolean function φ2 takes input x and outputs the 2nd bit of SBPRESENT(x). The
second last row lists the output of φ2 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal form of φ2. 317

D.3 The Boolean function φ3 takes input x and outputs the 3rd bit of SBPRESENT(x). The
second last row lists the output of φ3 for different input values. The last row lists the
coefficients (Equation 3.10) for the algebraic normal form of φ3. 317

E.1 Table TSG, estimated signals for each integer between 00 and FFwith Hamming weight
6, computed with the stochastic leakage model obtained in Code-SCA Step 6 from Sec-
tion 4.5.1.1. The first (resp. second) column contains the hexadecimal (resp. binary)
representations of the integers. The last column lists the corresponding estimated sig-
nals. 318

E.2 Sorted version of TSG from Table E.1 such that the estimated signals (values in the last
column) are in ascending order. The hexadecimal (resp. binary) representations of the
corresponding integers are in the first (resp. second) column. Words highlighted in
blue constitute the chosen binary code with Algorithm 4.5. 319

List of Figures

1.1 Probability density function of the standard normal random variable. 51
1.2 Probability density function of a normal random variable. 53
1.3 Probability density function f(z) for Z ∼ N(0, 1). P (Z > zα) = α, α corresponds to

the area under f(z) for z > zα. 57
1.4 Probability density function for X ∼ χ2

8. P (X ≥ χ2
α,8) = α. 57

1.5 Probability density functions for Tn ∼ tn (n = 2, 5, 10) and for the standard normal
random variable Z. 58

1.6 Probability density function for T5, P (T5 ≥ tα,5) = α. 58

2.1 Categorization of cryptographic primitives. The ones highlighted in blue color will be
discussed in this book. 70

2.2 ECB mode for encryption. 85
2.3 ECB mode for decryption . 86
2.4 Original picture and encrypted picture with ECB and CBC modes. 86
2.5 CBC mode for encryption. 86
2.6 CBC mode for decryption. 87
2.7 OFB mode for encryption. 87
2.8 OFB mode for decryption. 87

3.1 An illustration of Feistel cipher encryption algorithm. 90
3.2 An illustration of SPN cipher encryption algorithm. 91
3.3 An illustration of DES encryption algorithm. 93
3.4 Function f in DES round function. 94
3.5 DES key schedule. 95
3.6 AES round function for round i, 1 ≤ i ≤Nr−1. SB, SR, MC and AK stand for SubBytes,

ShiftRows, MixColumns, and AddRoundKey respectively. 96
3.7 Key schedule for AES-128. 102
3.8 An illustration of PRESENT encryption algorithm. 103
3.9 Two rounds of PRESENT. 104
3.10 PRESENT-80 key schedule. 104

4.1 Side-channel measurement setup used for the experiments: a laptop, the ChipWhisperer-
Lite measurement board (black), and the CW308 UFO board (red) with the mounted
ARM Cortex-M4 target board (blue). Note that the benchtop oscilloscope in the back
was only used for the initial analysis – all the measurements were done by the Chip-
Whisperer. 142

4.2 Power trace of the first 5 rounds of PRESENT encryption. A sequence of nop instruc-
tions was executed before and after the cipher computation to clearly distinguish the
operations. 143

4.3 The averaged trace for 5000 traces from the Fixed dataset A (see section 4.1). The blue,
pink, and green parts of the trace correspond to addRoundKey, sBoxLayer, and pLayer,
respectively. 144

4.4 The averaged trace for 1000 plaintexts with the 0th bit equal to 0. The computation
corresponds to one round of PRESENT with a fixed round key. 144

xi

xii

4.5 The averaged trace for 1000 plaintexts with the 0th bit equal to 1. The computation
corresponds to one round of PRESENT with a fixed round key. 145

4.6 The difference between traces from Figures 4.4 and 4.5. 145
4.7 Part of five random traces from the Fixed dataset A (see Section 4.1). 146
4.8 Histogram of leakages at time sample t = 3520 across 5000 traces from the Fixed dataset

A. 146
4.9 Histogram of leakages at time sample t = 2368 across 5000 traces from the Fixed dataset

A. 147
4.10 Histogram of leakages at time sample t = 392 across 5000 traces from the Random

plaintext dataset. 155
4.11 Histogram of leakages at time sample t = 392 across 10000 traces from the Random

dataset. 155
4.12 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with Fixed dataset

A and Fixed dataset B. The signal is given by the plaintext value and the fixed versus
fixed setting is chosen. Blue dashed lines correspond to the threshold 4.5 and −4.5. . . 159

4.13 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with 50 traces
from Fixed dataset A and 50 traces from Fixed dataset B. The signal is given by the plain-
text value and the fixed versus fixed setting is chosen. Blue dashed lines correspond
to the threshold 4.5 and −4.5. 159

4.14 t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with Fixed dataset
A and Random plaintext dataset. The signal is given by the plaintext value and the fixed
versus random setting is chosen. Blue dashed lines correspond to the threshold 4.5
and −4.5. 160

4.15 t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with 50 traces
from Fixed dataset A and 50 traces from Random plaintext dataset. The signal is given by
the plaintext value and the fixed versus random setting is chosen. Blue dashed lines
correspond to the threshold 4.5 and −4.5. 160

4.16 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. T1 contains M1 = 634 traces and T2 contains M2 = 651 traces. The
signal is given by the 0th Sbox output and the fixed versus fixed setting is chosen.
Blue dashed lines correspond to the threshold 4.5 and −4.5. 161

4.17 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. Both T1 and T2 contain 50 traces (i.e. M1 = M2 = 50). The signal is
given by the 0th Sbox output and the fixed versus fixed setting is chosen. Blue dashed
lines correspond to the threshold 4.5 and −4.5. 161

4.18 t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. T1 contains M1 = 634 traces and T2 contains M2 = 10000 traces. The
signal is given by the 0th Sbox output and the fixed versus random setting is chosen.
Blue dashed lines correspond to the threshold 4.5 and −4.5. 162

4.19 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. Both T1 and T2 contain 50 traces (i.e. M1 = M2 = 50). The signal
is given by the 0th Sbox output and the fixed versus random setting is chosen. Blue
dashed lines correspond to the threshold 4.5 and −4.5. 162

4.20 Sample variance of the signal for each time sample, computed using Random dataset.
The signal is given by the exact value of the 0th Sbox output. 164

4.21 SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 0th Sbox output. 164

4.22 Sample variance of the noise for each time sample, computed using Random dataset.
The signal is given by the exact value of the 0th Sbox output. 165

4.23 Sample variance of the signal for each time sample, computed using Random dataset.
The signal is given by the Hamming weight of the 0th Sbox output. 165

4.24 SNR for each time sample, computed using Random dataset. The signal is given by the
Hamming weight of the 0th Sbox output. 166

4.25 Sample variance of the noise for each time sample, computed using Random dataset.
The signal is given by the Hamming weight of the 0th Sbox output. 166

xiii

4.26 Sample variance of the signal for each time sample, computed using Random dataset.
The signal is given by the 0th bit of the 0th Sbox output. 167

4.27 SNR for each time sample, computed using Random dataset. The signal is given by the
0th bit of the 0th Sbox output. 167

4.28 Sample variance of the noise for each time sample, computed using Random dataset.
The signal is given by the 0th bit of the 0th Sbox output. 168

4.29 Sample correlation coefficients ri,t (i = 1, 2, . . . , 16) for all time samples t = 1, 2, . . . , 3600.
Computed following Equation 4.21 with the identity leakage model and the Random
plaintext dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9. . . . 171

4.30 Sample correlation coefficients r10,t (corresponds to the correct key hypothesis 9) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 171

4.31 Sample correlation coefficients r1,t (corresponds to a wrong key hypothesis 0) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 172

4.32 Sample correlation coefficients r5,t (corresponds to a wrong key hypothesis 4) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 172

4.33 Sample correlation coefficients r14,t (corresponds to a wrong key hypothesis D) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity
leakage model and the Random plaintext dataset. 173

4.34 Sample correlation coefficients ri,t (i = 1, 2, . . . , 16) for all time samples t = 1, 2, . . . , 3600.
Computed following Equation 4.21 with the Hamming leakage model and the Random
plaintext dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9. . . . 173

4.35 Sample correlation coefficients r10,t (corresponds to the correct key hypothesis 9) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 174

4.36 Sample correlation coefficients r1,t (corresponds to a wrong key hypothesis 0) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 174

4.37 Sample correlation coefficients r5,t (corresponds to a wrong key hypothesis 4) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 175

4.38 Sample correlation coefficients r14,t (corresponds to a wrong key hypothesis D) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming
leakage model and the Random plaintext dataset. 175

4.39 Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset.
The blue line corresponds to the correct key hypothesis k̂10 = 9. 177

4.40 Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed fol-
lowing Equation 4.23 with the Hamming weight leakage model and the Random plain-
text dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9. 178

4.41 Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed
following Equation 4.23 with the stochastic leakage model and the Random plaintext
dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9. 180

4.42 Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of v, the 0th Sbox output. Three POIs (time samples 392, 218, 1328) were chosen.
The blue line corresponds to the correct key hypothesis k̂10 = 9. 183

4.43 Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by wt (v),
the Hamming weight of the 0th Sbox output. Three POIs (time samples 392, 1309, 1304)
were chosen. The blue line corresponds to the correct key hypothesis k̂10 = 9. 184

4.44 SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 1st Sbox output. 184

xiv

4.45 Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of the 1st Sbox output. One POI (time samples 404) was chosen. The blue line
corresponds to the correct key hypothesis 8. 185

4.46 Probability scores (Equation 4.33) for each key hypothesis computed with different
numbers of traces from Random plaintext dataset. The target signal is given by the exact
value of the 1st Sbox output. One POI (time samples 464) was chosen. The blue line
corresponds to the correct key hypothesis 3. 185

4.47 Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset
arranged in reverse order. The blue line corresponds to the correct key hypothesis
k̂10 = 9. 186

4.48 Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed fol-
lowing Equation 4.23 with the Hamming weight leakage model and the Random plain-
text dataset arranged in reverse order. The blue line corresponds to the correct key
hypothesis k̂10 = 9. 186

4.49 Estimations of success rate computed following Algorithm 4.1 for profiled DPA attacks
based on the stochastic leakage model, the identity leakage model, and the Hamming
weight leakage model using the Random plaintext dataset as attack traces. 189

4.50 Estimations of guessing entropy computed following Algorithm 4.1 for profiled DPA
attacks based on the stochastic leakage model, the identity leakage model and the
Hamming weight leakage model using the Random plaintext dataset as attack traces. . . 189

4.51 Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attacks using the Random plaintext dataset as attack traces and the Random dataset as
profiling traces. 190

4.52 Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks using the Random plaintext dataset as attack traces and the Random dataset
as profiling traces. 190

4.53 Estimations of success rate computed following Algorithm 4.1 for leakage model based
and template-based DPA attacks with the Random plaintext dataset as attack traces. . . 191

4.54 Estimations of guessing entropy computed following Algorithm 4.1 for leakage model
based template-based DPA attacks with the Random plaintext dataset as attack traces. . 191

4.55 A possible sequence of XOR differences between the cipher states of two encryptions,
where colored squares correspond to active bytes. AK, SB, SR, and MC stand for Ad-
dRoundKey, SubBytes, ShiftRows and MxiColumns respectively. 193

4.56 An example of how the XOR differences between the cipher states can change after
each round operation of PRESENT. The output differences of the four active Sboxes in
round 1 are 1. The output difference of the single active Sbox in round 2 is also 1. . . . 193

4.57 Illustration of how active bytes change for all four differential patterns that start with
∆S0 = 1000010000100001 and converge in round 1. Blue squares correspond to ac-
tive bytes. AK, SB, SR, and MC stand for AddRoundKey, SubBytes, ShiftRows and
MxiColumns respectively. 195

4.58 An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ∆S0 given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 1. The output difference of
the single active Sbox in round 2 is 4. 197

4.59 An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ∆S0 given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 4. The output difference of
the single active Sbox in round 2 is 1. 198

xv

4.60 An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differ-
ential pattern starting with ∆S0 given in Equation 4.46 and converges in round 2. The
output differences of the four active Sboxes in round 1 are 4. The output difference of
the single active Sbox in round 2 is 4. 199

4.61 Illustration of how active bytes change from round 1 to round 3 of AES computation,
for differential patterns that start with ∆S0 = 1000010000100001. 200

4.62 The difference between the averaged traces of plaintext pairs. 200
4.63 Zoom in to the SubBytes computation (pink area) in Figure 4.62. The difference be-

tween the averaged traces of plaintext pair from Equations 4.47, 4.48, 4.49, and 4.50
are in red, blue, green and yellow respectively. They correspond to a single active col-
umn at the first, second, third, and fourth positions respectively during the SubBytes
operation in round 3. 201

4.64 The difference between the averaged traces of S0 and S′
0 from Equation 4.51 (in red),

plaintext pair from Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53
(in green). The averaged trace for S0 is in gray. With this gray plot, similar to Figure 4.3
we can find the rough time interval for the sBoxLayer operation in round 3, which is
colored in pink. 202

4.65 Zoom in to the sBoxLayer computation (pink area) in Figure 4.64. The difference be-
tween the averaged traces of S0 and S′

0 from Equation 4.51 (in red), plaintext pair from
Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53 (in green). They
correspond to active Sboxes SB3

0; SB3
8; SB3

4, SB3
8, SB3

12 before pLayer of round 3. 203
4.66 An illustration of differential values for the differential pattern ∆S0 = 1000010000100001

and ∆S1 = 1000000000000000. 203
4.67 The possible differential patterns for AES encryption for four different values of ∆S0. 207
4.68 The possible differential patterns for PRESENT encryption, ∆S0 = 00000000FFFF0000.208
4.69 The possible differential patterns for PRESENT encryption, ∆S0 = 0000FFFF00000000.208
4.70 The possible differential patterns for PRESENT encryption, ∆S0 = FFFF000000000000.209
4.71 One trace corresponding to the computation of Algorithm 4.2. We can see ten similar

patterns. 211
4.72 Highlighted two types of patterns from Figure 4.71. One pattern with a single cluster

of peaks (colored in green) and one with more than one cluster of peaks (colored in
blue). 211

4.73 One trace corresponding to the computation of Algorithm 4.4. We can see 18 similar
patterns. 214

4.74 Sample correlation coefficients rt (Equation 4.63) for time samples t = 1, 2, . . . , 9500.
We can see a sequence of 18 patterns. 215

4.75 Sample correlation coefficients from Figure 4.73 (in red) with one power trace from
Figure 4.74 in gray. We can see that the 18 patterns corresponding to sample correlation
coefficients and those corresponding to leakages coincide. 216

4.76 There are mainly two types of patterns in Figure 4.74: one with a lower peak; and one
with a higher peak as well as a small high peak at the end of the pattern. In this figure,
they are highlighted in green and blue respectively. 216

4.77 An example of a trace from dataset T1, obtained in Code-SCA Step 3, which corre-
sponds to MOV instruction surrounded by NOPs. 218

4.78 SNR values for each time sample computed with dataset T1 obtained in Code-SCA
Step 3. The highest point is our POI = 430. 219

4.79 Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black
line corresponds to unprotected intermediate values. The blue line corresponds to
encoded intermediate values with the binary code C(8,16) (Equation 4.71), where all
codewords have Hamming weight 6. 222

xvi

4.80 Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The
black line corresponds to unprotected intermediate values. The blue line corresponds
to encoded intermediate values with the binary code C(8,16) (Equation 4.71), where all
codewords have Hamming weight 6. 223

4.81 Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black
line corresponds to unprotected intermediate values. The other lines correspond to
encoded intermediate values with (8, 16)−binary codes obtained following Code-SCA
Step 1 – Code-SCA Step 7, where we have set wH = 2, 3, 4, 5, 6. 223

4.82 Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The
black line corresponds to unprotected intermediate values. The other lines correspond
to encoded intermediate values with (8, 16)−binary codes obtained following Code-
SCA Step 1 – Code-SCA Step 7, where we have set wH = 2, 3, 4, 5, 6. 224

4.83 One trace corresponding to the computation of Algorithm 4.8. We can see ten similar
patterns. 226

4.84 One trace corresponding to the computation of Algorithm 4.9. We can see 21 similar
patterns. Each of them corresponds to one execution of MonPro. 227

4.85 Sample correlation coefficients computed following attack steps from Section 4.4.2
with 10, 000 traces for the computation of Algorithm 4.9. The trace from Figure 4.84 is
gray in the background. We can see that there are 21 patterns in the sample correlation
coefficient plot that coincide with those from Figure 4.84 – each corresponds to one
execution of MonPro. 227

4.86 There are mainly two types of patterns in the sample correlation coefficient plot from
Figure 4.85 – one with a higher peak cluster (colored in blue) and one with a lower
peak cluster (colored in green). Among the blue-colored patterns, we further divide
them into two types – one with a high peak at the end (in lighter blue) and one without
this peak (in darker blue). 228

4.87 An illustration of the relation between Sbox outputs in a Quotient group to Sbox inputs
in the corresponding Remainder group. Sboxes in Quotient groups Q0i, Q1i, Q2i, Q3i

and their corresponding Remainder groups R0i+1, R1i+1, R2i+1, R3i+1 are in orange,
blue, green, red colors respectively. 231

4.88 t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with 50 traces
from Masked fixed dataset A and 50 traces from Masked fixed dataset B. The signal is
given by the plaintext value and the fixed versus fixed setting is chosen. Blue dashed
lines correspond to the threshold 4.5 and −4.5. 235

4.89 SNR computed with Masked random dataset. The signal is given by the exact value of
the 0th Sbox output. 235

4.90 Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random
plaintext dataset (in red) . 236

4.91 Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random
plaintext dataset (in red). 236

5.1 An illustration of DFA. 247
5.2 Visual illustration of how the fault propagates when a fault is injected at the beginning

of one AES round (not the last round) in byte s00. Blue squares correspond to bytes
that can be affected by the fault. 250

5.3 Visual illustration of how the fault propagates when a fault is injected at the beginning
of one AES round in bytes (a) s00, s11, (b) s00, s11, s22, and (c) s00, s11, s22, s33. Blue
squares correspond to bytes that can be affected by the fault. 250

5.4 Visual illustration of fault propagation in the 9th round of AES when the fault was
injected in the diagonal s00, s11, s22, s33 of the AES cipher state at the end of round 7. . 251

xvii

5.5 Fault propagation for random byte fault injected in the “diagonals” of the cipher state
at the end of round 7. 255

5.6 Illustration of fault propagation for a fault injected in the first byte of S8 (the cipher
state at the end of round 8). 259

6.1 Power consumption types in CMOS circuits. The main type considered for SCA is the
switching power. 300

6.2 Switching of the CMOS circuit, showing: (a) the charging path from VDD to CL; (b) the
discharging path CL to GND of the capacitive load. 301

6.3 Digital sampling of a continuous signal with 10 samples of (a) low-frequency signal,
(b) high-frequency signal. 302

6.4 Depiction of a voltage glitch on a smart card. 303
6.5 Depiction of (a) laser fault injection on an AVR microcontroller mounted on Arduino

UNO board and (b) zoomed infrared image of the chip. 304
6.6 Depiction of a chemical decapsulation by using fuming nitric acid. 305
6.7 Absorption depth in silicon. The most common laser wavelengths for testing inte-

grated circuits are highlighted – 532 nm (green), 808 nm (near-infrared), and 1064
(near-infrared). 305

6.8 Depiction of a pulsed electromagnetic fault injection on an AVR microcontroller mounted
on Arduino UNO board. 306

6.9 A depiction of a generic design of an electromagnetic fault injection probe. 307
6.10 Different ways of spatial arrangement of aggressor rows (black) and target/victim

rows (red/pink) in DRAM. 308

List of Algorithms

1.1 Euclidean algorithm. 7
1.2 Extended Euclidean algorithm. 7

3.1 KeyExpansion – AES-128 key schedule. 101
3.2 A lookup table implementation of PRESENT Sbox in pseudocode. 105
3.3 A more efficient lookup table implementation of PRESENT Sbox in pseudocode. 105
3.4 A lookup table implementation combining two PRESENT Sboxes in parallel in pseu-

docode. 105
3.5 An implementation that combines sBoxLayer and pLayer for PRESENT. 108
3.6 Bitsliced implementation of round i of PRESENT, 1 ≤ i ≤ 31. 112
3.7 Right-to-left square and multiply algorithm for computing modular exponentiation . . 117
3.8 Left-to-right square and multiply algorithm for computing modular exponentiation. . . 117
3.9 Montgomery powering ladder for computing modular exponentiation. 119
3.10 Standard multiplication. 123
3.11 Blakely’s method for computing modular multiplication. 124
3.12 Blakely’s method for computing modular multiplication by taking ω = 1. 125
3.13 Right-to-left square and multiply algorithm with Blakely’s method for modular multi-

plication. 126
3.14 Left-to-right square and multiply algorithm with Blakely’s method for modular multi-

plication. 127
3.15 Montgomery powering ladder with Blakely’s method for computing modular multipli-

cation. 129
3.16 MonPro, Montgomery product algorithm. 131
3.17 MonPro, Montgomery product algorithm. 132
3.18 Montgomery’s method for computing modular multiplication. 135
3.19 Montgomery right-to-left square and multiply algorithm. 136
3.20 Montgomery left-to-right square and multiply algorithm. 136
3.21 Montgomery powering ladder with Montgomery’s method for modular multiplication. 138

4.1 Computation of estimations for guessing entropy and success rate. 188
4.2 Left-to-right square and multiply algorithm for computing modular exponentiation (see

Algorithm 3.8) with parameters from Equation 4.59. 210
4.3 MonPro, Montgomery product algorithm with parameters from Equation 4.59. 213
4.4 Montgomery left-to-right square and multiply algorithm with parameters from Equa-

tion 4.59. MonPro is given by Algorithm 4.3. 213
4.5 Finding the optimal code for encoding countermeasure against SCA. 221
4.6 Right-to-left square and multiply-always algorithm for computing modular exponenti-

ation. A hiding-based countermeasure against SCA attacks. 224
4.7 Left-to-right square and multiply-always algorithm for computing modular exponenti-

ation. A hiding-based countermeasure against SCA attacks. 225
4.8 Protected implementation of Algorithm 4.2. Left-to-right square and multiply-always

algorithm for computing modular exponentiation (see Algorithm 3.8) with parameters
from Equation 4.59. 225

xviii

xix

4.9 Montgomery left-to-right square and multiply-always algorithm with parameters from
Equation 4.59. MonPro is given by Algorithm 4.3. 226

4.10 Masked implementation of PRESENT. 234

5.1 Part of an implementation for PRESENT encryption that combines sBoxLayer and pLayer
in AVR assembly [PV13, AV13]. A pseudo-code can be found in Algorithm 3.5 261

5.2 A simple program to demonstrate protection against single instruction skip attacks. . . 263
5.3 Infective Countermeasure for AES-128. 267
5.4 Computation of AES round in the infective Countermeasure for AES-128 from Algo-

rithm 5.3. 269
5.5 Computation of redundant AES round in the infective Countermeasure for AES-128

from Algorithm 5.3. 269
5.6 Computation of the dummy round in the infective Countermeasure for AES-128 from

Algorithm 5.3. 269
5.7 Computing RSA signature with the right-to-left square and multiply algorithm. 274
5.8 RSA signature computation with Montgomery powering ladder and Blakely’s method 279
5.9 An algorithm involving computing modular multiplication with Blakely’s method. . . 281
5.10 RSA signature signing computation with the right-to-left square and multiply algo-

rithm and Blakely’s method. 281
5.11 Modified Algorithm 5.9 to counter the safe error attack. 292
5.12 RSA signature computation with Montgomery powering ladder and Blakely’s method

(Algorithm 5.8), protected against the safe error attack from Section 5.3.4. 293
5.13 RSA signature signing computation with the right-to-left square and multiply algo-

rithm and Blakely’s method (Algorithm 5.10), protected against the safe error attack
from Section 5.3.4.2. 294

Chapter 1

Mathematical and Statistical Background

Abstract

To study attacks on cryptographic algorithms, we need to first understand the com-
putations that are carried out in each step of those algorithms. To achieve this, we
need knowledge of certain math concepts. In this chapter, we will introduce the nec-
essary mathematical background for the rest of the book, including abstract algebra,
linear algebra, coding theory, and probability theory.
Keywords: abstract algebra, modular arithmetic, linear algebra, coding theory, prob-
ability theory, hypothesis testing

To study attacks on cryptographic algorithms, we need to first understand the computations that
are carried out in each step of those algorithms. To achieve this, we need knowledge of certain math
concepts. In this chapter, we will introduce the necessary mathematical background for the rest of the
book, including abstract algebra, linear algebra, coding theory, and probability theory. In Section 1.8,
we will also provide statistical tools that will be useful for Chapter 4.

1.1 Preliminaries

Before we start with math, let us first introduce the basic notations.

1.1.1 Sets

By a set, we refer to a collection of objects without repetition. We will normally use a capital letter to
denote a set. For example, A = { 0, 1, 2 } is a set consisting of three numbers, and B = { ◦,△,□ } is a
set consisting of three shapes. The objects in a set S are called elements of S. If an element a is in a set
S, we write a ∈ S. If an element a is not in S, we write a ̸∈ S. When there is no element in a set, we
call it an empty set and denote it by ∅. The total number of elements in a set S is called the cardinality
of S, denoted by |S|.

Now let us look at two sets, S and T . We say S is a subset of T , denoted by S ⊆ T , if any element
of S is also an element of T . Namely, S ⊆ T if for any s ∈ S, s ∈ T . Two sets are said to be equal if
they contain the same elements. In other words, S = T if S ⊆ T and T ⊆ S. The power set of a set S,
denoted by 2S , is the set of all subsets of S. We note that by definition, S ∈ 2S , ∅ ∈ 2S , and ∅ ⊆ S for
any set S.

Example 1.1.1. Let T = { 0, 1, 2, 3 } and S = { 2, 3 }, then

• S ⊆ T and T ̸⊆ S.

• 2 ∈ S, 0 ̸∈ S.

• |S| = 2, |T | = 4.

• 2S = { ∅, S, { 2 } , { 3 } }.

1

2

The union of two sets A,B, denoted A ∪B, is the set that contains all elements from A or B.

A ∪B := { x | x ∈ A or x ∈ B } .

The intersection of A,B, denoted A ∩B, is the set that contains elements in both A and B.

A ∩B := { x | x ∈ A and x ∈ B } .

Example 1.1.2. Let A = { 0, 1, 2 } and B = { 2, 3, 4 }, then A ∪B = { 0, 1, 2, 3, 4 } and A ∩B = { 2 }.

Similarly, the union and the intersection of n sets A1, A2, . . . , An are defined as follows:

n⋃

i=1

Ai := { a | a ∈ Ai for some i } ,
n⋂

i=1

Ai := { a | a ∈ Ai for all i } .

The difference between set A and set B is the set of all elements of A that are not in B:

A−B := { a | a ∈ A, a ̸∈ B } . (1.1)

The complement of a set A in a set S is the difference between S and A,

Ac := S −A = { s | s ∈ S, s ̸∈ A } .

The Cartesian product of A and B is the set of ordered pairs (a, b) such that a ∈ A and b ∈ B,

A×B := { (a, b) | a ∈ A, b ∈ B } .

The Cartesian product of n sets can be defined similarly,

n∏

i=1

Ai := { (a1, a2, . . . , an) | ai ∈ Ai for all i } .

Example 1.1.3. Let A = { 2, 4, 6 }, B = { 1, 3, 5 }, and S = A ∪ B. Then A − B = A; the complement
of A in S is B, and

A×B = { (2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 1), (6, 3), (6, 5) } .

We note that in general, A×B ̸= B ×A. In Example 1.1.3,

B ×A = { (1, 2), (3, 2), (5, 2), (1, 4), (3, 4), (5, 4), (1, 6), (3, 6), (5, 6) } ≠ A×B.

1.1.2 Functions

Functions (also called maps) will be used a lot in the rest of the book. Here we provide the formal
definition.

Definition 1.1.1. A function/map f : S → T is a rule that assigns each element s ∈ S a unique element
t ∈ T .

• S is called the domain of f .

• T is called the codomain of f .

• If f(s) = t, then t is called the image of s, and s is called a preimage of t.

• For any A ⊆ T ,
f−1(A) := { s ∈ S | f(s) ∈ A }

is called the preimage of A under f .

3

Example 1.1.4. Define

f : R → R
x 7→ x2,

where R is the set of real numbers. Then f has domain R and codomain R.
Let A = { 1 } ⊆ R, the preimage of A under f is given by

f−1(A) = { −1, 1 } .

1 is the image of −1 and −1 is a preimage of 1. 1 is another preimage of 1.
Let B = { −1 } ⊆ R, then f−1(B) = ∅.
We note that the image of an element s ∈ S is unique, and preimages of t ∈ T may not exist. Even

if a preimage of t ∈ T exists, it may not be unique. In case every t ∈ T has a preimage, we say that f
is surjective. In case such a preimage is also unique, we say that f is bijective.

Definition 1.1.2. • A function f : S → T is called onto or surjective, if given any t ∈ T , there exists
s ∈ S, such that t = f(s).

• A function f : S → T is said to be one-to-one (written 1-1) or injective if for any s1, s2 ∈ S such
that s1 ̸= s2, we have f(s1) ̸= f(s2).

• f is called 1-1 correspondence or bijective if f is 1-1 and onto.

Example 1.1.5. • Define f

f : R → R≥0

x 7→ x2,

then f is surjective as for any y ∈ R≥0, we can find a preimage x of y by calculating x =
√
y.

But f is not injective, since f(−1) = f(1) = 1.

• Define g

g : R → R
x 7→ x.

It can be easily seen that g is bijective.

As mentioned above, if f : S → T is not surjective, there exists t ∈ T such that f−1(t) = ∅. If f is
not injective, there are at least two s1, s2 ∈ S such that s1 ̸= s2 and f(s1) = f(s2) = t, which means
f−1(t) is not a unique element. However, when f is bijective, f−1 : T → S is a function – it assigns to
each t ∈ T a unique element s ∈ S. In such a case, f−1 is called the inverse of f .

Example 1.1.6. Define f

f : R → R
x 7→ x3.

Then the inverse of f exists and is given by

f−1 : R → R
x 7→ 3

√
x.

When the domain of one function is the codomain of another function, we can define the compo-
sition of those two functions.

Definition 1.1.3. For two functions f : T → U , g : S → T , the composition of f and g, denoted by f ◦g,
is the function

f ◦ g : S → U

s 7→ f(g(s)).

4

Example 1.1.7. Suppose we have f

f : R → R
x 7→ x2,

and g

g : R → R
x 7→ x3.

Then the composition of f and g is given by

f ◦ g : R → R
x 7→ (x3)2 = x6.

For a function whose domain and codomain are the same, say f : S → S, we can define f◦f◦· · ·◦f
in a similar way. For simplicity, we write fn for the composition of n copies of f . When f : S → S is
bijective, f−1 is a function. And we write f−n for the composition of n copies of f−1.

Example 1.1.8. Define

f : R → R
x 7→ x2,

then

fn : R → R
x 7→ x2

n
.

1.1.3 Integers

We deal with integers every day. We would write one hundred and twenty-three as 123 because

123 = 1× 100 + 2× 10 + 3× 1.

Such a representation of an integer is called a base−10 representation. In general, for any integer
b ≥ 2, we can have a base−b representation for a positive integer.

Theorem 1.1.1. Let b ≥ 2 be an integer. Then any n ∈ Z, n > 0 can be expressed uniquely in the form

n =

ℓ−1∑

i=0

aib
i, (1.2)

where 0 ≤ ai < b (0 ≤ i < ℓ), aℓ−1 ̸= 0, and ℓ ≥ 1. aℓ−1aℓ−2 . . . a1a0 is called a base−b representation for
n. ℓ is called the length of n in base−b representation.

The proof can be found in e.g. [Kos02, page 81]. To emphasize the base b, we sometimes put b
as a subscript for the representation. When b = 2, a base−2 representation is also called a binary
representation, ℓ is also called the bit length of n and a0 is said to be the least significant bit (LSB) of n,
aℓ−1 is said to be the most significant bit of n. When b = 16, a base−16 representation is also called a
hexadecimal representation.

The correspondence between decimal numerals and hexadecimal (base b = 16) numerals is listed
in Table 1.1.

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Table 1.1: Correspondence between decimal and hexadecimal (base b = 16) numerals.

5

Example 1.1.9.
310 = 112 = 316.
410 = 1002 = 416.
6010 = 1111002 = 3C16.

We have learned in primary school that when we divide 6 by 4 we get quotient 1 and remainder 2.
Such a computation can be done thanks to the following theorem. The proof involves well-ordering
principles of integers, which will not be covered in this book. Interested readers are referred to
e.g. [Her96, page 22].

Theorem 1.1.2. If m,n ∈ Z, n > 0, then there exist q, r ∈ Z, such that 0 ≤ r < n and n = qm+ r.

q is called the quotient and r is called the remainder.

Definition 1.1.4. Given m,n ∈ Z, if m ̸= 0 and n = am for some integer a, we say that m divides n,
written m|n. We call m a divisor of n and n a multiple of m. If m does not divide n, we write m ∤ n.

Example 1.1.10. • 3|6, −2|4, 1|8, 5|5.

• 7 ∤ 9, 4 ∤ 6.

• All the positive divisors of 4 are 1, 2, 4.

• All the positive divisors of 6 are 1, 2, 3, 6.

We can see that there are some common divisors between 4 and 6. The largest of them will be of
importance to us. Formally, we can define the greatest common divisor between two integers that
are not both zero.

Definition 1.1.5. Take m,n ∈ Z, m ̸= 0 or n ̸= 0, the greatest common divisor of m and n, denoted
gcd(m,n), is given by d ∈ Z such that

• d > 0,

• d|m, d|n, and

• if c|m and c|n, then c|d.

Example 1.1.11. • Continuing Example 1.1.10, common divisors of 4 and 6 are 1 and 2. So gcd(4, 6) =
2.

• All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3. So gcd(2, 3) =
1.

It can be proven that the greatest common divisor of two integers (not both zero) always exists
and it is unique. The proof of the theorem can be found in e.g. [Her96, page 23].

Theorem 1.1.3 (Bézout’s identity). For any m,n ∈ Z, such that m ̸= 0 or n ̸= 0, gcd(m,n) exists and
is unique. Moreover, there exist s, t ∈ Z such that gcd(m,n) = sm+ tn.

The equation gcd(m,n) = sm+ tn is usually called the Bézout’s identity. We note that the choices
of s, t are not unique. Indeed, if gcd(m,n) = sm+ tn, then gcd(m,n) = (s+ n)m+ (t−m)n.

Example 1.1.12.

gcd(4, 6) = 2 = (−1)× 4 + 1× 6.

gcd(2, 3) = 1 = (−4)× 2 + 3× 3.

Next, we prove some simple but useful results.

Lemma 1.1.1. For any m,n, a ∈ Z, we have

(1) 1|n for all n.

6

(2) If m ̸= 0, then m|0.

(3) If m|n and n|a, then m|a.

(4) If m|1, then m = ±1.

(5) If m|n and n|m, then m = ±n.

(6) If m|n and m|a, then m|(un+ va), ∀u, v ∈ Z.1

(7) If a|mn and gcd(a,m) = 1, then a|n.

(8) If m|a, n|a and gcd(m,n) = 1, then mn|a.

Proof. Proofs of (1)–(4) easily follow from the definitions.
To prove (5), as m|n and n|m, by Definition 1.1.4, there are integers c1, c2 such that n = mc1 and

m = c2n. This gives n = nc1c2 and we have c1c2 = 1. Since all the divisors of 1 are ±1, we have
c1 = c2 = 1 or c1 = c2 = −1.

To prove (6), since m|n,m|q, there are integers c1, c2 such that n = mc1 and q = mc2. Then

un+ vq = uc1m+ vc2m = (uc1 + vc2)m

is a multiple of m.
To prove (7), we note that by Bézout’s identity, there exist s, t ∈ Z such that as +mt = 1. Multi-

plying both sides by n, we get asn+mnt = n. Since a|asn and a|mnt, we have a|n.
Finally, we prove (8). Since m|a, a = mk for some k ∈ Z. We have n|mk. Now because gcd(m,n) =

1, by (7), n|k and so k = nk′ for some k′ ∈ Z. Thus a = mnk′ is divisible by mn.

In general, to find gcd(m,n), it would be too time-consuming to list all the divisors of m and n.
The following theorem allows us to simplify the computation.

Theorem 1.1.4 (Euclid’s division). Given m,n ∈ Z, take q, r such that n = qm+ r. Then gcd(m,n) =
gcd(m, r).

Proof. We first note that we can find q, r by Theorem 1.1.2. By Lemma 1.1.1 (6), gcd(m,n)|n− qm, i.e.
gcd(m,n)|r. Similarly we have gcd(m, r)|qm+ r, i.e. gcd(m, r)|n.

By Definition 1.1.5, gcd(m,n)| gcd(m, r) and gcd(m, r)| gcd(m,n). By Lemma 1.1.1 (5), gcd(m, r) =
± gcd(m,n). By Definition 1.1.5, gcd(m, r) > 0 and gcd(m,n) > 0. We have gcd(m,n) = gcd(m, r).

Thus, to find gcd(m,n), we can compute Euclid’s division repeatedly until we get r = 0.

Example 1.1.13. We can calculate gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) = gcd(15, 5),
15 = 5× 3 gcd(15, 5) = 5 =⇒ gcd(120, 35) = 5.

The procedure is called the Euclidean algorithm and the details are provided in Algorithm 1.1. By
Theorem 1.1.4, gcd(m,n) = gcd(m, r) after each loop from line 1. In the end, we get gcd(m,n).

Furthermore, with the intermediate results we have from the Euclidean algorithm, we can also
find a pair of s, t such that gcd(m,n) = sm+ tn (Bézout’s identity).

Example 1.1.14. Continuing Example 1.1.13, we can find integers s, t such that gcd(120, 35) = 120s+
35t as follows:

5 = 35− 15× 2, 15 = 120− 35× 3,
=⇒ 5 = 35− (120− 35× 3)× 2 = 120× (−2) + 35× 7.

Such a procedure is called the extended Euclidean algorithm.

1The notation ∀ stands for “for all”.

7

Algorithm 1.1: Euclidean algorithm.
Input: m, n// m,n ∈ Z, m ̸= 0

Output: gcd(m,n)
1 while m ̸= 0 do
2 r = n%m// remainder of n divided by m

3 n = m
4 m = r

5 return r

Example 1.1.15. We can calculate gcd(160, 21) using the Euclidean algorithm

160 = 21× 7 + 13 gcd(160, 21) = gcd(21, 13),
21 = 13× 1 + 8 gcd(21, 13) = gcd(13, 8),
13 = 8× 1 + 5 gcd(13, 8) = gcd(8, 5),
8 = 5× 1 + 3 gcd(8, 5) = gcd(5, 3),
5 = 3× 1 + 2 gcd(5, 3) = gcd(3, 2),
3 = 2× 1 + 1 gcd(3, 2) = gcd(2, 1),
2 = 1× 2 gcd(2, 1) = 1 =⇒ gcd(160, 21) = 1

By the extended Euclidean algorithm, we can also find integers s, t such that gcd(160, 21) = s160+t35

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

We have

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.

An algorithmic description of the extended Euclidean algorithm is shown in Algorithm 1.2. By
Definition 1.1.5, m ̸= 0 or n ̸= 0. If m = 0, gcd(m,n) = n. If n = 0, gcd(m,n) = m. Both cases are
trivial, hence in the algorithm, we assume n ̸= 0 and m ̸= 0. We also note that we can just compute
the coefficient s and then compute t using s.

Algorithm 1.2: Extended Euclidean algorithm.
Input: m, n// m,n ∈ Z, n ̸= 0, m ̸= 0

Output: s, t such that gcd(m,n) = sm+ tn
1 s = 0, ss = 1, r = m, rr = n
2 while r ̸= 0 do

// quotient of rr divided by r

3 q = rr/r
4 tmp = r

// remainder of rr divided by r

5 r = rr%r
6 rr = tmp
7 tmp = s
8 s = ss− q ∗ s
9 ss = tmp

// rr = gcd(m,n)

10 t = (rr − ss ∗ n)/m
11 return ss, t

8

Definition 1.1.6. • For m,n ∈ Z such that m ̸= 0 or n ̸= 0, m and n are said to be relatively
prime/coprime if gcd(m,n) = 1.

• Given p ∈ Z, p > 1. p is said to be prime (or a prime number) if for any m ∈ Z, either m is a
multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

• Given n ∈ Z n > 1. If n is not prime, it is said to be composite (or a composite number).

Example 1.1.16. • 4 and 9 are relatively prime.

• 8 and 6 are not coprime.

• 2, 3, 5, 7 are prime numbers.

• 6, 9, 21 are not prime numbers.

We have the following lemma concerning prime numbers.

Lemma 1.1.2. For p ∈ Z a prime number, if p|∏n
i=1 ai, where ai ∈ Z, then p|ai for some i (1 ≤ i ≤ n).

Proof. If p|a1, then we are done. Otherwise, gcd(p, a1) = 1, by Lemma 1.1.1 (7), we have p|∏n
i=2 ai.

We can repeat the argument and conclude that p|ai for some i.

It can be proven that an integer n > 1 is either a prime number or a product of prime numbers
(see e.g. [Her96, page 26]). Then, we have the Fundamental Theorem of Arithmetic which says that
this product is unique up to permutation.

Theorem 1.1.5 (The Fundamental Theorem of Arithmetic). For any n ∈ Z, n > 1, n can be written in
the form

n =
k∏

i=1

peii ,

where the exponents ei are positive integers, p1, p2, . . . , pk are prime numbers that are pairwise dis-
tinct and unique up to permutation.

Proof. We prove by contradiction. Assume the theorem is false. Let n ∈ Z (n > 1) be the smallest
integer with two distinct factorizations. We can write

n =

k∏

i=1

peii =

ℓ∏

j=1

q
dj
j .

Since p1|
∏ℓ

j=1 q
dj
j , by Lemma 1.1.2, p1|qj for some j. Without loss of generality, we assume p1|q1.

Since p1 and q1 are prime numbers, we have p1 = q1. Then the integer n′ =
∏k

i=2 p
ei
i =

∏ℓ
j=2 q

dj
j has

two distinct factorizations and n′ < n, contradicts the minimality of n.

Example 1.1.17. 20 = 22 × 5, 135 = 33 × 5.

1.2 Abstract Algebra

In this section, we discuss the basics of abstract algebra and get to know a few abstract structures.
Most of us are already familiar with examples of such structures, probably just not by the name.
Those structures will become useful when we discuss modern cryptographic algorithms.

1.2.1 Groups

First, we define a group.

Definition 1.2.1. A group (G, ·) is a non-empty set G with a binary operation · satisfying the following
conditions:

• G is closed under · (closure property), ∀g1, g2 ∈ G, g1 · g2 ∈ G.

• · is associative, ∀g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3.

• ∃e ∈ G, an identity element, such that ∀g ∈ G, e · g = g · e = g.2

2The notation ∃ stands for “there exist”.

9

• Every g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e.

When it is clear from the context, we omit · and say that G is a group.

Example 1.2.1. There are many examples of groups that we are familiar with.

• (Z,+), the set of integers with addition, is a group. The identity element is 0.

• Similarly, (Q,+) and (C,+) are groups.

• (Q,×) is not a group. Because 0 ∈ Q does not have an inverse with respect to multiplication.

• But (Q\ { 0 } ,×) is a group. The identity element is 1.

Next, we give an example of formally proving that a set with a binary operation is a group. Let
G = R+ be the set of positive real numbers and let · be the multiplication of real numbers, denoted
×. We will show that (R+,×) is a group.

1. R+ is closed under ×: for any a1, a2 ∈ R+, a1 × a2 ∈ R and a1 × a2 > 0, hence a1 × a2 ∈ R+.

2. × is associative: ∀a1, a2, a3 ∈ R+, a1 × (a2 × a3) = (a1 × a2)× a3.

3. 1 is the identity element in R+: ∀a ∈ R+, 1× a = a× 1 = a.

4. Take any a ∈ R+, 1
a ∈ R and 1

a > 0, so 1
a ∈ R+. Moreover,

a× 1

a
=

1

a
× a = 1

hence a−1 = 1
a ∈ R+.

By definition, we have proved that (R+,×) is a group.

Definition 1.2.2. Let (G, ·) be a group. If · is commutative, i.e.

∀g1, g2 ∈ G, g1 · g2 = g2 · g1,

then the group is called abelian.

The name abelian is in honor of the great mathematician Niels Henrik Abel (1802-1829).

Example 1.2.2. The groups we have seen so far, (Z,+), (R+,×), (Q\ { 0 } ,×), (Q,+), and (C,+) are
all abelian groups.

Example 1.2.3. Let us consider the set of 2 × 2 matrices with coefficients in R. We denote this
set by M2×2(R). Recall that matrix addition, denoted by +, is defined component-wise. For any(
a00 a10
a01 a11

)
,

(
b00 b10
b01 b11

)
in M2×2(R),

(
a00 a10
a01 a11

)
+

(
b00 b10
b01 b11

)
=

(
a00 + b00 a10 + b10
a01 + b01 a11 + b11

)
.

(M2×2(R),+) is an abelian group: closure, associativity and commutativity of + are easy to show. The

identity element is the zero matrix
(
0 0
0 0

)
. The inverse of any matrix

(
a00 a10
a01 a11

)
is
(
−a00 −a10
−a01 −a11

)
,

which is also in M2×2(R). Section 1.3.1 presents a more general discussion on matrices.

Example 1.2.4. Let F2 := { 0, 1 }. We define logical XOR, denoted ⊕, in F2 as follows:

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

Closure, associativity, and commutativity can be directly seen from the definition. The identity ele-
ment is 0 and the inverse of 1 is 1. Hence (F2,⊕) is an abelian group.

10

Example 1.2.5. Let E = { a, b }, a ̸= b. Define addition in E as follows:

a+ a = a, a+ b = b+ a = b, b+ b = a.

Closure, associativity, and commutativity can be directly seen from the definition. The identity ele-
ment is a and the inverse of b is b. Hence (E,+) is an abelian group.

Next, we will see a group that is not abelian. To introduce this group, we start by defining per-
mutations.

Definition 1.2.3. A permutation of a set S is a bijective function σ : S → S.

Example 1.2.6. • Let S = { 0, 1, 2 }. Define σ : S → S as follows:

0 7→ 1, 1 7→ 2, 2 7→ 0.

Then σ is a permutation of S.

• Let S = { ◦,△,□ }. Define τ : S → S as follows:

◦ 7→ △, △ 7→ □, □ 7→ ◦.

Then τ is a permutation of S.

We note that what matters for a permutation is how many objects we have, not the objects’ nature.
We can label a set of n objects with 1, 2, . . . , n. In Example 1.2.6, we can label ◦ as 0,△ as 1, and □ as
2. Then σ and τ are the same permutation.

Now, we take a set S of n elements. Labeling the elements allows us to consider S = { 1, . . . , n }.
Let Sn denote the set of all permutations of S. And let ◦ denote the composition of functions (see
Definition 1.1.3). Then

Lemma 1.2.1. (Sn, ◦) is a group.

The proof is easy. We leave it as an exercise for the readers.
We note that the identity element in the group is the identity function σ : S → S, σ(s) = s ∀s ∈ S.

Any σ ∈ Sn is bijective (see Definition 1.1.2), the inverse of σ in Sn is then given by σ−1.

Definition 1.2.4. (Sn, ◦) is called the symmetric group of degree n.

Example 1.2.7. Let n = 2 and S = { 1, 2 }. There are only two ways to permute two elements. So
S2 = { σ1, σ2 }, where σ1 : S → S, 1 7→ 1, 2 7→ 2 is the identity, and σ2 : S → S, 1 7→ 2, 2 7→ 1.

Example 1.2.8 (A group that is not abelian). Let n = 3 and S = { 1, 2, 3 }. There are 3! = 6 ways of
permuting three elements. In particular, we have the following two permutations

σ1 : S → S, 1 7→ 2, 2 7→ 3, 3 7→ 1; σ2 : S → S, 1 7→ 3, 2 7→ 2, 3 7→ 1.

We note that σ1 ◦ σ2 ̸= σ2 ◦ σ1 since

σ1 ◦ σ2(1) = 1, but σ2 ◦ σ1(1) = 2.

Hence, S3 is not abelian.

We can extend σ1 and σ2 in Example 1.2.8 to permuting n elements by keeping the other n − 3
elements unchanged. Thus Sn is not abelian for any n ≥ 3.

Definition 1.2.5. The order of a group (G, ·) is the number of elements in G, or the cardinality of the
set G, |G|. A group G is said to be finite if |G| <∞ and infinite if |G| =∞.

Example 1.2.9. • We have seen a few infinite groups, for example, (Z,+) and (R+,×).

• We have also seen two finite groups, |S2| = 2, |S3| = 6.

11

• Let S = { 1, 2, . . . , n }. To permute the elements in S, there are n choices for the image of 1, n−1
choices for the image of 2, etc. Thus |Sn| = n!, and Sn is a finite group.

Definition 1.2.6. Let (G, ·) be a group with identity element e. The order of an element g ∈ G, denoted
ord (g), is the smallest positive integer k such that

g · g · · · g︸ ︷︷ ︸
k times

= gk = e.

When such a k does not exist, we define ord (g) =∞.

Example 1.2.10. • In (Z,+), the identity element is 0, ord (1) =∞.

• Continuing Example 1.2.7, σ1 is the identity. And σ2
2 : S → S, 1 7→ 1, 2 7→ 2. Hence ord (σ2) = 2.

Definition 1.2.7. A group G is called cyclic if it is generated by one element, i.e. if there exists an
element g ∈ G such that

G =
{
gk
∣∣∣ k ∈ Z

}
.

Example 1.2.11. We have seen in Example 1.2.7, S2 = { σ1, σ2 }, where σ1 is the identity element. In
Example 1.2.10, we discussed that σ2

2 = σ1. Hence S2 =
{
σ2, σ

2
2

}
is a cyclic group.

We now state a very useful theorem about the order of a group and the order of an element in
the group. The proof follows from a famous theorem (Lagrange Theorem) named after Joseph-Louis
Lagrange (1736-1813). Details can be found in e.g. [Her96, page 59].

Theorem 1.2.1. Let (G, ·) be a finite group with identity element e. For any g ∈ G, ord (g) divides |G|,
in particular, g|G| = e.

A direct corollary is as follows.

Corollary 1.2.1. Let G be a group. If |G| is a prime number, then G is cyclic.

Proof. Let e denote the identity element in G. Take any element g ∈ G such that g ̸= e. By Theo-
rem 1.2.1, ord (g) divides |G|. Since |G| is prime and g is not the identity element, ord (g) = |G|.

We claim that
G =

{
g, g2, g3, . . . , g|G|

}
.

Otherwise, we would have gi = gj for some 1 ≤ i, j ≤ |G|, where i ̸= j.
Without loss of generality, we assume i ≥ j. Multiplying both sides of gi = gj by g−j , we get

gi−j = e.
By Definition 1.2.6, since 0 ≤ i − j < ord (g), we must have i = j. A contradiction. Hence

G =
{
g, g2, g3, . . . , g|G| }.

1.2.2 Rings

Next, we move to another abstract structure, rings.

Definition 1.2.8. A set R together with two binary operations + and ·, (R,+, ·), is a ring if (R,+) is
an abelian group, and for any a, b, c ∈ R, the following conditions are satisfied:

• R is closed under · (closure), a · b ∈ R.

• · is associative, (a · b) · c = a · (b · c).

• The distributive laws holds: a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

• The identity element for · exists, which is different from the identity element for +.

Definition 1.2.9. If a · b = b · a for all a, b ∈ R, R is a commutative ring.

Remark 1.2.1. • For most cases, we will denote the identity element for + as 0 and the identity
element for · as 1.

12

• We normally refer to the operation + as addition, and 0 as the additive identity. Similarly, we
refer to the operation · as multiplication and 1 as the multiplicative identity.

• The inverse of an element a ∈ R with respect to + is called the additive inverse of a, usually
denoted by −a.

• The last condition in Definition 1.2.8 implies that a set consisting of only 0 is not a ring.

• For simplicity, we sometimes write ab instead of a · b.

• When the operations in (R,+, ·) are clear from the context, we omit them and write R.

Example 1.2.12. We have seen that (Z,+) is an abelian group and the identity element is 0. It can be
easily shown that (Z,+,×) is a commutative ring. The identity element for × is 1.

Similarly (Q,+,×), (R,+,×) and (C,+,×) are all commutative rings with 0 as the additive iden-
tity and 1 as the multiplicative identity.

Example 1.2.13. In Example 1.2.3, we have shown that (M2×2(R),+) is an abelian group. We recall

matrix multiplication, denoted by ×, for 2× 2 matrices: for any
(
a00 a10
a01 a11

)
,

(
b00 b10
b01 b11

)
in M2×2(R),

(
a00 a10
a01 a11

)
×
(
b00 b10
b01 b11

)
=

(
a00b00 + a10b01 a00b10 + a10b11
a01b00 + a11b01 a01b10 + a11b11

)
.

(M2×2(R),+,×) is a ring: associativity and distributive laws are easy to show. The identity element

for × is the 2 × 2 identity matrix
(
1 0
0 1

)
. We note that (M2×2(R),+,×) is not a commutative ring.

For example, (
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
, but

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.

Example 1.2.14. In Example 1.2.4 we have shown that (F2,⊕) is an abelian group. Let us define logical
AND, denoted &, in F2 as follows:

0 & 0 = 0, 1 & 0 = 0 & 1 = 0, 1 & 1 = 1.

Closure of F2 with respect to &, associativity and commutativity of &, and the distributive laws are
easy to see from the definitions. The identity element for & is 1. (F2,⊕,&) is a commutative ring.

Example 1.2.15. In Example 1.2.5 we showed that (E,+) is an abelian group. Define multiplication
in E as follows:

a · a = a, a · b = b · a = a, b · b = b.

Closure of E with respect to ·, associativity of ·, commutativity of ·, and the distributive laws are easy
to see from the definitions. The identity element for · is b. Thus (E,+, ·) is a commutative ring.

Definition 1.2.10. Let (R,+, ·) be a ring with additive identity 0 and multiplicative identity 1. Let
a, b ∈ R. If a ̸= 0 and b ̸= 0 but a · b = 0, then a and b are called zero divisors. If a · b = b · a = 1, a (also
b) is said to be invertible and it is called a unit.

Example 1.2.16. • There are no zero divisors in (Z,+,×), (Q,+,×), (R,+,×) or (C,+,×).

• Any nonzero element in (Z,+,×), (Q,+,×), (R,+,×) or (C,+,×) is a unit.

Example 1.2.17. As shown in Examples 1.2.3 and 1.2.13, (M2×2(R),+,×) is a ring. The additive

identity is
(
0 0
0 0

)
. Since

(
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
,

by Definition 1.2.10,
(
1 0
0 0

)
and

(
0 0
1 0

)
are zero divisors.

Definition 1.2.11. An integral domain is a commutative ring with no zero divisors.

Example 1.2.18. (Z,+,×), (Q,+,×), (R,+,×) and (C,+,×) are all integral domains.

13

1.2.3 Fields

Definition 1.2.12. A field is a commutative ring in which every nonzero element is invertible.

By definition, for any a ∈ F , there exists b ∈ F such that a · b = b · a = 1. Then b is called the
multiplicative inverse of a. It is easy to show that the multiplicative inverse of an element a is unique:
let b, c ∈ F be such that

ab = ac = 1.

Multiplying by b on the left, we get

bab = bac = b =⇒ b = c = b.

We will denote the multiplicative inverse of a nonzero element a ∈ F by a−1.

Lemma 1.2.2. A field is an integral domain.

Proof. Let F be a field. Suppose there are zero divisors in F . By Definition 1.2.10, there exist a, b ∈ F
such that a ̸= 0, b ̸= 0, and a · b = 0. Since F is a field, by the above discussion, a−1 ∈ F . Multiplying
both sides of a · b = 0 by a−1, we get

a−1 · a · b = 1 · b = 0 =⇒ b = 0,

a contradiction.

Example 1.2.19. • (Q,+,×), (R,+,×) and (C,+,×) are all fields.

• (Z,+,×) is not a field. For example, 2 ∈ Z is not invertible and 2 ̸= 0.

For the rest of this subsection, let F be a field with addition + and multiplication ·.

Definition 1.2.13. A field with finitely many elements is called a finite field.

Example 1.2.20. In Example 1.2.14 we have shown that (F2,⊕,&) is a commutative ring. The only
nonzero element is 1, which has inverse 1 with respective to &. Thus (F2,⊕,&) is a finite field.

Example 1.2.21. In Example 1.2.15 we have shown that (E,+, ·) is a commutative ring with additive
identity a and multiplicative identity b. The only nonzero element, i.e. the element not equal to the
additive identity, is b. b has multiplicative inverse b since b · b = b. Hence (E,+, ·) is a finite field.

For an element a ∈ F and an integer p, we define

p⊙ a =

p∑

i=1

a.

Definition 1.2.14. The characteristic of a field F is the smallest positive integer p such that p ⊙ 1 = 0,
where 1 is the multiplicative identity of F . If no such p exists, we define the characteristic of the field
to be 0.

Example 1.2.22. • The characteristics of R,Q, and C are 0.

• The characteristic of the field F2 in Example 1.2.20 is 2 since

2⊙ 1 = 1⊕ 1 = 0.

• The characteristic of the field E in Example 1.2.21 is 2 since

2⊙ b = b+ b = a.

Theorem 1.2.2. The characteristic of a field is either 0 or a prime number.

14

Proof. First, we note that the characteristic of a field is not equal to 1 since 1⊙ 1 = 1 ̸= 0.
Suppose the characteristic p = mn is not a prime, where m,n ∈ Z and 1 < m,n < p. Let a = n ⊙ 1,
b = m⊙ 1. Then

a · b = (n⊙ 1) · (m⊙ 1) =

(
n∑

i=1

1

)
·




m∑

j=1

1


 = (mn)⊙ 1 = 0 =⇒ n⊙ 1 = 0 or m⊙ 1 = 0,

where the last part follows from Lemma 1.2.2. As n,m are both strictly smaller than p, we have a
contradiction.

Definition 1.2.15. Let E,F be two fields with F ⊂ E. F is called a subfield of E if the addition and
multiplication of E, when restricted to F , are the same as those in F .

Example 1.2.23. Q is a subfield of R and R is a subfield of C.

Definition 1.2.16. Let (F,+F , ·F), (E,+E , ·E) be two fields. F is said to be isomorphic to E, written
F ∼= E if there is a bijective function f : F → E such that for any a, b ∈ F ,

(1) f(a+F b) = f(a) +E f(b), and

(2) f(a ·F b) = f(a) ·E f(b),

The function f is called a field isomorphism.

A function f : F → E that satisfies condition (1) in Definition 1.2.16 is said to preserve the addition.
Similarly, a function g : F → E that satisfies condition (2) in Definition 1.2.16 is said to preserve the
multiplication.

Example 1.2.24. Let us consider the fields (F2,⊕,&) from Example 1.2.20 and (E,+, ·) from Exam-
ple 1.2.21. Define f : F → E, such that

f(0) = a, f(1) = b.

It is easy to see that f is bijective. Also, it can be shown that f preserves both addition and multipli-
cation. For example,

f(1⊕ 0) = f(1) = a, f(1) + f(0) = a+ b = a =⇒ f(1⊕ 0) = f(1) + f(0).

Thus f is a field isomorphism and F2
∼= E.

In fact, it can be shown that any finite field with two elements is always isomorphic to F2. The
next theorem says that, in general, there is only one finite field up to isomorphism. The proof can be
found in e.g. [Her96, page 224].

Theorem 1.2.3. • Let K be a finite field of characteristic p. Then K contains pn elements.

• For any prime p and any positive integer n, there exists, up to isomorphism, a unique field with
pn elements.

Remark 1.2.2. • We will use Fpn to denote the unique finite field with pn elements.

• Let K be a finite field with characteristic p and multiplicative identity 1. Then K contains
1, 2, . . . , p− 1, 0, the p multiples of 1. Thus, K contains a subfield isomorphic to Fp.

Furthermore, we define the notion of bit formally.

Definition 1.2.17. • Variables that range over F2 are called Boolean variables or bits.

• Addition of two bits is defined to be logical XOR , also called exclusive or.

• Multiplication of two bits is defined to be logical AND.

• When the value of a bit is changed, we say the bit is flipped.

15

1.3 Linear Algebra

The most readers are probably very familiar with linear algebra. However, when we learned about
matrices in high school we focused on the case when the underlying abstract structure is a field. In
Section 1.3.1 we will see the general case when the underlying abstract structure is a commutative
ring. Then in Section 1.3.2 we recap concepts for vector spaces.

1.3.1 Matrices

Let R be a commutative ring with additive identity 0 and multiplicative identity 1 throughout this
subsection.

Definition 1.3.1. A matrix with coefficients in R is a rectangular array where each entry is an element
of R.

Matrix A as shown in Equation 1.3 is said to have m rows, n columns and is of size m × n. The
transpose of A, denoted A⊤, is the n ×m matrix obtained by interchanging the rows and columns of
A.

A =




a00 . . . a0(n−1)

a10 . . . a1(n−1)
...

a(m−1)0 . . . a(m−1)(n−1)


 , A⊤ =




a00 . . . a(m−1)0

a01 . . . a(m−1)1
...

a0(n−1) . . . a(m−1)(n−1)


 . (1.3)

The ith row of A is (
ai0 ai1 . . . ai(n−1)

)
,

and the jth column of A is 


a0j
a1j

...
a(m−1)j


 ,

where aij denotes the entry in the ith row and jth column. If aij = 0 for i ̸= j, A is said to be a
diagonal matrix. An n−dimensional identity matrix, denoted In, is a diagonal matrix whose diagonal
entries are 1, i.e. aii = 1 for i = 0, 1, . . . , n− 1. A 1× n matrix is called a row vector. An n× 1 matrix is
called a column vector. An n × n matrix is called a square matrix (i.e. a matrix with the same number
of rows and columns).

Example 1.3.1. Let R = Z.

• A =

(
9 1
0 −2

)
is a 2× 2 matrix with coefficients in Z. a00 = 9 and a01 = 1.

• I2 =

(
1 0
0 1

)
and I3 =



1 0 0
0 1 0
0 0 1


.

•
(
5 0
0 −1

)
is a diagonal matrix.

We define the addition of two m× n matrices component-wise:



a00 . . . a0(n−1)

a10 . . . a1(n−1)
...

a(m−1)0 . . . a(m−1)(n−1)


+




b00 . . . b0(n−1)

b10 . . . b1(n−1)
...

b(m−1)0 . . . b(m−1)(n−1)




=




a00 + b00 . . . a0(n−1) + b0(n−1)

a10 + b10 . . . a1(n−1) + b1(n−1)
...

a(m−1)0 + b(m−1)0 . . . a(m−1)(n−1) + b(m−1)(n−1)


 .

(1.4)

16

Example 1.3.2. Let R = Z. Below is an example of addition between two 2 × 2 matrices with coeffi-
cients in Z: (

2 3
1 −1

)
+

(
4 −2
0 −5

)
=

(
6 1
1 −6

)
.

Definition 1.3.2. The scalar product of a 1× n row vector v = (v0, v1, . . . , vn−1) with an n× 1 column
vector w = (w0, w1, . . . , wn−1)

⊤ is given by

v ·w =
(
v0 v1 . . . vn−1

)




w0

w1
...

wn−1


 =

n−1∑

i=0

viwi.

Example 1.3.3. Let R = Z. The scalar product of
(
2 3

)
and

(
4 0

)⊤ is

(
2 3

)(4
0

)
= 2× 4 + 3× 0 = 8 + 0 = 8.

We define the multiplication of an m× n matrix A with an n× r matrix B as follows:

AB =




a00 . . . a0(n−1)

a10 . . . a1(n−1)
...

a(m−1)0 . . . a(m−1)(n−1)







b00 . . . b0(r−1)

b10 . . . b1(r−1)
...

b(n−1)0 . . . b(n−1)(r−1)


 =




c00 . . . c0(r−1)

c10 . . . c1(r−1)
...

c(m−1)0 . . . c(m−1)(r−1)


 ,

(1.5)
where cij is the scalar product of the ith row of A and the jth column of B:

cij =

n−1∑

k=0

aikbkj , i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , r − 1.

Example 1.3.4. Let R = Z. Below is an example for multiplication of two 2 × 2 matrices with coeffi-
cients in Z: (

2 3
1 −1

)(
4 −2
0 −5

)
=

(
8 −19
4 3

)
.

Definition 1.3.3. An n × n square matrix A is said to be invertible if there exists an n × n matrix B
such that

AB = BA = In.

B is called the inverse of A. We will use A−1 to denote this matrix.

Example 1.3.5. Let R = Z. We have
(
2 1
1 1

)(
1 −1
−1 2

)
=

(
1 −1
−1 2

)(
2 1
1 1

)
=

(
1 0
0 1

)
.

Hence, the 2× 2 matrix A =

(
2 1
1 1

)
is invertible and its inverse A−1 =

(
1 −1
−1 2

)
.

Theorem 1.3.1. Let n be a positive integer. We define Mn×n(R) to be the set of n × n square ma-
trices with coefficients in R. Then Mn×n(R) together with addition and multiplication defined in
Equations 1.4 and 1.5 is a ring. It is not a commutative ring when n ≥ 2.

Proof. In Examples 1.2.3 and 1.2.13 we have shown that M2×2(R) is a ring. Proof for the general case
is similar.

The closure of Mn×n(R) with respect to both operations is easy to see. Associativity and distribu-
tive laws for addition and multiplication follow from the corresponding properties of R.

The additive identity is the zero matrix of size n × n. The additive inverse of a matrix A with
coefficients aij (0 ≤ i, j ≤ n − 1) is given by −A with coefficients −aij , (0 ≤ i, j ≤ n − 1). The
multiplicative identity is In.

17

When n = 1, M1×1(R) is a commutative ring because R is commutative.
When n ≥ 2, let

A =




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 , B =




0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
1 0 . . . 0


 .

Then

AB =




0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 , BA =




0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
1 0 . . . 0


 .

Hence AB ̸= BA and Mn×n(R) is not commutative for n ≥ 2

In general, not every matrix is invertible. To find the inverse of an invertible matrix, we will need
the following definition.

Definition 1.3.4. Let n be a positive integer. For any A ∈ Mn×n(R), the determinant of A, denoted
det(A), is defined as follows.

• If n = 1, A = (a), det(A) := a.

• If n > 1, let Aij denote the matrix obtained from A by deleting the ith row and the jth column.
Fix an i0,

det(A) :=

n−1∑

j=0

(−1)i0+jai0j det(Ai0j). (1.6)

We note that, the value of det(A) is independent of the choice of i0 in Equation 1.6 (see Ap-
pendix A.1). Similarly, det(A) can also be found by fixing a j0 and computing

det(A) =
n−1∑

i=0

(−1)i+j0aij0 det(Aij0).

Example 1.3.6. Let n = 2, for any A ∈M2×2(R), we can write A =

(
a00 a01
a10 a11

)
. Take i0 = 0,

det(A) =
n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =
1∑

j=0

(−1)ja0j det(A0j) = a00a11 − a01a10.

Theorem 1.3.2. A matrix A ∈Mn×n(R) is invertible in Mn×n(R) if and only if det(A) is a unit in R.
When det(A) is a unit in R, if n = 1 and A = (a), then A−1 = (a−1). If n > 1, we define the adjoint

matrix of A as follows:

adjA :=




(−1)0+0 det(A00) (−1)0+1 det(A10) .. (−1)0+(n−1) det(A(n−1)0)
...

...
. . .

...
(−1)(n−1)+0 det(A0(n−1)) (−1)(n−1)+1 det(A1(n−1)) .. (−1)(n−1)+(n−1) det(A(n−1)(n−1))


 ,

where the (i, j)−entry of adjA is given by (−1)i+j det(Aji). Then

A−1 = (det(A))−1adjA.

The proof can be found in e.g. [Hun12, page 353].

Example 1.3.7. Let n = 2, by Example 1.3.6 and Theorem 1.3.2, a matrix A =

(
a00 a01
a10 a11

)
from

M2×2(R) is invertible if and only if a00a11 − a01a10 is a unit in R. When a00a11 − a01a10 is a unit in R,
the adjoint matrix of A is given by

adjA =

(
a11 −a01
−a10 a00

)
.

18

And the inverse of matrix A is given by

A−1 = (a00a11 − a01a10)
−1

(
a11 −a01
−a10 a00

)
. (1.7)

Example 1.3.8. Let R = Z. By Example 1.3.6, A =

(
2 3
4 7

)
has determinant 14 − 12 = 2. 2 is not a

unit in Z. By Theorem 1.3.2, A is not invertible in M2×2(Z). However, if we consider R = Q, 2 is a
unit in Q. By Theorem 1.3.2, A is invertible in M2×2(Q) and we can compute A−1 using Equation 1.7:

A−1 =
1

2

(
7 −3
−4 2

)
=

(
3.5 −1.5
−2 1

)
.

1.3.2 Vector Spaces

Let F be a field with additive identity 0 and multiplicative identity 1.

Definition 1.3.5 (Vector space). A nonempty set V , together with two binary operations – vector
addition (denoted by +) and scalar multiplication by elements of F , which is a map with domain V × F
and codomain V , is called a vector space over F if, (V,+) is an abelian group and for any v,w ∈ V
and any a, b ∈ F , we have

1. a(v +w) = av + aw.

2. (a+ b)v = av + bv.

3. a(bv) = (ab)v.

4. 1v = v, where 1 is the multiplicative identity of F .

Elements of V are called vectors and elements of F are called scalars.

Remark 1.3.1. It is easy to see that, if 0 is the additive identity in F , and v any vector in V , then
0v = 0 is the additive identity in V (or the identity for vector addition).

Example 1.3.9. The set of complex numbers C = { x+ iy | x, y ∈ R } is a vector space over R. Note
that for any a1 + b1i, a2 + b2i ∈ C, vector addition is defined as

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i.

And for any a ∈ R, scalar multiplication by elements of R is defined as

a(a1 + b1i) = aa1 + ab1i.

The identity element for vector addition is 0. Furthermore, for any a+ bi ∈ C, its inverse with respect
to vector addition is given by −a− bi.

Let Fn = { (v0, v1, . . . , vn−1) | vi ∈ F ∀i } be the set of n−tuples over F . Define vector addition
and scalar multiplication by elements of F component-wise: for any v = (v0, v1, . . . , vn−1) ∈ Fn,
w = (w0, w1, . . . , wn−1) ∈ Fn, and any a ∈ F ,

v +w := (v0 + w0, v1 + w1, . . . , vn−1 + wn−1), (1.8)

av := (av0, av1, . . . , avn−1). (1.9)

Theorem 1.3.3. Together with vector addition and scalar multiplication by elements of F defined in
Equations 1.8 and 1.9 respectively, Fn = { (v0, v1, . . . , vn−1) | vi ∈ F ∀i } is a vector space over F .

Proof. Take any v = (v0, v1, . . . , vn−1),w = (w0, w1, . . . , wn−1) from Fn and any a, b ∈ F .
By Equation 1.8, it is easy to see that Fn is closed under vector addition. The associativity

and commutativity of vector addition follow from that for addition in F . The identity element
for vector addition is (0, 0, . . . , 0), where 0 is the additive identity in F . The inverse of v ∈ Fn is
(−v0,−v1, . . . ,−vn−1), where −vi is the additive inverse of vi in F . Thus Fn with vector addition is
an abelian group.

By definition of scalar multiplication by elements of F (Equation 1.9), av ∈ Fn. Properties 1 and
2 in Definition 1.3.5 follow from distributive law in F . Property 3 follows from the associativity of
multiplication in F . Property 4 follows from the definition of multiplicative identity in F .

19

Example 1.3.10. Let F = F2, the unique finite field with two elements (see Example 1.2.20 and The-
orem 1.2.3). Let n be a positive integer, it follows from Theorem 1.3.3 that Fn

2 is a vector space over
F2.

The identity element for vector addition is (0, 0, . . . , 0). For any v = (v0, v1, . . . , vn−1) ∈ Fn
2 , the

inverse of v with respect to vector addition is (−v0,−v1, . . . ,−vn−1) = v.

Recall that variables ranging over F2 are called bits (see Definition 1.2.17). We have shown that
(F2,⊕,&) is a finite field (see Example 1.2.20), where ⊕ is logical XOR (see Example 1.2.4), and & is
logical AND (see Example 1.2.14).

Definition 1.3.6. Vector addition in Fn
2 is called bitwise XOR, also denoted ⊕. Similarly, we define bit-

wise AND between any two vectors v = (v0, v1, . . . , vn−1), w = (w0, w1, . . . , wn−1) from Fn
2 as follows:

v & w := (v0 & w0, v1 & w1, . . . , vn−1 & wn−1).

Remark 1.3.2. Another useful binary operation, logical OR, denoted ∨, on F2 is defined as follows:

0 ∨ 0 = 0, 1 ∨ 0 = 1, 0 ∨ 1 = 1, 1 ∨ 1 = 1.

It can also be extended to Fn
2 in a bitwise manner and we get bitwise OR.

For simplicity, we sometimes write v0v1 . . . vn−1 instead of (v0, v1, . . . , vn−1).

Example 1.3.11. Let n = 3, take 111, 101 ∈ F3
2, 111⊕ 101 = 010, 111 & 101 = 101, 111 ∨ 101 = 111.

Definition 1.3.7. A vector in Fn
2 is called an n-bit binary string. A 4−bit binary string is called a nibble.

An 8−bit binary string is called a byte.

Example 1.3.12. • 1010, 0011 ∈ F4
2 are two nibbles. Furthermore,

1010⊕ 0011 = 1001, 1010 & 0011 = 0010.

• 00101100 is a byte.

Remark 1.3.3. By Theorem 1.1.1, a byte can be considered as a base−2 representation/binary repre-
sentation of an integer (see Theorem 1.1.1). By Equation 1.2, the value of this integer is between 0
and 255 or between 0016 and FF16 with base−16 representation/hexadecimal representation.

For the rest of this section, let V be a vector space over F .

Definition 1.3.8. A nonempty subset U ⊆ V is called a subspace of V if U is a vector space over F
under the same operations (vector addition and scalar multiplication by elements of F) in V .

Remark 1.3.4. To show U ⊂ V is a subspace of V , by Definitions 1.3.5, 1.2.1 and 1.2.2, we need to
prove the following:

1. (U,+) is an abelian group.

(a) U is closed under + (closure property): ∀u,v ∈ U , u+ v ∈ U .

(b) + is associative: ∀u,v,w ∈ U , u+ (v +w) = (u+ v) +w.

(c) The identity element for vector addition in V is also in U .

(d) For v ∈ U , its additive inverse in V is also in U .

2. Scalar multiplication by elements of F is a function with domain U × F and codomain U .

3. For any v,w ∈ U and any a, b ∈ F , we have

(a) a(v +w) = av + aw.

(b) (a+ b)v = av + bv.

(c) a(bv) = (ab)v.

(d) 1v = v, where 1 is the multiplicative identity in F .

20

We note that 1-(b) and 3 follow from the corresponding properties of V . Thus, to prove U is a sub-
space of V , we need to prove 1-(a), 1-(c), 1-(d) and 2.

In case F = F2, by Example 1.3.10, 1-(d) is true by default. Furthermore, 2 is also true as there are
only two elements in F2: 0 and 1. To show U is a subspace when F = F2, it suffices to prove 1-(a) and
1-(c).

Definition 1.3.9. A linear combination of v1,v2, . . . ,vr ∈ V is a vector of the form a1v1 + a2v2 + · · ·+
arvr, where ai ∈ F ∀i.

Lemma 1.3.1. For any v1,v2, . . . ,vr ∈ V (r ≥ 1), U := { a1v1 + a2v2 + · · ·+ arvr | ai ∈ F } is a
subspace of V .

Proof. By Remark 1.3.4, we will prove 1-(a), 1-(c), 1-(d) and 2.

Take any v =

r∑

i=1

aivi ∈ U .

1-(a). For any u =
r∑

i=1

bivi ∈ U ,

v + u =
r∑

i=1

aivi +
r∑

i=1

bivi =
r∑

i=1

(ai + bi)vi ∈ U

1-(c). Let ai = 0 ∈ F , then (see Remark 1.3.1)

0 =

r∑

i=1

aivi ∈ U.

1-(d). The inverse of v with respect to vector addition is given by

u :=
r∑

i=1

(−ai)vi

because v + u = 0. Furthermore, since −ai ∈ F , we have u ∈ U .
2. For any α ∈ F ,

α
r∑

i=1

aivi =
r∑

i=1

(αai)vi ∈ U.

Definition 1.3.10. Let S = { v1,v2, . . . ,vr } ⊆ V ,

⟨S⟩ := { a1v1 + a2v2 + · · ·+ arvr | ai ∈ F }

is called the (linear) span of S over F . For any subspace U ⊆ V , and a subset S of U , if U = ⟨S⟩, S is
called a generating set for U .

We note that if S is a subspace of V , then ⟨S⟩ = S.

Example 1.3.13. Let V = F3
2, and S = { 001, 100 }, then ⟨S⟩ = { 000, 001, 100, 101 }

Definition 1.3.11. A set of vectors { v1,v2, . . . ,vr } ⊆ V are linearly independent over F if

r∑

i=1

aivi = 0 =⇒ ai = 0 ∀i.

Otherwise, they are said to be linearly dependent over F .

Example 1.3.14. • Let F = F, V = F3
2. 001 and 100 are linearly independent.

• For any S ⊆ V , if 0 ∈ S, then the vectors in S are linearly dependent.

21

• Let F = R, V = R3, (0, 1, 0) and (0, 0, 1) are linearly independent.

(0, 1, 0), (2, 3, 0), (1, 0, 0) are linearly dependent since for example, we have

3 · (0, 1, 0) + (−1) · (2, 3, 0) + 2 · (1, 0, 0) = (0, 0, 0).

Definition 1.3.12. Let B be a nonempty subset of V . If V = ⟨B⟩ and vectors in B are linearly inde-
pendent, then B is called a basis for V over F .

Remark 1.3.5. Suppose B is a basis for V and B = { v1,v2, . . . ,vr }. Then any element v ∈ V has a
unique representation as a linear combination of vectors in B:

v =
r∑

i=1

aivi =
r∑

i=1

bivr =⇒
r∑

i=1

(ai − bi)vi = 0 =⇒ ai = bi.

Example 1.3.15. • Let F = R, V = R3, and B = { (1, 0, 0), (0, 1, 0), (0, 0, 1) }. It is easy to see that
vectors in B are linearly independent. For any v = (v0, v1, v2) ∈ R3, we have

v = v0(1, 0, 0) + v1(0, 1, 0) + v2(0, 0, 1).

Thus, B is a generating set of V. By definition, B is a basis for V over R.

• Let F = F2, and V = F3
2, similarly, we can show { (1, 0, 0), (0, 1, 0), (0, 0, 1) } is a basis for V over

F2.

Example 1.3.16. Let V = Fn and B = { v0,v1, . . . ,vn−1 }, where

vi = (vi0, vi1, . . . , vi(n−1)), vii = 1 and vij = 0 for i ̸= j.

It is easy to see that vectors in B are linearly independent. For any u = (u0, u1, . . . , un−1) ∈ V , we
can write

u =

n−1∑

ℓ=0

uℓvℓ.

Thus, B is a generating set of V. By definition, B is a basis for V over F .

Lemma 1.3.2. Let B1, B2 be subsets of V . If V = ⟨B1⟩ and vectors in B2 are linearly independent,
then |B1| ≥ |B2|.
Proof. Suppose B1 = { v1,v2, . . . ,vr1 } and B2 = {w1,w2, . . . ,wr2 }. Since V = ⟨B1⟩,

w1 =

r1∑

j=1

ajvj

for some aj ∈ F . Moreover, at least one of aj ̸= 0 as vectors in B2 are linearly independent. Without
loss of generality, let us assume a1 ̸= 0, then

v1 = −
r1∑

j=2

aj
a1

vj +
1

a1
w1,

and we have {w1,v2, . . . ,vr1 } spans V . Then, we can write

w2 = b1w1 +

r1∑

j=2

bjvj ,

where bj ∈ F and at least one of bj ̸= 0 for 2 ≤ j ≤ r1, otherwise w2 is a linear combination of w1.
Suppose b2 ̸= 0, We have

v2 = −
b1
b2
w1 −

r1∑

j=3

bj
b2
vj +

1

b2
w2,

which means {w1,w2,v3, . . . ,vr1 } spans V .
We can continue in this manner, if r1 < r2, we will deduce that {w1,w2 . . . ,wr1 } spans V and

wr1+1 can be written as a linear combination of {w1,w2 . . . ,wr1 }, a contradiction.

22

We have the following direct corollary.

Corollary 1.3.1. If B1 and B2 are bases of V , then |B1| = |B2|.

Proof. By Lemma 1.3.2, |B1| ≤ |B2| and |B2| ≤ |B1|.

Definition 1.3.13. The dimension of V over F , denoted dim(V)F , is given by the cardinality of B, |B|,
where B is a basis of V over F .

Example 1.3.17. Continuing Example 1.3.16, dim(Fn)F = n.

Lemma 1.3.3. Let F = F2, if dim(V)F2 = k, then |V | = 2k.

Proof. Let B = { v1,v2, . . . ,vk } be a basis for V . We have discussed in Remark 1.3.5 that every w ∈ V
has a unique representation as a linear combination of vectors in B. In other words,

V =

{
k∑

i=1

aivi

∣∣∣∣∣ ai ∈ F2, 1 ≤ i ≤ k

}
,

where there are two choices for each ai.

Example 1.3.18. Let F = F2, S = { 0010, 1000 } and V = ⟨S⟩. It is easy to see that vectors in S are
linearly independent. By Definition 1.3.13, dim(V)F2 = 2. By Lemma 1.3.3, |V | = 4. We can verify
that V = { 0000, 0010, 1000, 1010 }.

For any v = (v0, v2, . . . , vn−1) ∈ Fn
2 and w = (w0, w2, . . . , wn−1) ∈ Fn

2 , we can consider v as a row
vector and w as a column vector and compute the scalar product (see Definition 1.3.2) between v and
w:

v ·w =

n−1∑

i=0

viwi.

We note for any u = (u0, u1, . . . , un−1) ∈ Fn
2

(v +w) · u =

n−1∑

i=0

(vi + wi)ui =

n−1∑

i=0

viui +

n−1∑

i=0

wiui = v · u+w · u. (1.10)

Definition 1.3.14. • For any v,w ∈ Fn
2 , v and w are said to be orthogonal if v ·w = 0.

• Let S ⊆ Fn
2 be nonempty. The orthogonal complement, denoted S⊥, of S is given by

S⊥ = { v | v ∈ Fn
2 ,v · s = 0 ∀s ∈ S } .

• If S = ∅, we define S⊥ = Fn
2 .

By definition, it is easy to see that ⟨S⟩⊥ = S⊥.

Lemma 1.3.4. For any S ⊆ V , S⊥ is a subspace of Fn
2 .

Proof. By Remark 1.3.4, we will prove 1-(a) and 1-(c).
1-(a). Take any v,u ∈ S⊥ and any s ∈ S, by Equation 1.10, we have

(v +w) · s = v · s+ u · s = 0,

hence v +w ∈ S⊥.
1-(c). 0 · s = 0 for any s ∈ S. Hence 0 ∈ S⊥.

23

1.4 Modular Arithmetic

In this section, let n > 1 be an integer.
We are interested in the set { 0, 1, 2 . . . , n− 1 }. It can be considered as the set of possible remain-

ders when dividing by n (see Theorem 1.1.2). We will also associate each integer with one element in
the set – namely the remainder of this integer divided by n. Here we would like to provide a rigorous
definition for this association. First, we introduce the notion of equivalence relations.

Definition 1.4.1. A relation ∼ on a set S is called an equivalence relation if ∀a, b, c ∈ S, the following
conditions are satisfied.

• a ∼ a (reflexivity).

• If a ∼ b, then b ∼ a (symmetry).

• If a ∼ b and b ∼ c, then a ∼ c (transitivity)

Let us define a relation ∼ on the set Z as follows:

a ∼ b if and only if n|(b− a). (1.11)

We can see that this is an equivalence relation on Z.

• ∀a ∈ Z, 0 = a− a and n|0, hence a ∼ a (reflexivity).

• If n|(a− b), then n|(b− a), we have a ∼ b implies b ∼ a (symmetry).

• If n|(a− b) and n|(b− c), then

n|((a− b) + (b− c)) =⇒ n|(a− c).

Thus a ∼ b and b ∼ c implies a ∼ c (transitivity).

Definition 1.4.2. Take a, b ∈ Z. If a ∼ b, i.e. n|(b − a), then we say that a is congruent to b modulo n,
written a ≡ b mod n. n is called the modulus.

By the above definitions, saying a is congruent to b modulo n is equivalent to saying that the remain-
der of a divided by n is the same as the remainder of b divided by n.

Definition 1.4.3. If ∼ is an equivalence relation on a set S, then the equivalence class of an element
a ∈ S, denoted a, is defined by

a := { b | b ∈ S, b ∼ a } .

Theorem 1.4.1. If∼ is an equivalence relation on a set S, then∼ partitions S into disjoint equivalence
classes. That is,

S =
⋃

a, and a
⋂

b = ∅ if a ̸= b.

Proof. It is easy to see that S =
⋃
a.

To prove the second part. We show that the following equivalent claim is true:

if a
⋂

b ̸= ∅, then a = b.

Let c be an element of a
⋂
b. By Definition 1.4.3, c ∼ a and c ∼ b. By symmetry (Definition 1.4.1),

a ∼ c. By transitivity (Definition 1.4.1), a ∼ b. Hence a ∈ b. Now for any d ∈ a, d ∼ a. By transitivity
(Definition 1.4.1), d ∼ b. Then by Definition 1.4.3, d ∈ b. We have a ⊂ b.

Similarly, we can prove b ⊂ a. Hence a = b.

Definition 1.4.4. For any a ∈ Z, the congruence class of a modulo n, denoted a, is defined to be the
equivalence class of a with respect to the equivalence relation ∼ defined in Equation 1.11.

We note that the set a consists of all integers of the form a+ nk for some k ∈ Z.

24

Lemma 1.4.1. Let Zn denote the set of all congruence classes of a ∈ Z modulo n. Then

Zn =
{
0, 1, . . . , n− 1

}
.

Proof. By Theorem 1.1.2, given any b ∈ Z, we can find q, r ∈ Z such that

0 ≤ r < n and b = qn+ r =⇒ b ∼ r.

By Theorem 1.4.1, we have b = r. Hence the set
{
0, 1, . . . , n− 1

}
contains all the congruence classes

of integers modulo n, possibly with some repetitions.
If r1 = r2 for some 0 ≤ r1, r2 < n, then n|(r1 − r2). Since 0 ≤ r1, r2 < n, we have r1 = r2. Thus

0, 1, . . . , n− 1 are all distinct.

Remark 1.4.1. a = b if and only if a ≡ b mod n.

Example 1.4.1. Let n = 5. We have 1 = 6 = −4. By Lemma 1.4.1, Z5 =
{
0, 1, 2, 3, 4

}
.

We define the addition operation on the set Zn as follows:

a+ b = a+ b. (1.12)

If a = a′ and b = b′, we have n|(a′ − a) and n|(b′ − b), therefore

n|((a′ − a) + (b′ − b)) =⇒ n|((a′ + b′)− (a+ b)) =⇒ (a+ b) ∼ (a′ + b′) =⇒ a+ b = a′ + b′.

Thus the addition in Equation 1.12 is well-defined.

Example 1.4.2. • Let n = 7, 3 + 2 = 5.

• Let n = 4, 2 + 2 = 4 = 0.

Proposition 1.4.1. (Zn,+), the set Zn together with addition defined in Equation 1.12, is an abelian
group.

Proof. For any a, b ∈ Zn, a+ b ∈ Zn. Hence Zn is closed under +. The associativity follows from the
associativity of the addition of integers. The identity element is 0 and the inverse of a is n− a:

a+ n− a = n− a+ a = n = 0.

The commutative property follows from that for integer addition.

Remark 1.4.2. The proof also shows that the additive inverse of an element a ∈ Zn is n− a = −a and
the identity element is 0.

Example 1.4.3. • Let n = 5, the inverse of 1 in (Z5,+) is 5− 1 = 4.

• Let n = 8, the inverse of 2 in (Z8,+) is 8− 2 = 6.

Lemma 1.4.2. (Zn,+) is a cyclic group.

Proof. Recall that the identity element in (Zn,+) is 0. It is easy to see that 1 has order n (see Defini-
tion 1.2.6):

1 + 1 = 2

1 + 1 + 1 = 3
...

1 + 1 + . . . 1︸ ︷︷ ︸
n−1 times

= n− 1

1 + 1 + . . . 1︸ ︷︷ ︸
n times

= n = 0.

25

We define multiplication on Zn as follows

a · b = ab. (1.13)

If a′ = a and b′ = b, then we can write a′ = a+ sn, b′ = b+ tn for some integers s, t. We have

a′b′ = ab+ n(at+ sb+ st) =⇒ a′b′ ∼ ab.

Hence a′b′ = ab and the multiplication in Equation 1.13 is well-defined.

Example 1.4.4. Let n = 5,
−2 · 13 = 3 · 3 = 9 = 4.

Theorem 1.4.2. (Zn,+, ·), the set Zn together with addition defined in Equation 1.12 and multipli-
cation defined in Equation 1.13 is a commutative ring. It is an integral domain if and only if n is
prime.

Proof. In Proposition 1.4.1 we have shown that (Zn,+) is an abelian group.
Take any a, b ∈ Zn, ab ∈ Zn. Hence Zn is closed under ·. Associativity, commutativity of multipli-

cation, and distributive laws follow from that for the integers. The identity element for multiplication
is 1. We have proved that (Zn,+, ·) is a commutative ring.

If n is not a prime, let m be a prime that divides n. Then d = n/m is an integer and d ̸= 0. We
have

m · d = n = 0.

By Definition 1.2.10, d,m are zero divisors in Zn. By Definition 1.2.11, Zn is not an integral domain.
Let n be a prime. Suppose there are a, b ∈ Zn, such that a ̸= 0, b ̸= 0, and a · b = 0. By definition,

we have n|ab. By Lemma 1.1.2, n|a or n|b, which gives a = 0 or b = 0, a contradiction.

For simplicity, we write a instead of a and to make sure there is no confusion with a ∈ Z we
would specify that a ∈ Zn. In particular, Zn = { 0, 1, 2, . . . , n− 1 }. Furthermore, to emphasize that
multiplication or addition is done in Zn, we write ab mod n or a+ b mod n.

Example 1.4.5. Let n = 5, we write

4× 2 mod 5 = 8 mod 5 = 3, or 4× 2 ≡ 8 ≡ 3 mod 5.

Lemma 1.4.3. For any a ∈ Zn, a ̸= 0, a has a multiplicative inverse, denoted a−1 mod n, if and only
if gcd(a, n) = 1.

Proof. By Bézout’s identity (Theorem 1.1.3), gcd(a, n) = sa+ tn for some s, t ∈ Z.
⇐= If gcd(a, n) = 1, then sa+tn = 1, i.e. n|(1−sa). By definition, sa ≡ 1 mod n, thus a−1 mod n =

s.
=⇒ On the other hand, if a has a multiplicative inverse, then there exists s ∈ Zn such that

as mod n = 1, which gives n|(as−1). Hence there is some t ∈ Z such that 1 = as+tn. By Lemma 1.1.1
(6), gcd(a, n)|1. As gcd(a, n) > 0, we have gcd(a, n) = 1.

Remark 1.4.3. Recall that by the extended Euclidean algorithm (Algorithm 1.2), we can find integers
s, t such that gcd(a, n) = sa + tn for any a, n ∈ Z. In particular, when gcd(a, n) = 1, we can find s, t
such that 1 = as + tn, which gives as mod n = 1. Thus, we can find a−1 mod n = s mod n by the
extended Euclidean algorithm.

Example 1.4.6. We calculated in Example 1.1.15 that gcd(160, 21) = 1 and 1 = (−8) × 160 + 61 × 21.
We have 21−1 mod 160 = 61.

Example 1.4.7. Let
p = 5, q = 7

By the extended Euclidean algorithm,

7 = 5× 1 + 2, 5 = 2× 2 + 1,

1 = 5− 2× 2 = 5− (7− 5)× 2 = 5× 3− 7× 2.

We have
p−1 mod q = 5−1 mod 7 = 3, q−1 mod p = 7−1 mod 5 = −2 mod 5 = 3.

26

Example 1.4.8. Let
p = 7, q = 47

By the extended Euclidean algorithm,

47 = 7× 6 + 5, 7 = 5× 1 + 2, 5 = 2× 2 + 1,

1 = 5− 2× 2 = 5− (7− 5)× 2 = 5× 3− 7× 2 = (47− 7× 6)× 3− 7× 2

= 47× 3− 7× 20.

We have

p−1 mod q = 7−1 mod 47 = −20 mod 47 = 27, q−1 mod p = 47−1 mod 7 = 3.

Corollary 1.4.1. Zn is a field if and only if n is prime.

Proof. By Theorem 1.4.2, Zn is a commutative ring. By Definition 1.2.12 and Lemma 1.4.3, Zn is a field
if and only if for any a ∈ Zn such that a ̸= 0, we have gcd(a, n) = 1, which is true if and only if n is a
prime.

Corollary 1.4.2. For any a ∈ Zn, if gcd(a, n) = 1, then the set { ab | b ∈ Zn } = Zn.

Proof. It is clear from the definition that { ab | b ∈ Zn } ⊆ Zn. As there are n distinct values for b,
it suffices to prove that ab1 ̸≡ ab2 mod n for b1, b2 ∈ Zn with b1 ̸= b2. We will prove the claim by
contradiction.

Assume
ab1 ≡ ab2 mod n (1.14)

and b1 ̸= b2. By Lemma 1.4.3, a−1 exists. Multiply both sides of Equation 1.14 by a−1 we get b1 ≡
b2 mod n, a contradiction.

We note that when p is prime, Zp is the unique finite field Fp up to isomorphism (see Theorem 1.2.3
and Remark 1.2.2).

Lemma 1.4.3 leads us to the following definition.

Definition 1.4.5. Let Z∗
n denote the set of congruence classes in Zn which have multiplicative in-

verses:
Z∗
n := { a | a ∈ Zn, gcd(a, n) = 1 } .

The Euler’s totient function, φ, is a function defined on the set of integers bigger than 1 such that φ(n)
gives the cardinality of Z∗

n:
φ(n) = |Z∗

n|.

Example 1.4.9. • Let n = 3, Z∗
3 = { 1, 2 }, φ(3) = 2.

• Let n = 4, Z∗
4 = { 1, 3 }, φ(4) = 2.

• Let n = p be a prime number, Z∗
p = Zp − { 0 } 3 = { 1, 2, . . . , p− 1 }, φ(p) = p− 1.

Lemma 1.4.4. (Z∗
n, ·), the set Z∗

n together with the multiplication defined in Zn (Equation 1.13), is an
abelian group.

Proof. For any a, b ∈ Z∗
n, a−1, b−1 ∈ Z∗

n. We note that (ab)(b−1a−1) = 1, hence ab has an inverse in
Z∗
n and ab ∈ Z∗

n (closure). The associativity follows from that for multiplications in Z. The identity
element is 1 and Lemma 1.4.3 proves that every element has an inverse in Z∗

n.

Recall by the Fundamental Theorem of Arithmetic (Theorem 1.1.5), every integer n > 1 is either
a prime or can be written as a product of primes in a unique way. We have the following result
concerning Euler’s totient function. The proof can be found in e.g. [Sie88, page 247].

3Recall the difference between sets defined in Equation 1.1.

27

Theorem 1.4.3. For any n ∈ Z, n > 1,

if n =
k∏

i=1

peii , then φ(n) = n
k∏

i=1

(
1− 1

pi

)
, (1.15)

where pi are distinct primes.

Example 1.4.10. • Let n = 10. 10 = 2 × 5. We can count the elements in Z10 that are coprime to
10 (labelled in red color):

Z10 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } .
There are four of them. By Equation 1.15, we also have

φ(10) = 10×
(
1− 1

2

)
×
(
1− 1

5

)
= 4.

• Let n = 120. 120 = 23 × 3× 5. We have

φ(120) = 120×
(
1− 1

2

)
×
(
1− 1

3

)
×
(
1− 1

5

)
= 32.

• Let n = pq, where p and q are two distinct primes. Then

φ(n) = pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1).

• Let n = pk, where p is a prime and k ∈ Z, k ≥ 1. Then

φ(pk) = pk
(
1− 1

p

)
= pk−1(p− 1).

• In particular, if p = 2,
φ(2k) = 2k−1.

Theorem 1.4.4 (Euler’s Theorem). For any a ∈ Z, aφ(n) ≡ 1 mod n if gcd(a, n) = 1.

Proof. By definition, |Z∗
n| = φ(n). If gcd(a, n) = 1, then a ∈ Z∗

n. The result follows from Theorem 1.2.1.

Example 1.4.11. Let n = 4. We have calculated that φ(4) = 2 in Example 1.4.9. And

32 = 9 ≡ 1 mod 4.

Let n = 10. we have calculated that φ(10) = 4 in Example 1.4.10. And

34 = 81 ≡ 1 mod 10.

Since φ(p) = p − 1 (Example 1.4.9), a direct corollary of Euler’s Theorem is Fermat’s Little Theo-
rem.

Theorem 1.4.5 (Fermat’s Little Theorem). Let p be a prime. For any a ∈ Z, if p ∤ a, then ap−1 ≡
1 mod p.

Example 1.4.12. • Let p = 3. 22 = 4 ≡ 1 mod 3.

• Let p = 5. 24 = 16 ≡ 1 mod 5.

Corollary 1.4.3. Let p be a prime. Then for any a, b, c ∈ Z such that b ≡ c mod (p− 1), we have

ab ≡ ac mod p.

In particular,
ab ≡ ab mod (p−1) mod p.

28

Proof. By Fermat’s Little Theorem (Theorem 1.4.5),

ap−1 ≡
{
1 mod p if p ∤ a
0 mod p otherwise

.

Since b ≡ c mod (p− 1), b− c = (p− 1)k for some k ∈ Z. And

ab ≡ ac+(p−1)k ≡ aca(p−1)k ≡
{
ac mod p if p ∤ a
0 mod p otherwise

≡ ac mod p.

Example 1.4.13. Let p = 5, a = 2, b = 6. Then

26 ≡ 26 mod 4 ≡ 22 ≡ 4 mod 5.

We can verify that indeed
26 ≡ 64 ≡ 4 mod 5.

Corollary 1.4.4. Let p be a prime and b be an integer coprime to φ(p). For any a1, a2 ∈ Zp, if a1 ̸= a2,
then ab1 ̸≡ ab2 mod p.

Proof. Suppose a1 ̸= a2 and ab1 ≡ ab2 mod p. Let c = b−1 mod φ(p), then

abc1 ≡ abc2 mod p, and bc ≡ 1 mod φ(p).

By Corollary 1.4.3, a1 ≡ a2 mod p. Since a1, a2 ∈ Zp, we have a1 = a2, a contradiction.

Example 1.4.14. Let p = 7, then φ(p) = 6. Let a1 = 3, a2 = 4, b = 5. Then

ab1 ≡ 35 ≡ 243 ≡ 5 mod 7, ab2 ≡ 45 ≡ 1024 ≡ 2 mod 7.

This agrees with Corollary 1.4.4. On the other hand, if we let b = 2, which is no coprime to φ(p), we
have

ab1 ≡ 32 ≡ 9 ≡ 2 mod 7, ab2 ≡ 42 ≡ 16 ≡ 2 mod 7.

1.4.1 Solving Linear Congruences

In this part, we will discuss how to solve a system of linear congruences in Zn.
We first consider one linear congruence equation.

Lemma 1.4.5. For any a, b ∈ Z, the linear congruence

ax ≡ b mod n

has at least one solution in Z if and only if gcd(a, n)|b.

Proof. By Definition 1.4.2, the linear congruence is equivalent to the following equation for some
k ∈ Z

ax+ kn = b (1.16)

=⇒ By Lemma 1.1.1 (6), gcd(a, n)|b.
⇐= Assume gcd(a, n)|b, then b

gcd(a,n) is an integer. By Bézout’s identity (Theorem 1.1.3), we can find

integers s, t such that as+ tn = gcd(a, n). Multiplying both sides by b
gcd(a,n) , we have

a
sb

gcd(a, n)
+ n

tb

gcd(a, n)
= b.

Thus sb
gcd(a,n) is a solution for Equation 1.16.

29

Example 1.4.15. Let n = 10, a = 4. Then gcd(a, n) = 2. By Lemma 1.4.5, the linear congruence
4x ≡ 1 mod 10 has no solution. Indeed, if we try to multiply any integer by 4 and divide by 10 we
will not get an odd remainder.

On the other hand, the linear congruence 4x ≡ 2 mod 10 has at least one solution. For example,
x = 3 is a solution (4× 3 ≡ 12 ≡ 2 mod 10).

Theorem 1.4.6. For any a, b ∈ Z, the linear congruence

ax ≡ b mod n

has a unique solution x ∈ Zn if and only if gcd(a, n) = 1

Proof. =⇒ Suppose gcd(a, n) > 1 and x0 ∈ Zn is a solution for the linear congruence. Let x1 =
x0 +

n
gcd(a,n) , then

ax1 ≡ ax0 +

(
a

gcd(a, n)

)
n ≡ ax0 mod n.

Since gcd(a, n) > 1, n
gcd(a,n) ̸= 0 mod n, and we have x1 ̸≡ x0 mod n. Thus x1 mod n is another

solution in Zn.
⇐= Suppose gcd(a, n) = 1. Take any two solutions x0, x1 ∈ Zn, we have ax1 ≡ ax0 mod n. Then

a(x0 − x1) ≡ 0 mod n =⇒ n|a(x0 − x1).

Since gcd(n, a) = 1, n ∤ a. By Lemma 1.1.1 (7), n|(x0 − x1). As x0, x1 ∈ Zn, 0 ≤ x0, x1 < n, we must
have x0 − x1 = 0.

Example 1.4.16. • Let n = 10, a = 3. 3x ≡ 4 mod 10 has a unique solution x = 8 ∈ Z10.

• Let n = 10, a = 4. 4x ≡ 4 mod 10 has two solutions in Z10: x = 1, 6.

We now know when there are solutions for a linear congruence and when the solution is unique
in Zn. Next, we will discuss the formulas to find the solution when it is unique. Also, instead of
only looking at one equation, the method can find the solution for a few equations, which are called
a system of simultaneous congruences, at the same time.

Such a problem was mentioned in an ancient Chinese math book called “Sun Zi Suan Jing”. The
question in the book asks: “There is something whose amount is unknown. If we count by threes,
2 are remaining; by fives, 3 are remaining; and by sevens, 2 are remaining. How many things are
there?” Translating to our notations, the question is

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7

x ≡ ? (1.17)

Before answering the question, we provide the solution for a more general case. Let us consider
a system of simultaneous linear congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...
x ≡ ak mod mk, (1.18)

where mi are pairwise coprime positive integers, i.e gcd(mi,mj) = 1 for i ̸= j.
Define

m =
k∏

i=1

mi, Mi =
m

mi
, 1 ≤ i ≤ k. (1.19)

30

Since mi are pairwise coprime, mi and Mi are coprime. By Lemma 1.4.3, yi := M−1
i mod mi exists. It

can be computed by the extended Euclidean algorithm (See Remark 1.4.3). Let

x =

k∑

i=1

aiyiMi mod m. (1.20)

Since yi = M−1
i mod mi and mj |Mi for j ̸= i, we have

aiyiMi ≡ ai mod mi, and ajyjMj ≡ 0 mod mi if j ̸= i.

Then,
x ≡ aiyiMi +

∑

1≤j≤n,j ̸=i

ajyjMj ≡ ai mod mi for all i.

Thus, x is a solution to the system of simultaneous linear congruences in Equation 1.18.
Now, we can compute a solution to Equation 1.17. We have

m1 = 3, m2 = 5, m3 = 7, a1 = 2, a2 = 3, a3 = 2,

and
m = 3× 5× 7 = 105, M1 = 35, M2 = 21, M3 = 15.

By the extended Euclidean algorithm, we get

y1 = M−1
1 mod 3 = 2−1 mod 3 = 2,

y2 = M−1
2 mod 5 = 1−1 mod 5 = 1,

y3 = M−1
3 mod 7 = 1−1 mod 7 = 1.

And a solution to Equation 1.17 is given by

x =

3∑

i=1

aiyiMi mod n = 2× 2× 35 + 3× 1× 21 + 2× 1× 15 mod 105

= 233 mod 105 = 23 mod 105.

Example 1.4.17. Let us solve the following system of simultaneous linear congruences

x ≡ 2 mod 5

x ≡ 1 mod 7

x ≡ 5 mod 11

x ≡ ? mod 385.

Following the above procedures, we have

m1 = 5, m2 = 7, m3 = 11, a1 = 2, a2 = 1, a3 = 5,

m = 5× 7× 11 = 385, M1 = 77, M2 = 55, M3 = 35.

Then
M1 ≡ 77 ≡ 2 mod 5, M2 ≡ 55 ≡ 6 mod 7, M3 ≡ 35 ≡ 2 mod 11.

With the extended Euclidean algorithm, we have find

y1 = M−1
1 mod 5 = 3, y2 = M−1

2 mod 7 = 6, y3 = M−1
3 mod 11 = 6.

And

x =
3∑

i=1

aiyiMi mod m = 2× 3× 77 + 1× 6× 55 + 5× 6× 35 mod 385

= 1842 mod 385 = 302.

31

We have shown how to find a solution to a system of simultaneous linear congruences. The
following theorem says that our solution is unique in Zm.

Theorem 1.4.7 (Chinese Remainder Theorem). Let m1,m2, . . . ,mk be pairwise coprime integers. For
any a1, a2, . . . , ak ∈ Z, the system of simultaneous congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . x ≡ ak mod mk

has a unique solution modulo m =
∏k

i=1mi.

Proof. The discussions above have shown the existence of such a solution. To prove the uniqueness,
let x1, x2 ∈ Zm be two solutions for the system of simultaneous congruences. Then

x1 ≡ x2 mod m1, x1 ≡ x2 mod m2, . . . x1 ≡ x2 mod mk.

By definition, we have

m1|(x1 − x2), m2|(x1 − x2), . . . mk|(x1 − x2).

Since mis are pairwise coprime, by Lemma 1.1.1 (8), we can conclude that m =
∏k

i=1mi divides
x1 − x2. As x1 and x2 are from Zm, we must have x1 = x2.

Example 1.4.18. Let p = 3, q = 5, n = 15, a = 10. We would like to find the unique solution x ∈ Z15

such that
x ≡ 10 mod 3, x ≡ 10 mod 5.

We have
m1 = p = 3, m2 = q = 5, a1 = a2 = a = 10.

Hence

m = n = 15, M1 = 5, M2 = 3, y1 = 5−1 mod 3 = 2, y2 = 3−1 mod 5 = 2.

And

x = a1y1M1 + a2y2M2 mod n = 10× 2× 5 + 10× 2× 3 mod 15 = 160 mod 15 = 10.

Example 1.4.19. Take two distinct primes p, q, and let n = pq. By Theorem 1.4.7, for any a ∈ Zn, there
is a unique solution x ∈ Zn such that

x ≡ a mod p, x ≡ a mod q. (1.21)

Since a ≡ a mod p and a ≡ a mod q, the unique solution is given by x = a ∈ Zn. In other words,
there is no other element b ∈ Zn different from a that satisfies Equation 1.21.

On the other hand, following the above procedures for finding the solution, we have

m1 = p, m2 = q, a1 = a2 = a.

And
m = n = pq, M1 = q, M2 = p, y1 = q−1 mod p, y2 = p−1 mod q.

Then

x = a1y1M1 + a2y2M2 mod n = (a(q−1 mod p)q + a(p−1 mod q)p) mod n

= (a((q−1 mod p)q + (p−1 mod q)p)) mod n.

By definition,
(q−1 mod p)q = pk1 + 1, (p−1 mod q)p = qk2 + 1,

for some integers k1, k2. Thus

p|((q−1 mod p)q + (p−1 mod q)p− 1),

32

and
q|((q−1 mod p)q + (p−1 mod q)p− 1).

By Lemma 1.1.1 (8), we have

n|((q−1 mod p)q + (p−1 mod q)p− 1) =⇒ (q−1 mod p)q + (p−1 mod q)p ≡ 1 mod n.

Thus
x = (a((q−1 mod p)q + (p−1 mod q)p)) mod n = a mod n.

Corollary 1.4.5. Let p and q be two distinct primes and n = pq. For any a, b ∈ Z, we have

ab ≡ ab mod φ(n) mod n.

Proof. Since φ(n) = (p− 1)(q − 1),

b mod φ(n) ≡ b mod (p− 1), b mod φ(n) ≡ b mod (q − 1).

By Corollary 1.4.3,
ab ≡ ab mod φ(n) mod p, ab ≡ ab mod φ(n) mod q.

By Example 1.4.19,
ab ≡ ab mod φ(n) mod n.

Example 1.4.20. Let p = 3, q = 5, a = 2, b = 9. Then n = 15 and φ(n) = 2× 4 = 8. And

29 ≡ 29 mod 8 ≡ 2 mod 15.

We can check that
29 ≡ 512 ≡ 2 mod 15.

Corollary 1.4.6. Let p and q be two distinct primes and n = pq. For any a1, a2 ∈ Zn and b ∈ Z∗
φ(n), if

a1 ̸= a2, then ab1 ̸≡ ab2 mod n.

Proof. Suppose ab1 ≡ ab2 mod n. Let c = b−1 mod φ(n), then

abc1 ≡ abc2 mod n, and bc ≡ 1 mod φ(n).

By Corollary 1.4.5, a1 ≡ a2 mod n. Since a1, a2 ∈ Zn, we have a1 = a2, a contradiction.

Example 1.4.21. Let p = 5, q = 7, a1 = 4, a2 = 6. Then n = 35 and φ(n) = 4× 6 = 24. Choose b = 5,
we have

ab1 ≡ 45 ≡ 9 mod 35, ab2 ≡ 65 ≡ 6 mod 35.

1.5 Polynomial Rings

In this section, we introduce another example of commutative rings – polynomial rings. Throughout
this section, let (F,+, ·) be a field with additive identity 0 and multiplicative identity 1.

Definition 1.5.1. • Define

F [x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F, n ≥ 0

}
.

An element f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F [x] is called a polynomial over F .

• If an ̸= 0, we define degree of f(x), denoted deg(f(x)), to be n. Following the convention, we
define deg(0) = −∞.

Example 1.5.1. Let F = R, then f(x) = x+ 1 ∈ R[x] is a polynomial over R and deg(f(x)) = 1.

33

Take f(x) = anx
n + an−1x

n−1 + · · ·+ a0, g(x) = bmxm + bm−1x
m−1 + · · ·+ b0 from F [x]. Without

loss of generality, let us assume n ≥ m. Then we can write g(x) = bnx
n + bn−1x

n−1 + · · ·+ b0, where
bi = 0 for i > m. We define addition +F [x] and multiplication ×F [x] as follows:

f(x) +F [x] g(x) := cnx
n + cn−1x

n−1 + · · ·+ c0, where ci = ai + bi. (1.22)

And

f(x)×F [x] g(x) := dnx
n + dn−1x

n−1 + · · ·+ d0, where di =

i∑

j=0

ajbi−j . (1.23)

It is easy to show the following proposition.

Proposition 1.5.1. With the addition +F [x] and multiplication×F [x] defined in Equations 1.22 and 1.23,
(F [x],+F [x],×F [x]) is a commutative ring. It is called the polynomial ring over F .

The identity element for +F [x] is 0, the additive identity in F . The identity element for ×F [x] is 1,
the multiplicative identity in F . The additive inverse of a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

is given by
−f(x) = −anxn − an−1x

n−1 − · · · − a0,

where −ai is the additive inverse of ai in F . For simplicity, we will write f(x)g(x) and f(x) + g(x)
instead of f(x)×F [x] g(x) and f(x) +F [x] g(x).

Example 1.5.2. Let F = R, R[x] is a ring. The identity element for multiplication is 1. The identity
element for addition is 0. Take f(x) = x+ 1, g(x) = x in R[x],

f(x) + g(x) = 2x+ 1, f(x)g(x) = x2 + x.

The additive inverse of f(x) is
−x− 1.

Lemma 1.5.1. For any f(x), g(x) ∈ F [x], such that f(x) ̸= 0, g(x) ̸= 0, we have

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

Proof. Let m = deg(f(x)) and n = deg(g(x)). Then we can write

f(x) =
m∑

i=0

aix
i, g(x) =

n∑

j=0

bjx
j , where am ̸= 0, bn ̸= 0.

By Equation 1.23, f(x)g(x) = d(x), where the highest power of x in d(x) is m+n and its coefficient is
ambn ̸= 0. We have deg(d(x)) = m+ n.

Lemma 1.5.2. F [x] is an integral domain.

Proof. For any f(x), g(x) ∈ F [x], such that f(x) ̸= 0, g(x) ̸= 0, we have deg(f(x)) ≥ 0,deg(g(x)) ≥ 0.
By Lemma 1.5.1, deg(f(x)g(x)) ≥ 0, and hence f(x)g(x) ̸= 0.

Similar to Euclid’s algorithm (Theorem 1.1.2), we have the following theorem. The proof can be
found in e.g. [Her96, page 155].

Theorem 1.5.1 (Division Algorithm). For any f(x), g(x) ∈ F [x], of deg(f(x)) ≥ 1, there exists s(x), r(x) ∈
F [x] such that deg(r(x)) < deg(f(x)) and

g(x) = s(x)f(x) + r(x).

r(x) is called the remainder, and s(x) is called the quotient.

34

Definition 1.5.2. Let f(x), g(x) ∈ F [x], if f(x) ̸= 0 and g(x) = s(x)f(x) for some s(x) ∈ F [x], then we
say f(x) divides g(x), written f(x)|g(x).

Example 1.5.3. Let F = F5. Take g(x) = 4x5 + x3, f(x) = x3 ∈ F5[x], then

g(x) = f(x)(4x2 + 1)

and f(x)|g(x).

Definition 1.5.3. A polynomial f(x) ∈ F [x] of positive degree is said to be reducible (over F) if there
exist g(x), h(x) ∈ F [x] such that

deg(g(x)) < deg(f(x)), deg(h(x)) < deg(f(x)), and f(x) = g(x)h(x).

Otherwise, it is said to be irreducible (over F).

It is easy to show the following lemma from the above definitions.

Lemma 1.5.3. A polynomial f(x) ∈ F [x] of degree n is reducible over F if and only if it is divisible
by an irreducible polynomial of degree at most ⌊n/2⌋.

Remark 1.5.1. • f(x) ∈ F [x] of degree 2 or 3 is reducible over F if and only if it has a root in F .4

• Let f(x) =
∑n

i=0 aix
i ∈ F [x]. Then f(0) = a0. Thus f(x) is reducible if a0 = 0.

• Let f(x) =
∑n

i=0 aix
i ∈ F2[x]. Then f(1) =

∑n
i=0 ai. If |{ ai | ai ̸= 0 }| is even, then f(1) = 0

and f(x) is reducible over F2. In other words, any f(x) ∈ F2[x] with an even number of nonzero
terms is reducible over F2.

Example 1.5.4. • h(x) = 4x5+x3 ∈ F3[x] has degree 5 and it is reducible since h(x) = x3(4x2+1).

• g(x) = x2 ∈ F2[x] has degree 2 and it is reducible, g(x) = x · x.

Example 1.5.5. Let F = F2.

• All the polynomials of degree 2 are x2, x2 + 1, x2 + x + 1, x2 + x. By Remark 1.5.1, the only
irreducible polynomial of degree 2 is x2 + x+ 1.

• All the degree 3 polynomials with an odd number of nonzero terms are x3, x3+x+1, x3+x2+
1, x3 + x2 + x. Among those, the polynomials with a0 ̸= 0 are the irreducible polynomials of
degree 3:

x3 + x+ 1, x3 + x2 + 1.

• Degree 4 polynomials with a0 ̸= 0 and an odd number of nonzero terms are

x4 + x+ 1, x4 + x2 + 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

By our choice, they are not divisible by degree 1 polynomials. By Lemma 1.5.3, any of them is
reducible if and only if it is divisible by x2 + x + 1, which can be verified using the Division
Algorithm (Theorem 1.5.1). For example,

x4 + x+ 1 = x2(x2 + x+ 1) + (x3 + x+ x2 + 1)

is not divisible by x2 + x+ 1. And

x4 + x2 + 1 = (x2 + x+ 1)(x2 + x+ 1)

is divisible by x2 + x+ 1.

Finally, we have all the degree 4 irreducible polynomials over F2:

x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

4An element a ∈ F is a root of f(x) if f(a) = 0.

35

We note that there are many analogies between a polynomial ring F [x] and the ring of integers
Z. For example, a polynomial f(x) corresponds to an integer n. An irreducible polynomial p(x)
corresponds to a prime p.

For the rest of the section, let us fix a polynomial f(x) ∈ F [x] such that f(x) ̸= 0. Same as in
Equation 1.11, we define a relation ∼ on F [x] as follows:

g(x) ∼ h(x) if f(x) | (g(x)− h(x)).

We have shown that the relation in Equation 1.11 is an equivalence relation on Z, and a similar
proof shows that ∼ is an equivalence relation on F [x]. We can also define congruence in F [x] (cf.
Definition 1.4.2).

Definition 1.5.4. For any g(x), h(x) ∈ F [x], if g(x) ∼ h(x), i.e. f(x)|(g(x) − h(x)), we say h(x) is
congruent to g(x) modulo f(x), written g(x) ≡ h(x) mod f(x).

The congruence class of g(x) modulo f(x) is given by

{ h(x) | h(x) ≡ g(x) mod f(x) } .

Similar proofs for Lemma 1.4.1 can be applied to prove the following lemma.

Lemma 1.5.4. Suppose f(x) has degree n, where n ≥ 1. Let F [x]/(f(x)) denote the set of all congru-
ence classes of g(x) ∈ F [x] modulo f(x). Then

F [x]/(f(x)) =

{
n−1∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F for 0 ≤ i < n

}

can be identified with the set of all polynomials of degree less than n.

Example 1.5.6. Let f(x) = x2 + x+ 1 ∈ F2[x]. By Lemma 1.5.4,

F2[x]/(f(x)) = { 1, x, x+ 1 } .

Similarly, let g(x) = x2 ∈ F2[x]. Then

F2[x]/(g(x)) = { 1, x, x+ 1 } .

We can see that F2[x]/(f(x)) and F2[x]/(g(x)) contain equivalent classes generated by the same poly-
nomials.

Naturally, for any g(x), h(x) ∈ F [x]/(f(x)), same as in Equations 1.12 and 1.13, addition and
multiplication in F [x]/(f(x)) are computed modulo f(x).

Example 1.5.7. Let f(x) ∈ F2[x] be a polynomial of degree n. For any

g(x) =

n−1∑

i=0

aix
i, h(x) =

n−1∑

i=0

bix
i

from F2[x]/(f(x)), we have

g(x) + h(x) mod f(x) =

n−1∑

i=0

cix
i, where ci = ai + bi mod 2.

Thus the addition computations in F2[x]/(f(x)) are the same for all f(x) of the same degree.

Example 1.5.8. Let F = F2, f(x) = x2 + x + 1 ∈ F2[x], g(x) = x ∈ F2[x]/(f(x)), and h(x) = x ∈
F2[x]/(f(x)). We have

g(x) + h(x) mod f(x) = x+ x mod f(x) = 0,
g(x)h(x) mod f(x) = x2 mod f(x) = x+ 1.

36

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 1.2: Addition and multiplication in F2[x]/(f(x)), where f(x) = x2 + x+ 1.

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x 0 x

x+ 1 0 x+ 1 x 1

Table 1.3: Addition and multiplication in F2[x]/(g(x)), where g(x) = x2.

Example 1.5.9. Let f(x) = x2 + x + 1, g(x) = x2 ∈ F2[x]. The addition and multiplication computa-
tions in F2[x]/(f(x)) and F2[x]/(g(x)) are shown in Tables 1.2 and 1.3 respectively. We note that the
addition computations for F2[x]/(f(x)) and F2[x]/(g(x)) are the same as discussed in Example 1.5.7.

We also have the notion of the greatest common divisors between two nonzero polynomials in
F [x] (cf. Definition 1.1.5). Then, for any g(x) ∈ F [x], modified version of the Euclidean algo-
rithm (Algorithm 1.1) can be applied to find the greatest common divisor for g(x) and f(x), denoted
gcd(g(x), f(x)). Similarly the extended Euclidean algorithm (Algorithm 1.2) can be applied to find
the inverse of g(x) modulo f(x) when gcd(f(x), g(x)) = 1. More details are presented in [LX04,
Section 3.2].

Example 1.5.10. Let F = F2 and f(x) = x2 + x+ 1, g(x) = x ∈ F2[x]. By the Euclidean algorithm, we
have

f(x) = (x+ 1)g(x) + 1, gcd(g(x), f(x)) = gcd(g(x), 1) = 1.

By the extended Euclidean algorithm,

1 = g(x)(x+ 1) + f(x).

We have g(x)−1 mod f(x) = x+ 1.

Example 1.5.11. Let F = F2 and f(x) = x2 + x + 1, g(x) = x2 ∈ F2[x]. By the Euclidean algorithm,
we have

f(x) = g(x) + (x+ 1), gcd(g(x), f(x)) = gcd(g(x), (x+ 1)),
g(x) = (x+ 1)(x+ 1) + 1, gcd(g(x), (x+ 1)) = 1.

By the extended Euclidean algorithm,

1 = g(x) + (x+ 1)(x+ 1) = g(x) + (x+ 1)(f(x) + g(x)) = g(x)x+ (x+ 1)f(x).

And g(x)−1 mod f(x) = x.

Similar proofs for Theorem 1.4.2 and Corollary 1.4.1 can be applied to show the following theo-
rem.

Theorem 1.5.2. Together with addition and multiplication modulo f(x), F [x]/(f(x)) is a commuta-
tive ring. It is a field if and only if f(x) is irreducible.

Example 1.5.12. Let F = R. By Remark 1.5.1, f(x) = x2 + 1 is irreducible over R. By Theorem 1.5.2,
R/(f(x)) is a field. By Lemma 1.5.4,

R/(f(x)) = { a+ bx | a, b ∈ R } .

Recall that
C = { a+ bi | a, b ∈ R } .

It is easy to see that R/(f(x)) ∼= C by mapping x to i (see Definition 1.2.16).

37

Example 1.5.13. In Examples 1.5.4 and 1.5.5 we have shown that g(x) = x2 is reducible and f(x) =
x2 + x+ 1 is irreducible over F2.

By Theorem 1.5.2, F2/(g(x)) is not a field and F2/(f(x)) is a field. Indeed, in Examples 1.5.6
and 1.5.9, we have seen that even though F2[x]/(f(x)) and F2[x]/(g(x)) contain equivalent classes
generated by the same elements, the multiplication computations are different in those two rings. In
particular, x is a zero divisor in F2/(g(x)) (Table 1.3), but has inverse x+ 1 in F2/(f(x)) (Table 1.2).

We have discussed that there is only one finite field up to isomorphism (Theorem 1.2.3). The
following theorem specifies the field structures for F [x]/(f(x)) when F = Fp, where p is a prime.

Theorem 1.5.3. Let p be a prime, and let f(x) ∈ Fp[x] be an irreducible polynomial of deg(f(x)) = n.
Then Fp[x]/(f(x)) ∼= Fpn .

Proof. By Lemma 1.5.4,

Fp[x]/(f(x)) =

{
n−1∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Fp for 0 ≤ i < n

}
.

There are p choices for each of the n ais. Hence the cardinality of Fp[x]/(f(x)) is pn. The result follows
from Theorem 1.2.3.

Example 1.5.14. Let f(x) = x2 + x+ 1 ∈ F2[x], by Theorem 1.5.3, F2[x]/(f(x)) ∼= F22 .

1.5.1 Bytes

Throughout this subsection, let f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x].
It can be shown that f(x) is irreducible over F2 using Lemma 1.5.3 and Example 1.5.5. Then by

Lemma 1.5.4,

F2[x]/(f(x)) =

{
7∑

i=0

bix
i

∣∣∣∣∣ bi ∈ F2 ∀i
}
.

By Theorem 1.5.3, F2[x]/(f(x)) ∼= F28 .
We note that any

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 ∈ F2[x]/(f(x))

can be stored as a byte b7b6b5b4b3b2b1b0 ∈ F8
2 (see Definition 1.3.7), which represents an integer be-

tween 0 (0016) and 255 (FF16) (see Remark 1.3.3). There are 256 different values for a byte, and
|F28 | = 28 = 256. Then φ defined as follows

φ : F2[x]/(f(x)) → F8
2

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 7→ b7b6b5b4b3b2b1b0

is a bijective function. Thus, with addition and multiplication modulo f(x) in F2[x]/(f(x)), we can
define the corresponding addition and multiplication between bytes.

Definition 1.5.5. For any two bytes v = v7v6 . . . v1v0 and w = w7w6 . . . w1w0, let gv(x) = v7x
7 +

v6x
6 + · · · + v1x + v0 and gw(x) = w7x

7 + w6x
6 + · · · + w1x + w0 be the corresponding polynomials

in F2[x]/(f(x)). We define

v +w = gv(x) + gw(x) mod f(x), v ×w = gv(x)gw(x) mod f(x).

In particular, by Example 1.5.7,

v +w = c7c6 . . . c1c0, where ci = vi + wi mod 2.

Remark 1.5.2. Recall that a byte is also a vector in F8
2, we have defined vector addition as bitwise XOR

(see Definition 1.3.6), and

v +F8
2
w = u7u6 . . . u1u0, where ui = vi ⊕ wi.

We note that a + b mod 2 = a ⊕ b for a, b ∈ F2. Thus, our definition of addition between two bytes
(Definition 1.5.5) agrees with the vector addition between two vectors in F8

2.

38

Example 1.5.15. Take x6 + x4 + x2 + x + 1 ∈ F2[x]/(f(x)), which corresponds to 010101112 = 5716.
And x7 + x+ 1 ∈ F2[x]/(f(x)), which corresponds to 100000112 = 8316. We have

5716 + 8316 = (x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) mod f(x)

= x7 + x6 + x4 + x2 mod f(x) = 110101002 = D416.

We note that
010101112 ⊕ 100000112 = 110101002.

For multiplication, we compute

(x6 + x4 + x2 + x+ 1)(x7 + x+ 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1,

and

x8 = x4 + x3 + x+ 1 mod f(x),

x9 = x5 + x4 + x2 + x mod f(x),

x11 = x7 + x6 + x4 + x3 mod f(x),

x13 = x9 + x8 + x6 + x5 mod f(x).

Thus

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 = x11 + x4 + x3 + 1 = x7 + x6 + 1 mod f(x),

which gives
5716 × 8316 = 110000012 = C116.

Example 1.5.16. In this example, we would like to compute the formula for a byte multiplied by
0216 = x. Take any g(x) = b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x)),

g(x)x mod f(x)

= (b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0)x mod f(x)

= b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x mod f(x)

= b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x+ b7x
4 + b7x

3 + b7x+ b7 mod f(x)

= b6x
7 + b5x

6 + b4x
5 + (b3 + b7)x

4 + (b2 + b7)x
3 + b1x

2 + (b0 + b7)x+ b7 mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0216 is equivalent to left shift by 1 and XOR with
000110112 = 1B16 if b7 = 1.

Example 1.5.17. • 5716 = 010101112, 0216 × 5716 = 10101110 = AE16.

• 8316 = 100000112, 0216 × 8316 = 000001102 ⊕ 000110112 = 000111012 = 1D16.

• D416 = 110101002, 0216 × D416 = 101010002 ⊕ 000110112 = 101100112 = B316.

Example 1.5.18. Now, let us compute the multiplication of a byte by 0316 = x + 1. Take any h(x) =
b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x)),

h(x)(x+ 1) mod f(x) = h(x)x+ h(x) mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0316 is equivalent to first multiplying by 0216 (left
shift by 1 and XOR with 000110112 = 1B16 if b7 = 1) and then XOR with the byte itself (b7b6 . . . b1b0).

Example 1.5.19. Continuing Example 1.5.17,

• 0316 × 5716 = AE16 ⊕ 5716 = F916.

• 0316 × 8316 = 1D16 ⊕ 8316 = 9E16.

• 0316 × D416 = B316 ⊕ D416 = 6716.

39

Example 1.5.20. 0316 × BF16 = 011111102 ⊕ 000110112 ⊕ 101111112 = 110110102 = DA16

We can also compute the inverse of elements in F2[x]/(f(x)) using the extended Euclidean al-
gorithm (Algorithm 1.2) as in Example 1.5.10. Thus, enabling us to find the inverse of a byte as an
element in F2[x]/(f(x)).

Example 1.5.21. 0316 = 000000112 = x+ 1. By the Euclidean algorithm (Algorithm 1.1),

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x) + 1 =⇒ gcd(f(x), (x+ 1)) = 1.

See also Appendix B for the computation.
By the extended Euclidean algorithm,

1 = f(x)− (x+ 1)(x7 + x6 + x5 + x4 + x2 + x).

We have

03−1
16 = (x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 + x2 + x = 111101102 = F616.

1.6 Coding Theory

In this section, we give a brief discussion on binary codes, which will be useful for the design of
countermeasures against side-channel attacks (Section 4.5.1.1) and fault attacks (Section 5.2.1).

Let n be a positive integer in the rest of this section. To study binary codes, we look at the vector
space Fn

2 and we refer to vectors in Fn
2 as words of length n.

Definition 1.6.1. • w = w0w1 . . . wn−1 ∈ Fn
2 is called a binary word of length n.

• A nonempty set C ⊂ Fn
2 is called a binary code of length n.

• An element of a binary code C is called a codeword of C.

• Cardinality of C is called the size of C.

• A code of length n and size M is called a binary (n,M)−code.

Example 1.6.1. • C = { 00, 11 } is a binary (2, 2)−code.

• C = { 010, 001, 110, 111 } is a binary (3, 4)−code.

Definition 1.6.2. For any v, u ∈ Fn
2 , the Hamming distance between v and u, denoted dis (v,u), is

defined as follows

dis (v,u) =
n−1∑

i=0

dis (vi, ui) , where dis (vi, ui) =

{
1 if vi ̸= ui

0 if vi = ui
. (1.24)

Example 1.6.2. dis (001, 111) = 2. dis (00000, 10101) = 3

Lemma 1.6.1. For any v, u, w ∈ Fn
2 , we have

1. 0 ≤ dis (v,u) ≤ n.

2. dis (v,u) = 0 if and only if v = u.

3. dis (v,u) = dis (u,v).

4. dis (v,w) ≤ dis (v,u) + dis (u,w) (triangle inequality).

Proof. (1)-(3) are easy to see. We provide the proof for (4). By Equation 1.24, it suffices to consider
n = 1. Take any v, w, u ∈ F2.

If v = w,
dis (w,w) = 0 ≤ dis (v, u) + dis (u,w) .

If v ̸= w, dis (v, w) = 1, and dis (v, u) = 1 or dis (u,w) = 1.

40

Definition 1.6.3. Let C ⊂ Fn
2 be a binary code containing at least two codewords, the (minimum)

distance, denoted dis (C), is given by

dis (C) = min { dis (c1, c2) | c1, c2 ∈ C, c1 ̸= c2 } .

Definition 1.6.4. A binary code of length n, size M and distance d is called a binary (n,M, d)−code.

Example 1.6.3. Let C = { 0011, 1101, 1000 }, we can calculate that

dis (0011, 1101) = 3, dis (0011, 1000) = 3, dis (1101, 1000) = 2.

Thus C is a binary (4, 3, 2)−code

Recall that when the value of a bit is changed we say that the bit is flipped (Definition 1.2.17).

Definition 1.6.5. A binary code C is said to be k−error-detecting for a positive integer k if for any
c ∈ C, whenever at least 1 but at most k bits of c are flipped, the resulting word is not a codeword in
C. If C is k− error detecting but not (k+1)−error detecting, then we say C is exactly k−error detecting.

Example 1.6.4. Let C = { 0011, 1101, 1000 }. Since

dis (0011, 1101) = dis (0011, 1000) = 3, dis (1101, 1000) = 2,

with 1−bit flip from any codeword, we cannot get another codeword. But with 2−bit flips, we can
change 1101 to 1000. Thus C is exactly 1−error detecting.

Theorem 1.6.1. A binary (n,M, d)−code C is k−error detecting if and only if d ≥ k + 1, i.e. C is an
exactly (d− 1)−error detecting code.

Proof. ⇐= If d ≥ k + 1, take c ∈ C and x ∈ Fn
2 such that 1 ≤ dis (c,x) ≤ k. Then x ̸∈ C, and C is

k−error detecting.
=⇒ If d < k + 1, take c1, c2 ∈ C such that dis (c1, c2) = d. Flipping d bits of c1 we can get c2 ∈ C.

Hence C is not k−error detecting.

Let us consider binary (n,M, d)−codes with M = 2k for some positive integer k. When a binary
code is used for transmitting information, every information word u ∈ Fk

2 is assigned a unique
codeword c(u) ∈ C. We say that u is encoded as c(u). Suppose Alice would like to send information
u to Bob using C. Alice sends codeword c(u) to Bob. Due to transmission noise, Bob might receive a
word x ∈ Fn

2 not equal to c(u). Thus we need to define a decoding rule for Bob that allows him to find
u given x.

We are interested in a minimum distance decoding rule, which specifies that after receiving x, Bob
computes

cx = argmin
c
{ dis (x, c) | c ∈ C } , i.e. dis (cx,x) = min

c
{ dis (x, c) | c ∈ C } .

If more than one codeword is identified as cx, there are two options. An incomplete decoding rule says
that Bob should request Alice for another transmission. Following a complete decoding rule, Bob would
then randomly select one codeword.

Example 1.6.5. Let C = { 0000, 0111, 1110, 1111 }. We use C to encode information words u ∈ F2
2

with encoding designed as follows:

c(00) = 0000, c(01) = 0111, c(10) = 1110, c(11) = 1111.

Suppose Alice was sending information 00 with codeword 0000 to Bob. Due to an error during
the transmission, Bob received 0001. By the minimum distance decoding rule, Bob computes the
distances between 0001 and codewords in C.

dis (0001, 0000) = 1, dis (0001, 0111) = 2, dis (0001, 1110) = 4, dis (0001, 1111) = 3

Thus c0001 = 0000 and Bob gets the correct information 00.

41

Definition 1.6.6. A binary code C is said to be k−error correcting if minimum distance decoding
outputs the correct codeword when k or fewer bits are flipped. If C is k−error correcting but not
k + 1−error correcting, then we say that C is exactly k-error correcting.

Example 1.6.6. Let C = { 000, 111 }.

• If 000 was sent and 1 bit flip occurred, the received word { 001, 010, 100 } will be decoded to
000.

• If 111 was sent and 1 bit flip occurred, the received word { 110, 011, 101 } will be decoded to
111.

• If 000 was sent and 011 was received, the decoding result will be 111.

Thus C is exactly 1−error correcting.

Theorem 1.6.2. A binary (n,M, d)−code C is k−error correcting if and only if d ≥ 2k+ 1, i.e. C is an
exactly ⌊(d− 1)/2⌋−error correcting code.

Proof. ⇐= We assume d ≥ 2k+1. Suppose c was sent, v was received, and k or fewer bit flip occurred,
i.e. dis (c,v) ≤ k. For any codeword c′ ∈ C different from c,

dis
(
v, c′

)
≥ dis

(
c, c′

)
− dis (v, c) ≥ 2k + 1− k = k + 1 > dis (v, c) .

Thus C is k−error correcting.
=⇒ Now suppose C is k−error correcting and d < 2k + 1. Take c, c′ ∈ C such that dis (c, c′) = d.

By definition, C is also k−error detecting. By Theorem 1.6.1, dis (c, c′) = d ≥ k + 1. Without loss of
generality, assume c and c′ differ in the first d bits.

Define v ∈ Fn
2 as

vi =





ci 0 ≤ i < k

c′i k ≤ i < d

ci = c′i k ≥ d

.

Then
dis
(
v, c′

)
= d− k ≤ k = dis (v, c) .

If c is sent and v is received, minimum distance decoding cannot uniquely decode v to c.

Definition 1.6.7. Let C ⊆ Fn
2 be a binary code. C is said to be linear if it is a vector space over F2.

Otherwise, it is said to be nonlinear.

In other words, a binary linear code C is a subspace of Fn
2 (see Definitions 1.3.5 and 1.3.8).

Remark 1.6.1. By Remark 1.3.4, to show a binary code C is linear, we need to prove that 0 ∈ C and
for any c, c′ ∈ C, c+ c′ ∈ C.

We have defined dimensions for vector spaces in Definition 1.3.13.

Definition 1.6.8. The dimension of a binary linear code C is given by dim(C)F2 , the dimension of C
as a vector space over F2. A binary linear code C of length n and dimension k is called a binary
[n, k]−linear code. If C has distance d, then it is called a binary [n, k, d]−linear code.

By Lemma 1.3.3, we can calculate the size of a linear code C using its dimension, |C| = 2dim(C)F2 .
Thus a binary [n, k]−linear code is also a binary (n, 2k)−code (see Definition 1.6.1).

Example 1.6.7. • Let C = { 00, 11, 01, 10 } = F2
2, then dim(C)F2 = 2 and C is a binary [2, 2, 1]−linear

code.

• Let C = ⟨111⟩ = { 000, 111 }, then { 111 } is a basis for C and dim(C)F2 = 1. C is a binary
[3, 1, 3]−linear code.

42

Example 1.6.8 (Repetition code). Let

C = ⟨11 . . . 11⟩ = { 00 . . . 00, 11 . . . 11 } ⊆ Fn
2 .

Then { 11 . . . 11 } is a basis for C and C is a binary [n, 1, n]−linear code. C is called the binary
n−repetition code. By Theorems 1.6.1 and 1.6.2, C is exactly (n − 1)−error detecting and exactly
⌊(n− 1)/2⌋−error correcting.

Example 1.6.9 (Parity-check code). Suppose we would like to encode information words

u = (u0, u1, . . . , un−2) ∈ Fn−1
2 .

We add one parity-check bit and encode u using

c = (u0, u1, . . . , un−2, cn−1), where cn−1 =
n−2∑

i=0

ui.

The corresponding code C consists of codewords that have an even number of 1s.

C =

{
(c0, c1, . . . , cn−2, cn−1)

∣∣∣∣∣ cn−1 =

n−2∑

i=0

ci

}
⊆ Fn

2 . (1.25)

It is easy to see that 0 ∈ C. Take v = (v0, v1, . . . , vn−1),w = (w0, w1, . . . , wn−1) from C, then

v +w = (v0 + w0, v1 + w1, . . . , vn−1 + wn−1), vn−1 + wn−1 =

n−2∑

i=0

vi +

n−2∑

i=0

wi =

n−2∑

i=0

(vi + wi).

We have v +w ∈ C. By Remark 1.6.1, C is a linear code.
C is called the binary parity-check code of length n. By Equation 1.25, the vectors vi (0 ≤ i ≤ n− 1),

where vij = 0 for j ̸= i and vii = 1, form a basis for C. Thus, dim(C) = n− 1. Furthermore, we note
that the minimum distance between the first n − 1 bits of codewords in C is 1. The parity-check bit
for two codewords will be different if they differ only at one position in the first n− 1 bits. Thus, the
minimum distance of C is 2, and C is a binary [n, n− 1, 2]−linear code. By Theorems 1.6.1 and 1.6.2,
C is exactly 1−error detecting and cannot correct errors.

Definition 1.6.9. The dual code of a binary linear code C is the orthogonal complement of C, C⊥.

By Lemma 1.3.4, C⊥ is a binary linear code. It is easy to see that (C⊥)⊥ = C.

Example 1.6.10. Let C be a binary parity-check code of length n (see Example 1.6.9). Then c ∈ C⊥ if
and only if c · v = 0 ∀v ∈ C, i.e.

n−1∑

i=0

civi = 0⇐⇒
n−2∑

i=0

civi +

(
cn−1

n−2∑

i=0

vi

)
= 0⇐⇒

n−2∑

i=0

(ci + cn−1)vi = 0

for all vi = 0, 1(0 ≤ i ≤ n − 2), which is equivalent to ci = cn−1 for all 0 ≤ i ≤ n − 2. Thus
C⊥ = { 00 . . . 00, 11 . . . 11 } is the n−repetition code (see Example 1.6.8).

Example 1.6.11. Let C = { 000, 111 } be the binary 3−repetition code, then

C⊥ = { 000, 011, 101, 110 }

is the binary parity-check code of length 3.

Definition 1.6.10. Let v ∈ Fn
2 be a word, the Hamming weight of v, denoted by wt (v), is given by the

number of nonzero bits in v. Or equivalently,

wt (v) = dis (v,0) .

43

We note that when n = 1, wt (v) = 1 if v = 1 and wt (v) = 0 if v = 0. Then, for any v =
(v0, v1, . . . , vn−1) from Fn

2 ,

wt (v) =
n−1∑

i=0

wt (vi) . (1.26)

Lemma 1.6.2. For any u,v ∈ Fn
2 , dis (u,v) = wt (u+ v).

Proof. Take any u, v ∈ F2,

dis (u, v) =

{
0 if u = v

1 if u ̸= v, i.e. u+ v = 0
.

The lemma follows from Equation 1.26.

Example 1.6.12. Let u = (1, 0, 0, 1), v = (0, 1, 1, 1), then dis (u,v) = 3 and

wt (u+ v) = wt ((1, 1, 1, 0)) = 3.

Theorem 1.6.3. Let C be a binary linear code, define

wt (C) := min {wt (c) | c ∈ C, c ̸= 0 } .

Then dis (C) = wt (C).

Proof. Take v,u ∈ C, such that dis (v,u) = dis (C). By Lemma 1.6.2, wt (v + u) = dis (C). Since C is
a vector space, v + u ∈ C. We have dis (C) ≥ wt (C).

Now, take w ∈ C such that wt (C) = wt (w). We have

wt (C) = wt (w) = dis (w,0) ≥ dis (C) .

Definition 1.6.11. Let C be a binary liner code. A generator matrix for C is a matrix whose rows form
a basis for C. A parity-check matrix for C is a generator matrix for C⊥.

Example 1.6.13. Let C = { 000, 111 }, we know that C⊥ = { 000, 011, 101, 110 } (see Example 1.6.11).
Let

G =
(
1 1 1

)
, H =

(
0 1 1
1 0 1

)
.

Then G is a generator matrix for C and a parity-check matrix for C⊥. H is a generator matrix for C⊥

and a parity-check matrix for C.

Let C be a binary [n, k, d]−linear code. If G is a generator matrix for C and H is a parity-check
matrix for C, then HG⊤ = O, where O denotes a matrix with all entries equal to zero. Also, the size
of G is k × n.

Let { v1, . . . ,vk } be the rows of G. Then for any u = (u0, u1, . . . , uk−1) in Fk
2 ,

uG =
k−1∑

i=0

uivi ∈ C.

On the other hand, by Remark 1.3.5, any c ∈ C has a unique representation of the form

c =

k−1∑

i=0

uivi, where ui ∈ F2.

Thus, each u ∈ Fk
2 can be encoded as uG.

Example 1.6.14. It follows from Example 1.6.9 that the binary parity-check code of length n has
generator matrix (In−1 | 1), where 1 represents a column vector of length n− 1 with each entry equal
to 1.

44

• The binary parity-check code of length 2 is given by { 00, 11 }. It has a generator matrix (1 1).

• The binary parity-check code of length 3 is given by { 000, 011, 101, 110 }. It has a generator
matrix (

0 1 1
1 0 1

)
.

Theorem 1.6.4. Let C be a binary linear code with at least two codewords, and let H be a parity-check
matrix for C. Then dis (C) is given by d such that any d − 1 columns of H are linearly independent
and H has d columns that are linearly dependent.

Proof. Take v ∈ C such that v ̸= 0. By definition,

vH =
∑

i,vi ̸=0

vihi = 0,

where hi denotes the ith column of H . We can see that the columns hi, where vi ̸= 0, are linearly
dependent. Note that wt (v) = | { vi | vi ̸= 0 }|.

Thus, there exists v ∈ C such that wt (v) = d (i.e. dis (C) ≤ d) if and only if there are d columns
of H that are linearly dependent.

dis (C) ≥ d if and only if there is no v ∈ C such that wt (v) < d, which is equivalent to that any
d− 1 columns of H are linearly independent.

Example 1.6.15. Let C be the binary parity-check code of length n (see Example 1.6.9). We have dis-
cussed that C⊥ is the n−repetition code (see Example 1.6.10). Since C⊥ = ⟨11 . . . 11⟩, it has generator
matrix

H =
(
1 1 . . . 1

)
.

By definition, H is a parity-check matrix for C.
Any single column of H is linearly independent. H has two columns that are linearly dependent,

e.g. the first two columns. In fact, any two columns of H are linearly dependent. By Theorem 1.6.4,
dis (C) = 2, which agrees with our observation in Example 1.6.9.

Definition 1.6.12. Let C be a binary (n,M, d)−code. We define the maximum distance of C to be

maxdis(C) := max { dis (c1, c2) | c1, c2 ∈ C } .

If maxdis(C) = δ, C is called a binary (n,M, d, δ)−anticode.

The notion of anticode was first defined in [Far70], where an anticode refers to a 2−dimensional
array of bits such that the maximum Hamming distance between any pair of rows is at most δ, for
some integer δ > 0. In this original definition, repeated rows are allowed. In Definition 1.6.12, an
(n,M, d, δ)−anticode does not have repeated codewords.

We note that δ ≥ d. And any binary code is a binary anticode. However, the notion of binary
anticode captures the maximum distance of a code.

Example 1.6.16. • C = { 01, 10 } is a binary (2, 2, 2, 2)−anticode.

• C = { 001, 011, 111 } is a binary (3, 3, 1, 2)−anticode.

• An n−repetition code is a binary (n, 2, n, n)−anticode.

• A binary parity-check code of length n is a binary (n, 2n−1, 2, n)−anticode if n is even. And it is
a binary (n, 2n−1, 2, n− 1)−anticode if n is odd.

45

1.7 Probability Theory

This section aims to provide a rigorous introduction to probabilities, random variables, and distribu-
tions.

Probability theory studies the mathematical theory behind random experiments. A random ex-
periment is an experiment whose output cannot be predicted with certainty in advance. However, if
the experiment is repeated many times, we can see “regularity” in the average output. For example,
if we roll a die, we cannot predict the output of one roll. But if we roll it many times, we would
expect to see the number 1 in 1/6 of the outcomes assuming the die is fair.

For a given random experiment, we define sample space, denoted by Ω, to be the set of all possible
outcomes. A subset A of Ω is called an event. If the outcome of the experiment is contained in A, then
we say that A has occurred. The empty set ∅ denotes the event that consists of no outcomes. ∅ is also
called the impossible event.

Example 1.7.1. • When the random experiment is rolling a die, the sample space is

Ω = { 1, 2, 3, 4, 5, 6 } .

A = { 1, 2, 3 } ⊆ Ω is an event.

• When the random experiment is rolling two dice,

Ω = { (i, j) | 1 ≤ i, j ≤ 6 } .

One possible event is A = { (1, 2), (1, 1) }.
Recall that we have defined complement, unions, and intersections of sets in Section 1.1.1. Fix a

sample space Ω. Take two events, A and B. We say that A∪B occurs if either A or B occurs. Similarly,⋃n
i=1Ai occurs when at least one Ai occurs. A

⋂
B occurs if both A and B occur,

⋂m
i=1Ai occurs if

all of the events Ai occur. If A ∩ B = ∅, then A and B cannot both occur, they are called mutually
exclusive. The complement of A, Ac, contains events in Ω that are not in A.

1.7.1 σ−algebras

Let Ω be a set and let A denote a set of subsets of Ω. A is called a σ−algebra if it has the following
properties:

• Ω ∈ A.

• If A ∈ A, then Ac ∈ A.

• A is closed under finite unions and intersections: if A1, A2, . . . An ∈ A, then
⋃n

i=1Ai ∈ A and⋂n
i=1Ai ∈ A.

• A is closed under countable unions and intersections: if A1, A2, · · · ∈ A, then
⋃

i=1Ai ∈ A and⋂
i=1Ai ∈ A.

The pair (Ω,A) is called a measurable space, meaning that it is a space on which we can put a measure.

Example 1.7.2. • For any set Ω, A = { ∅,Ω } is a σ−algebra.

• For any set Ω, the power set A = 2Ω is a σ−algebra.

• Let us consider the random experiment to roll a die. We know Ω = { 1, 2, 3, 4, 5, 6 }. Then,

A = { ∅,Ω, { 1 } , { 2, 3, 4, 5, 6 } }

is a σ−algebra.

• If we toss a coin, Ω = {H,T }. And

A = 2Ω = { ∅,Ω, {H } , { T } }

is a σ−algebra.

46

Definition 1.7.1. Let d be a positive integer and Ω = Rd. Ω consists of vectors (x0, x1, . . . , xd−1),
where xi ∈ R (see Theorem 1.3.3). The smallest σ−algebra5 containing open sets in Ω is called the
Borel σ−algebra, denoted Rd. When d = 1, we write R. Any set B ∈ Rd is called a Borel set.

Example 1.7.3. Here we list some examples of Borel sets. Take any a, b, c ∈ R such that a < c < b.

• By definition, open sets (a, b) are Borel sets.

• Since a σ−algebra contains the complement of a set, closed sets [a, b] are also Borel sets.

• As (a, b] = (a, c) ∪ [c, b], and (a, c), [c, b] ∈ R, we have (a, b] ∈ R.

• Take a singleton set { a }, we have

{ a } =
∞⋂

n=1

(a− 1

n
, a+

1

n
).

Thus { a } is a Borel set.

• By definition, R is closed under countable unions, it follows that a set of integers is a Borel set.

1.7.2 Probabilities

Let Ω be a sample space and let (Ω,A) be a measurable space in this subsection.

Definition 1.7.2. A probability measure defined on a measurable space (Ω,A) is a function P : A →
[0, 1] such that

• P (Ω) = 1, P (∅) = 0.

• For any A1, A2, . . . ∈ A that are pairwise disjoint, i.e. Ai1 ∩Ai2 = ∅ for i1 ̸= i2,

P

(∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

This property is also called countable additivity.

P (A) is called the probability of A. (Ω,A, P) is called a probability space.

Example 1.7.4. Let us consider the random experiment of tossing a coin, the sample space Ω =
{H,T }. Let A = 2Ω = { ∅,Ω, {H } , { T } }. Define

P (∅) = 0, P (Ω) = 1, P ({H }) = 1

2
, P ({ T }) = 1

2
.

It is easy to see that P is a probability measure on (Ω,A).

Example 1.7.5. Let Ω be a countable set (finite or countably infinite). Let A = 2Ω. Then, any proba-
bility measure on (Ω,A) is a function such that for any A ∈ A,

P (A) =
∑

ω∈A
P ({ ω }), where P ({ ω }) ≥ 0 and

∑

ω∈Ω
P ({ ω }) = 1.

For the rest of this section, let (Ω,A, P) be a probability space.

Lemma 1.7.1. • For any Ai ∈ A, 0 ≤ i ≤ m, pairwise disjoint, we have

P

(
m⋃

i=1

Ai

)
=

m∑

i=1

P (Ai).

This property is also called finite additivity.

5It is easy to show that the intersection of σ−algebras is again a σ−algebra. Since 2Ω is a σ−algebra, it follows that the
smallest σ−algebra containing open sets exists.

47

• For any A,B ∈ A such that A ⊆ B, we have P (A) ≤ P (B).

Proof. Take Ai = ∅ for i > m, by countable additivity we have finite additivity.
Let C = B−A be the difference between B and A. By countable additivity of probability measure,

P (B) = P (A ∪ C) = P (A) + P (C).

By Definition 1.7.2, P (C) ≥ 0.

Definition 1.7.3. Let Ω be a finite set. Let A = 2Ω, the power set of Ω. A probability measure P on
(Ω,A) is called uniform if

P ({ ω }) = 1

|Ω| , ∀ω ∈ Ω.

We note that if P is a uniform probability measure on (Ω,A), then for any A ∈ A, P (A) = |A|
|Ω| .

Example 1.7.6. Let Ω = { 1, 2, 3, 4, 5, 6 } and A = 2Ω. The uniform probability measure on (Ω,A) is
given by P such that

P ({ i }) = 1

6
, for i ∈ Ω.

Let A = { 1, 2, 3 } , B = { 2, 4 }, then

P (A) =
3

6
=

1

2
, P (B) =

2

6
=

1

3
.

Take any A,B ∈ A such that P (B) > 0. We would like to compute the probability of A occurring
given the knowledge that B has occurred. We do not need to consider A ∩ Bc since B has already
occurred. Instead, we look at A ∩ B, which occurs when both A and B occur. This leads to the
definition of the conditional probability of A given B:

P (A|B) :=
P (A ∩B)

P (B)
, where P (B) > 0. (1.27)

Example 1.7.7. Continuing Example 1.7.6,

A ∩B = { 2 } , P (A ∩B) =
1

6
.

By Equation 1.27,

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/3
=

1

2
.

Definition 1.7.4. Two events A,B are said to be independent if P (A∩B) = P (A)P (B). Otherwise, we
say that they are dependent.

By Equation 1.27, when P (B) > 0, the condition P (A ∩B) = P (A)P (B) is equivalent to

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A). (1.28)

That is, the probability of A occurring given the knowledge that B has occurred is the same as the
probability of A occurring without the knowledge that B has occurred.

Example 1.7.8. Continuing Example 1.7.7,

P (A ∩B) =
1

6
, P (A)P (B) =

1

2
× 1

3
=

1

6
.

By Definition 1.7.4, A and B are independent. We also note that

P (A|B) = P (A) =
1

2
.

Next, we state a very useful theorem.

48

Theorem 1.7.1 (Bayes’ Theorem). If P (A) > 0 and P (B) > 0, then

P (B)P (A|B) = P (A)P (B|A).

Proof. By Equation 1.27, we have

P (B)P (A|B) = P (A ∩B), P (A)P (B|A) = P (A ∩B).

Definition 1.7.5. A set of events { E1, E2, . . . | Ei ∈ A }, is called a partition of Ω if

• they are pairwise disjoint;

• P (Ei) > 0 for all i;

• and ∪iEi = Ω.

If the set of events is finite, it is called a finite partition of Ω, otherwise, it is called a countable partition
of Ω.

Example 1.7.9. Let Ω = { 1, 2, 3, 4, 5, 6 }, A = 2Ω, and P be the uniform probability measure on (Ω,A)
(see Example 1.7.6). Let

E1 = { 1, 2, 3 } , E2 = { 4, 5 } , E3 = { 6 } .

Then, { E1, E2, E3 } is a finite partition of Ω. We can also calculate that

P (E1) =
1

2
, P (E2) =

1

3
, P (E3) =

1

6
.

Lemma 1.7.2. Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. Then, for any A ∈ A,
we have

P (A) =
∑

i

P (A|Ei)P (Ei).

Proof. First, we note that

A = A
⋂

Ω = A
⋂(⋃

i

Ei

)
=
⋃

i

(
A
⋂

Ei

)
.

Since Ei are pairwise disjoint, Ei ∩A are also pairwise disjoint. We have

P (A) = P

(⋃

i

(
A
⋂

Ei

))
=
∑

i

P
(
A
⋂

Ei

)
=
∑

i

P (A|Ei)P (Ei).

Example 1.7.10. Continuing Example 1.7.9, let A = { 2, 4 }, then

P (A) =
1

3
, A ∩ E1 = { 2 } , A ∩ E2 = { 4 } , A ∩ E3 = ∅.

By Equation 1.27,

P (A|E1) =
1/6

1/2
=

1

3
, P (A|E2) =

1/6

1/3
=

1

2
, P (A|E3) = 0.

Furthermore,
3∑

i=1

P (A|Ei)P (Ei) =
1

3
× 1

2
+

1

2
× 1

3
=

1

3
= P (A).

Now we can state a generalized version of Bayes’ Theorem (Theorem 1.7.1).

49

Theorem 1.7.2. Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. For any A ∈ A with
P (A) > 0 and any m ≥ 1, we have

P (Em|A) =
P (A|Em)P (Em)∑
i P (A|Ei)P (Ei)

.

Proof. By Bayes’ Theorem (Theorem 1.7.1),

P (Em|A) =
P (A|Em)P (Em)

P (A)
.

The result then follows from Lemma 1.7.2.

1.7.3 Random Variables

Let (Ω,A, P) be a probability space. A random variable X represents an unknown quantity that
varies with the outcome of a random experiment. Before the random experiment, we know all the
possible values X can take, but we do not know which one it will take until we see the outcome of
the experiment.

Definition 1.7.6. A random variable X is a function X : Ω→ R, such that

X−1(B) = { ω : X(ω) ∈ B } ∈ A, ∀B ∈ R,

where R is the Borel σ−algebra (see Definition 1.7.1).

Example 1.7.11. • Fix A ∈ A, the indicator function, denoted 1A, for A is defined as follows:

1A : A→ R, 1A(ω) =

{
1 ω ∈ A

0 ω ̸∈ A
.

1A is a random variable.

• Consider the probability space from Example 1.7.5, any function X : Ω → R is a random
variable. In such a case, X is called a discrete random variable.

• Let us consider the probability space discussed in Example 1.7.4. Define X : Ω → R such that
X(H) = 0, X(T) = 1. For any B ∈ R, X−1(B) is always a subset of Ω, which is contained in A.
And X is a discrete random variable.

Let X be a random variable, and define PX as follows:

PX : R → [0, 1]

B 7→ P (X−1(B)). (1.29)

It is easy to see that PX(R) = 1 and PX(∅) = 0. Take any Bi ∈ B that are pairwise disjoint. Then
X−1(Bi) are also pairwise disjoint since X is a function. The countable additivity of PX follows from
the countable additivity of P . Thus, PX is a probability measure on (R,R). We say that PX is induced
by X and it is called the distribution of X . The cumulative distribution function (CDF) of X , denoted F ,
is defined as

F : R → [0, 1]

x 7→ PX((−∞, x]) = P (X−1((−∞, x])) (1.30)

For simplicity, we will write P (X ∈ B) instead of P (X−1(B)) in Equation 1.29 and P (X ≤ x) instead
of P (X−1((−∞, x])) in Equation 1.30.

On the other hand, the next lemma says if we start from a function F with certain properties,
there always exists a random variable that has F as its CDF. The proof can be found in e.g. [Dur19,
page 9].

50

Lemma 1.7.3. If a function F satisfies the following conditions, then it is the distribution function of
some random variable.

• F is non-decreasing.

• lim
x→∞

F (x) = 1, lim
x→−∞

F (x) = 0.

• F is right continuous, i.e. lim
y↓x

F (y) = F (x).

When X is a discrete random variable (see Example 1.7.11), the distribution of X is completely
determined by the following numbers:

P (X = j) =
∑

ω:X(ω)=j

P ({ ω }).

Let T := X(Ω) be the image of Ω in R. The probability mass function (PMF) of X is defined to be the
function

pX : T → [0, 1]

x 7→ P (X = x).

We have the following relation between the PMF of X and the CDF of X :

F (a) =
∑

x≤a, x∈T
pX(x).

Example 1.7.12. Let us consider the probability space defined in Example 1.7.4. We have discussed
in Example 1.7.11 that

X : Ω→ R, X(H) = 0, X(T) = 1

is a discrete random variable. The image of X in R is T = { 0, 1 }. And the PMF of X is given by

pX(0) = P (X = 0) = P ({H }) = 1

2
, pX(1) = P (X = 1) = P ({ T }) = 1

2
.

When the distribution function F (x) = P (X ≤ x) has the form

F (x) =

∫ x

−∞
f(y)dy,

we say that X has probability density function (PDF) f and X is called a continuous random variable.

Example 1.7.13. Define f(x) = 1 for x ∈ (0, 1) and 0 otherwise.

F (x) =

∫ x

−∞
f(y)dy

is given by

F (x) =





0 x ≤ 0

x 0 ≤ x ≤ 1

1 x > 1

.

It is easy to show that F satisfies the conditions in Lemma 1.7.3. If X is a random variable that has F
as its CDF, then we say that X induces a uniform distribution on (0, 1).

Example 1.7.14. A random variable Z that induces a standard normal distribution has probability den-
sity function

f(z) =
1√
2π

exp

(
−z2

2

)
,

and cumulative distribution function

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−y2

2

)
dy.

51

−1 0 1

Figure 1.1: Probability density function of the standard normal random variable.

The standard normal distribution will be very useful in later parts of the book and we use Φ(z)
instead of F (z) to denote its CDF. Moreover, we say that Z is a standard normal random variable. Fig-
ure 1.1 shows that f(z) is a bell-shaped curve that is symmetric about 0. The symmetry is also
apparent from the formula for f(z).

Next, we would like to define expectations and variances for random variables. The exact formu-
las for discrete and continuous random variables are different, but the information carried by those
notions is the same. In particular, the expectation/mean of a random variable X is the expected average
value of X . And the variance of X is the average squared distance from the mean. By squaring the
distances, the small deviations from the mean are reduced and the big ones are enlarged. Thus the
variance measures how the values of X vary from the mean or how “spread out” the values of X are.

When X is a discrete random variable X : Ω→ R with PMF pX and T = X(Ω) (the image of Ω in
R) its expectation/mean is defined as

E [X] =
∑

x∈T
xpX(x), (1.31)

provided the sum exists.6

Example 1.7.15. Let us consider the discrete random variable discussed in Example 1.7.4 and Exam-
ple 1.7.12. By Equation 1.31,

E [X] = 0× pX(0) + 1× pX(1) = 0× 1

2
+ 1× 1

2
=

1

2
.

When X is a continuous random variable with PDF f , its expectation/mean is defined as

E [X] =

∫ ∞

−∞
xf(x)dx, (1.32)

provided the integral exists.

Example 1.7.16. Let X be a random variable that induces a uniform distribution on (0, 1) (see Exam-
ple 1.7.13), by Equation 1.32,

E [X] =

∫ ∞

−∞
xf(x)dx =

∫ 1

0
xdx =

x2

2

∣∣∣∣
1

0

=
1

2
.

Example 1.7.17. Let Z be a random variable that induces the standard normal distribution (see Ex-
ample 1.7.14), by Equation 1.32,

E [Z] =

∫ ∞

−∞
zf(z)dz =

1√
2π

∫ ∞

−∞
z exp

(
−z2

2

)
dz = 0.

As shown in Figure 1.1, f(x) is symmetric about 0, so it is not surprising that the expected average
value of Z is 0.

6For example, if Ω is finite, or if Ω is countable and the series converges absolutely, the sum exists.

52

Let g be a function g : R → R. Then g(X) is a also a random variable.7 It can be proven that if X
is a discrete random variable with PMF pX , then

E [g(X)] =
∑

x

g(x)pX(x).

If X is a continuous random variable with PDF f , then

E [g(X)] =

∫ ∞

−∞
g(x)f(x)dx.

The proof can be found in e.g. [Ros20, page 113].

Example 1.7.18. Define

g : R → R
x 7→ x2.

Then the expectation of g is given by

E
[
X2
]
=
∑

x

x2pX(x)

when X is a discrete random variable with PMF pX . And

E
[
X2
]
=

∫ ∞

−∞
x2f(x)dx

when X is a continuous random variable with PDF f(x).

Furthermore, given two random variables X,Y such that E [|X|] < ∞ and E [|Y |] < ∞, for any
a, b ∈ R,

E [X + Y] = E [X] + E [Y] , E [aX + b] = aE [X] + b, E [b] = b. (1.33)

The proof can be found in e.g. [Dur19, page 24]

Example 1.7.19. Let X be a random variable and let µ := E [X]. By Equation 1.33, we have

E
[
(X − µ)2

]
= E

[
X2
]
+ µ2 − 2E [Xµ] = E

[
X2
]
+ µ2 − 2µE [X]

= E
[
X2
]
+ µ2 − 2µ2

= E
[
X2
]
− µ2 (1.34)

Equation 1.34 provides the formula for computing the variance of a random variable X . More
specifically, let X be a random variable with mean E [X] = µ. If E

[
X2
]
<∞, then the variance of X is

given by
Var(X) = E

[
(X − µ)2

]
= E

[
X2
]
− µ2. (1.35)

Example 1.7.20. Let us consider the discrete random variable discussed in Example 1.7.4 and Exam-
ple 1.7.12. By Equation 1.35, Examples 1.7.15 and 1.7.18,

Var(X) = E[X2]− 1

22
=
∑

x

x2pX(x)− 1

4
= 0× pX(0) + 1× pX(1)− 1

4
=

1

2
− 1

4
=

1

4
.

Example 1.7.21. Let X be a continuous random variable that induces the uniform distribution on
(0, 1) (see Example 1.7.13), by Equation 1.35, Examples 1.7.16 and 1.7.18,

Var(X) =

∫ ∞

−∞
x2f(x)dx− E [X]2 =

∫ 1

0
x2dx− 1

22
=

x3

3

∣∣∣∣
1

0

− 1

4
=

1

12
.

7To be more precise, g should be a measurable function for g(X) to be a random variable. For the definition of measurable
functions, we refer the readers to [Yeh14, page 72].

53

µ− σ µ µ+ σ

Figure 1.2: Probability density function of a normal random variable.

Example 1.7.22. Let Z be a random variable that induces the standard normal distribution (see Ex-
amples 1.7.14), by Equation 1.35, Examples 1.7.17 and 1.7.18,

Var(Z) = E
[
Z2
]
− E [Z]2 =

∫ ∞

−∞
z2f(z)dz − 0 =

1√
2π

∫ ∞

−∞
z2 exp

(
−z2

2

)
dz = 1.

We write Z ∼ N(0, 1) to indicate that Z induces the standard normal distribution with mean 0 and
variance 1.

Given two random variables X,Y such that E [|X|] < ∞ and E [|Y |] < ∞. Take any a, b ∈ R, it
follows from Equation 1.33 that

Var(aX + b) = E
[
(aX + b− E [aX + b])2

]
= E

[
(aX + b− aE [X]− b)2

]

= a2E
[
(X − E [X])2

]
= a2Var(X). (1.36)

In particular, we have

Var(b) = 0, Var(X + b) = Var(X), Var(aX) = a2Var(X).

Example 1.7.23. Let Z ∼ N(0, 1) be a standard normal random variable. Take any σ, µ ∈ R with
σ2 > 0. Define Y = σZ + µ. Then by Equations 1.33 and 1.36,

E [Y] = µ, Var(Y) = σ2.

It can be shown (see e.g. [Dur19, page 28]) that Y has PDF

f(y) =
1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
. (1.37)

We say that Y induces a normal distribution with mean µ and variance σ2, written Y ∼ N(µ, σ2). Y is
also called normal/a normal random variable. We note that the mean and variance fully define a normal
distribution.

f(y) is a bell-shaped curve symmetric about µ and obtains its maximum value of

1

σ
√
2π
≈ 0.399

σ

at y = µ (see Figure 1.2).

Remark 1.7.1. On the other hand, if we let Y ∼ N(µ, σ) be a normal random variable, then

Z :=
Y − µ

σ

is a standard normal random variable (for proof, see [Dur19, exercise 1.2.5]).

54

Next, let us look at the relations between two random variables. First, similar to Definition 1.7.4,
we give the definition of independent random variables.

Definition 1.7.7. Given two random variables X : Ω→ R, Y : Ω→ R, they are said to be independent
if for any A,B ∈ R,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

If two random variables X : Ω→ R, Y : Ω→ R are independent, it can be proven that

E [XY] = E [X]E [Y] if E [|X|] <∞ and E [|Y |] <∞. (1.38)

The proof can be found in e.g. [Dur19, page 41].
To further analyze the relation between two random variables X and Y , we define the covariance

of X and Y to be
Cov(X,Y) = E [(X − µX)(Y − µY)] , (1.39)

where µX and µY denote expectations for X and Y respectively. It is easy to see that

Cov(X,Y) = Cov(Y,X), Cov(X,X) = Var(X).

In case E [|X|] <∞ and E [|Y |] <∞, by Equation 1.33, We have

Cov(X,Y) = E [XY − µXY − µY X + µxµY]

= E [XY]− µXµY − µY µX + µXµY = E [XY]− E [X]E [Y] . (1.40)

Definition 1.7.8. Let X and Y be two random variables. If Cov(X,Y) = 0, we say that X and Y are
uncorrelated. Otherwise, we say that X and Y are correlated.

Remark 1.7.2. By Equation 1.38, if X and Y are two independent random variables such that E [|X|] <
∞ and E [|Y |] <∞, then Cov(X,Y) = 0 and they are uncorrelated.

Let Z be another random variable such that E [|Z|] <∞, by Equation 1.38,

E [(X + Z)Y]− E [X + Z]E [Y] = E [XY] + E [ZY]− E [X]E [Y]− E [Z]E [Y] .

Thus,
Cov(X + Z, Y) = Cov(X,Y) + Cov(X,Z).

It can be easily generalized to show that

Cov

(
n∑

i=1

Xi, Y

)
=

n∑

i=1

Cov(Xi, Y),

where X1, X2, . . . , Xn are n random variables. Furthermore, by the symmetry of covariance (Cov(X,Y) =
Cov(Y,X)), we have

Cov




n∑

i=1

Xi,

m∑

j=1

Yj


 =

n∑

i=1

m∑

j=1

Cov(Xi, Yj),

where Y1, Y2, . . . , Ym are m random variables. Set m = n, Yj = Xi, we have

Var

(
n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi) +

n∑

i=1

n∑

j=1,j ̸=i

Cov(Xi, Xj).

If we further assume Xi are independent with E [|Xi|] <∞, by Remark 1.7.2,

Var

(
n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi). (1.41)

Recall that we have defined Borel σ−algebra for Rn (Definition1.7.1). Correspondingly, we can
define a random vector similar to Definition 1.7.6.

55

Definition 1.7.9. A random vector X is a function X : Ω→ Rd, such that

X−1(B) = { ω : X(ω) ∈ B } ∈ A,∀B ∈ Rd.

Note that a random variable is a random vector for the case d = 1.

Definition 1.7.10. A random vector X = (X1, X2, . . . , Xn) induces a Gaussian (or multivariate normal)
distribution if every linear combination

n∑

j=1

ajXj , aj ∈ R,

is a normal random variable. The mean vector of X is

µ = (µX1 , µX2 , . . . , µXn),

where µXi is the mean of Xi. The covariance matrix of X is given by the matrix Q with entries Qij =
Cov(Xi, Xj). When detQ ̸= 0, the probability density function for X is

f(x) =
1

(2π)
n
2
√
detQ

exp

(
−1

2
(x− µ)⊤Q−1(x− µ)

)
.

We write X ∼ N(µ, Q) and we say that X is Gaussian/a Gaussian random vector.

Example 1.7.24. If X1, . . . , Xn are pairwise independent random variables and each Xi ∼ N(µi, σ
2
i)

is normal, then X = (X1, X2, . . . , Xn) induces a Gaussian distribution with mean µ = (µ1. . . . , µn)
and covariance matrix Q a diagonal matrix with Qii = σ2

i (see [JP04, page 127] for a proof).

When we look at Gaussian random vectors, we have the following nice property for the compo-
nents of the random vector. The proof can be found in e.g. [JP04, page 128].

Theorem 1.7.3. Let X = (X1, X2, . . . , Xn) be a Gaussian random vector. Then the components Xi

are independent if and only if the covariance matrix Q of X is diagonal.

A direct corollary is as follows.

Corollary 1.7.1. Let X = (X1, X2, . . . , Xn) be a Gaussian random vector. Two components Xi and
Xj are independent if and only if they are uncorrelated.

Proof. Let Xi and Xj be any two components of X .
=⇒ If Xi and Xj are independent, by Theorem 1.7.3, Cov(Xi, Xj) = 0.
⇐= If Xi, Xj are uncorrelated, the random vector Y := (Xi, Xj) is Gaussian with a diagonal

covariance matrix (see Example 1.7.24). Again by Theorem 1.7.3, Xi and Xj are independent.

Corollary 1.7.2. Two normal random variables X and Y are independent if and only if they are
uncorrelated.

Definition 1.7.11. Let X and Y be two random variables with finite variances. The correlation coeffi-
cient of X and Y is given by

ρ =
Cov(X,Y)√

Var(X)Var(Y)
. (1.42)

It can be shown by the Cauchy-Schwarz inequality that −1 ≤ ρ ≤ 1 (see [JP04, p. 91]).
In general, the correlation coefficient is normally used to answer the question if large values of X

tend to be paired with large or small values of Y . For example, if when X is large (or small), Y is
also large (or small), then the signs of Xi −X and Yi − Y will tend to be the same. Or if when X is
large (or small), Y is small (or large), then the signs of Xi − X and Yi − Y will tend to be different.
In both cases, the absolute value of ρ will be big. On the other hand, in the special case when X and
Y are uncorrelated (Definition 1.7.8), their correlation coefficient ρ = 0. In particular, if X and Y are
independent, then ρ = 0 (see Remark 1.7.2).

56

As another example, suppose X has finite expectation and variance. For a, b ∈ R and a ̸= 0, if
Y = aX + b, then by Equations 1.33 and 1.36,

ρ =
Cov(X,Y)√

Var(X)Var(Y)
=

E [XY]− E [X]E [Y]√
Var(Y)Var(X)

=
E [X(aX + b)]− E [X]E [aX + b]√

Var(aX + b)Var(X)

=
E
[
aX2 + bX

]
− aE [X]2 − bE [X]√

a2Var(X)2
=

aE
[
X2
]
+ bE [X]− aE [X]2 − bE [X]

|a|Var(X)

=
aVar(X)

|a|Var(X)
=

a

|a| =
{
1 a > 0

−1 a < 0
.

1.8 Statistics

In this section, we will first discuss a few important distributions (Section 1.8.1). Then we will intro-
duce statistical methods for estimating the mean and variance of a normal distribution (Section 1.8.2)
which utilize properties of those important distributions. Those methods will provide more insights
into our analysis of device leakages in Section 4.2.3. Finally, we touch on some basics of hypothesis
testing (Section 1.8.3) which justifies leakage assessment methods that will be introduced in Sec-
tion 4.2.3.

We suggest the readers come back to this part later when they reach Chapter 4.

1.8.1 Important Distributions

Let Z denote a random variable that induces a standard normal distribution. We have discussed in
Example 1.7.14 that Z has probability density function

f(z) =
1√
2π

exp

(
−z2

2

)
,

and cumulative distribution function

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−y2

2

)
dy.

Furthermore, Z has expectation E [Z] = 0 (see Example 1.7.17) and variance Var(Z) = 1 (see Exam-
ple 1.7.22), we write Z ∼ N(0, 1).

Given any α ∈ (0, 1), we define zα such that

P (Z > zα) = 1− Φ(zα) = α, i.e. Φ(zα) = 1− α. (1.43)

Those zα values are useful for many applications and there are tables listing the values of Φ(z)
for small values of z (e.g. [Ros20, Table A1]). Given α, the approximated value of zα can be found by
examining such a table. In Table 1.4, we list a few values of zα with corresponding α, which will be
used later in the book.

α 0.1 0.05 0.01 0.005 0.001

1− α 0.900 0.950 0.990 0.995 0.999

zα 1.282 1.645 2.326 2.576 3.090

Table 1.4: Values of zα (see Equation 1.43) with corresponding α.

By definition, Φ(z) is the integral of f(z). As shown in Figure 1.3, α corresponds to the area under
f(z) for z > zα. Furthermore, since f(z) is symmetric about 0, we have

Φ(−zα) = P (Z < −zα) = P (Z > zα) = α,

and

P (−zα/2 < Z < zα/2) = P (Z > −zα/2)− P (Z > zα/2) = 1− P (Z ≤ −zα/2)−
α

2
= 1− α. (1.44)

Next, we look at χ2−distributions.

57

0 zα

Area is α

Figure 1.3: Probability density function f(z) for Z ∼ N(0, 1). P (Z > zα) = α, α corresponds to the
area under f(z) for z > zα.

Definition 1.8.1. Let Z1, Z2, . . . , Zn be independent standard normal random variables. Define

X =
n∑

i=1

Z2
i .

The distribution induced by X is called χ2−distribution with n degrees of freedom. We write X ∼ χ2
n.

Remark 1.8.1. We note that if X1 ∼ χ2
n1

, X2 ∼ χ2
n2

are independent, then X1 +X2 ∼ χ2
n1+n2

.

For example, when n = 8, the probability density function for X ∼ χ2
8 is shown in Figure 1.4.

Similarly to zα (Equation 1.43), for any α ∈ (0, 1), we define χ2
α,n to be the number such that

P (X ≥ χ2
α,n) = α. (1.45)

As shown in Figure 1.4, α corresponds to the area under the PDF of X for X ≥ χ2
α,n. We also have

P (χ2
1−α,n < X < χ2

α,n) = P (X ≥ χ2
1−α,n)− P (X ≥ χ2

α,n) = 1− 2α.

8 χ2
α,8

Area is α

Figure 1.4: Probability density function for X ∼ χ2
8. P (X ≥ χ2

α,8) = α.

Finally, we provide some details on t−distributions.

Definition 1.8.2. Let X ∼ χ2
n, Z ∼ N(0, 1) be two independent random variables. Define random

variable
Tn :=

Z√
X/n

.

The distribution induced by Tn is called a t−distribution with n degrees of freedom. We write Tn ∼ tn.

It can be shown (see [Ros20, page 189]) that the PDF of Tn is symmetric about 0. And when
n becomes larger, the PDF for Tn becomes more and more like that for a standard normal random
variable. Furthermore,

E[Tn] = 0 for n > 1, Var(Tn) =
n

n− 2
for n > 2.

58

0

Tn ∼ tn, n = 2

Tn ∼ tn, n = 5

Tn ∼ tn, n = 10

Z ∼ N (0, 1)

Figure 1.5: Probability density functions for Tn ∼ tn (n = 2, 5, 10) and for the standard normal
random variable Z.

For example, in Figure 1.5 we can see the PDF of Tn for n = 2, 5, 10 and for Z ∼ N(0, 1).
The same as for zα (Equation 1.43) and χα,n (Equation 1.45), given α ∈ (0, 1), we define tα,n such

that
P (Tn ≥ tα,n) = α. (1.46)

By symmetry of the PDF for Tn, we have

P (Tn ≤ −tα,n) = P (Tn ≥ tα,n) = α,

and
P (Tn ≥ −tα,n) = 1− P (Tn < −tα,n) = 1− α =⇒ t1−α,n = −tα,n.

An illustration is shown in Figure 1.6. We have

P (−tα,n ≤ T ≤ tα,n) = P (Tn ≥ −tα,n)− P (Tn > tα,n) = 1− 2α,

which gives
P (−tα/2,n ≤ T ≤ tα/2,n) = 1− α, (1.47)

or
P (|T | > tα/2,n) = α. (1.48)

The table of values of tα,n can be found in standard books for statistics, see e.g. [Ros20, Table A3].

Remark 1.8.2. For large values of n (n ≥ 30), tα,n can be approximated by zα (see Table 1.4).

−tα,5 = t1−α,5 0 tα

Area is αArea is α

Figure 1.6: Probability density function for T5, P (T5 ≥ tα,5) = α.

1.8.2 Estimating Mean and Difference of Means of Normal Distributions

In Section 1.7 we have discussed that a random experiment is an experiment whose output cannot
be predicted with certainty in advance. However, if the experiment is repeated many times, we can
see “regularity” in the average output. For a given random experiment, the sample space, denoted by
Ω, is the set of all possible outcomes.

In this subsection, we are interested in a random variable X : Ω → R (see Definition 1.7.6) that
induces a normal distribution. In particular, we assume X ∼ N(µx, σ

2
x) has mean µx and variance σ2

x.

59

We will first discuss how to estimate µx. To do so, we repeat the random experiment n times and
record the outcomes. Then the possible outcomes {X1, X2, . . . , Xn } are n independent identically
distributed random variables. We refer to this set as a sample. An actual outcome for Xi, denoted xi,
is called a realization of Xi.

The sample mean (empirical mean), denoted X , is given by

X :=
1

n

n∑

i=1

Xi. (1.49)

Remark 1.8.3. It can be shown that the sum of independent normal random variables induces a
normal distribution with mean (resp. variance) given by the sum of the means (resp. variances) of
each random variable (see e.g. [JP04, page 120], and also Equations 1.33 and 1.41).

Since each Xi ∼ N(µx, σ
2
x) are independent, together with Equations 1.33 and 1.41, we have

E
[
X
]
=

1

n

n∑

i=1

E [Xi] = µx, Var
(
X
)
=

1

n2

n∑

i=1

Var(Xi) =
σ2
x

n
.

By Remark 1.8.3,

X ∼ N

(
µx,

σ2
x

n

)
, (1.50)

i.e. the sample mean is a normal random variable with mean µx and variance σ2
x/n. It follows from

Remark 1.7.1 that
X − µx

σx/
√
n
∼ N(0, 1). (1.51)

Similarly, for i = 1, 2, . . . , n,
Xi − µx

σx
∼ N(0, 1). (1.52)

The sample variance (empirical variance), denoted S2
x, is given by

S2
x :=

1

n− 1

n∑

i=1

(Xi −X)2. (1.53)

We note that
n∑

i=1

(Xi − µx)
2 =

n∑

i=1

((Xi −X) + (X − µx))
2

= n(X − µx)
2 +

n∑

i=1

(Xi −X)2 + 2

n∑

i=1

(Xi −X)(X − µx)

= n(X − µx)
2 +

n∑

i=1

(Xi −X)2,

where
n∑

i=1

(Xi −X) = −nX +
n∑

i=1

Xi = 0.

Dividing by σ2
x, we get

n∑

i=1

(
Xi − µx

σx

)2

=

(√
n(X − µx)

σx

)2

+

∑n
i=1(Xi −X)2

σ2
x

. (1.54)

Since Xi are independent normal random variables, by Equation 1.52 and Definition 1.8.1, the left-
hand side of Equation 1.54 induces a χ2−distribution with n degrees of freedom. By Equation 1.51
and Definition 1.8.1, the first term of the right-hand side of Equation 1.54 induces a χ2−distribution

60

with 1 degree of freedom. By Remark 1.8.1, it is tempting to conclude that the two terms of the right-
hand side of Equation 1.54 are independent and the second term induces a χ2−distribution with n−1
degrees of freedom.

Such a result has indeed been proven. In particular, it was shown that [Ros20, page 216]8

Theorem 1.8.1. The sample mean X and sample variance S2
x are independent random variables.

Furthermore,
(n− 1)S2

x

σ2
x

∼ χ2
n−1. (1.55)

The above discussions give us the following useful result.

Lemma 1.8.1.
√
n
X − µx

Sx
∼ tn−1.

Proof. Since (see Equations 1.51 and 1.55)

X − µx

σx/
√
n
∼ N(0, 1),

(n− 1)S2
x

σ2
x

∼ χ2
n−1,

by Definition 1.8.2, √
n(X − µx)/σx√

S2
x/σ

2
x

=
√
n
X − µx

Sx
∼ tn−1.

Let Θ denote the subset of R that contains all possible values of µx. A point estimator of µx is a
function with domain Rn and codomain Θ that is used to estimate the value of µx. We use a point in
Θ for the estimation, hence the name point estimator.

Remark 1.8.4. For example, we can use the sample mean as a point estimator for µx. Similarly, we
can use the sample variance as a point estimator for σx (see Example 4.2.1).

Example 1.8.1 (Sample correlation coefficient). Suppose U and W are two random variables. Let
{(U1,W1), (U2,W2), . . . , (Un,Wn} be a sample for this pair of random variable (U,W). We further
denote the sample mean and sample variance for {U1, U2, . . . , Un} by U and S2

u. Similarly, the sample
mean and sample variance for {W1,W2, . . . ,Wn} are denoted by W and S2

w. Then, following Defini-
tion 1.7.11, we can define the sample correlation coefficient, denoted by r, as follows (see Equations 1.39
and 1.35):

r =
UW − U W√

S2
uS

2
w

=
1
n

∑n
i=1(Ui − U)(Wi −W)√(

1
n

∑n
i=1(Ui − U)2

) (
1
n

∑n
i=1(Wi −W)2

)

=

∑n
i=1(Ui − U)(Wi −W)√∑n

i=1(Ui − U)2
√∑n

i=1(Wi −W)2
. (1.56)

Then, the sample correlation coefficient can be used as a point estimator for the correlation coefficient
between U and W . We note that since the correlation coefficient analyzes the relations between U and
W , we collect samples in pairs (Ui,Wi).

However, we do not expect µx to be exactly equal to the sample mean. Thus, we would like to
specify an interval for which we have a certain degree of confidence that our parameter lies. We refer
to such an estimator as an interval estimator.

For the rest of this part, let α ∈ (0, 1) be a real number. We recall the definitions of zα and tα from
Equations 1.43 and 1.46 respectively.

8The results are only valid for a normal random variable X .

61

Interval estimator for µx with known variance. We first consider σ2
x to be known. By Equations 1.44

and 1.51,

P

(
−zα/2 <

X − µx

σx/
√
n

< zα/2

)
= 1− α,

which gives

P

(
X − zα/2

σx√
n
< µx < X + zα/2

σx√
n

)
= 1− α.

Thus, the probability that µx lies between X − zα/2
σx√
n

and X + zα/2
σx√
n

is 1− α. We say that

(
x− zα/2

σx√
n
, x+ zα/2

σx√
n

)
(1.57)

is a 100(1− α) percent confidence interval for µx, where x̄ is a realization of X .
We define the precision of our estimate, denoted by c, to be

c := zα/2
σx√
n
,

which is the length of half of the confidence interval. It measures how “close” is our estimate to µx.
Consequently, to have an estimate with precision c and 100(1− α) confidence, the number of data in
the sample should be at least (see Example 4.2.2)

n =
σ2
x

c2
z2α/2. (1.58)

Interval estimator for µx with unknown variance. In case the variance is unknown, by Lemma 1.8.1
and Equation 1.47, we have

P

(
−tα/2,n−1 ≤

√
n
X − µx

Sx
≤ tα/2,n−1

)
= 1− α,

which gives

P

(
X − tα/2,n−1

Sx√
n
≤ µx ≤ X + tα/2,n−1

Sx√
n

)
= 1− α.

Thus a 100(1− α) percent confidence interval for µx is given by (see Example 4.2.2)
(
x− tα/2,n−1

sx√
n
, x+ tα/2,n−1

sx√
n

)
. (1.59)

Similarly, we can define the precision

c := tα/2,n−1
s√
n
.

Then to have an estimate with precision c and 100(1− α) confidence, the number of data required in
the sample is given by

n =
s2x
c2

t2α/2,n−1.

By Remark 1.8.2, when n is large (≥ 30), tα,n is close to zα, and n can be estimated by (see Exam-
ple 4.2.2)

n ≈ s2x
c2

z2α/2. (1.60)

For the rest of this part, let Y be a normal random variable with mean µy and variance σ2
y that

is independent from X . Let { Y1, Y2, . . . , Ym } be a sample for Y with sample mean Y and sample
variance Sy. We are interested in estimating µx − µy.

We note that since X and Y are point estimators for µx and µy respectively, X − Y is a point
estimator for µx − µy.

62

Interval estimator for µx−µy with known variances. Suppose we know the values of σ2
x and σ2

y . By
Equation 1.50,

X ∼ N

(
µx,

σ2
x

n

)
, Y ∼ N

(
µy,

σ2
y

m

)
.

By Remark 1.8.3,

E
[
X − Y

]
= µx − µy, Var

(
X − Y

)
=

σ2
x

n
+

σ2
y

m
,

and

X − Y ∼ N

(
µx − µy,

σ2
x

n
+

σ2
y

m

)
=⇒ X − Y − (µx − µy)√

σ2
x
n +

σ2
y

m

∼ N(0, 1). (1.61)

By Equation 1.44, we have

P


−zα/2 <

X − Y − (µx − µy)√
σ2
x
n +

σ2
y

m

< zα/2


 = 1− α.

A 100(1− α) confidence interval estimate for µx − µy is then given by (see Example 4.2.3):

x− y − zα/2

√
σ2
x

n
+

σ2
y

m
, x− y + zα/2

√
σ2
x

n
+

σ2
y

m


 . (1.62)

The precision c is

c := zα/2

√
σ2
x

n
+

σ2
y

m
.

If m = n, to have an estimate with precision c and 100(1−α) confidence, the number of data required
in the sample is at least (see Example 4.2.3)

n =
z2α/2(σ

2
x + σ2

y)

c2
. (1.63)

Interval estimator for µx − µy with unknown equal variance. Suppose σx = σy is unknown. Let
σ = σx = σy. By Equation 1.55,

(n− 1)S2
x

σ2
∼ X2

n−1,
(m− 1)S2

y

σ2
∼ X2

m−1

Since we assume the samples are independent, those two χ2 random variables are independent. By
Remark 1.8.1, we have

(n− 1)S2
x

σ2
+

(m− 1)S2
y

σ2
∼ X2

m+n−2. (1.64)

Let

S2
p :=

(n− 1)S2
x + (m− 1)S2

y

n+m− 2
. (1.65)

By Theorem 1.8.1, X,S2
x, Y , S2

y are independent. By Definition 1.8.2, Equations 1.61 and 1.64,

X − Y − (µx − µy)√
σ2

n + σ2

m

√
S2
p/σ

2
=

X − Y − (µx − µy)

Sp

√
1/n+ 1/m

∼ tn+m−2. (1.66)

Then according to Equation 1.47,

P

(
−tα/2,n+m−2 ≤

X − Y − (µx − µy)

Sp

√
1/n+ 1/m

≤ tα/2,n+m−2

)
= 1− α.

63

A 100(1− α) confidence interval estimate for µx − µy is then given by
(
x− y − tα/2,n+m−2sp

√
1/n+ 1/m, x− y + tα/2,n+m−2sp

√
1/n+ 1/m

)
.

If we assume m = n, to have an estimate with precision c and 100(1 − α) confidence, the number of
data required in the sample is at least

n =
2t2α/2,2n−2s

2
p

c2
.

For large n (n ≥ 30), we can approximate n by (see Example 4.2.3)

n ≈
2z2α/2s

2
p

c2
. (1.67)

1.8.3 Hypothesis Testing

By statistical hypothesis, we refer to a statement about the unknown parameters of a distribution (see
Example 4.2.5). We call such a statement hypothesis because it is not known whether or not it is true.
In this subsection, we will use samples from the distribution to draw certain conclusions regarding
a given hypothesis about its unknown parameters. In particular, we will introduce a procedure for
determining whether or not the values of a sample are consistent with the hypothesis. The decision
will then be either to accept the hypothesis, or to reject it. By accepting a hypothesis, we conclude that
the resulting data from the sample appear to be consistent with it.

The same as in Section 1.8.2, we consider a normal random variable X with mean µx and variance
σ2
x. Furthermore, let {X1, X2, . . . Xn } denote a sample from the distribution induced by X with

sample mean X and sample variance S2
x. We would like to test hypotheses about µx using data from

this sample.
The hypothesis that we want to test is called the null hypothesis, denoted by H0. For example

H0 : µx = 1, H0 : µx ≥ 0.

We will test the null hypothesis against an alternative hypothesis, denoted by H1. For example

H1 : µx ̸= 1, H1 : µx > 1.

To test the hypothesis, we define a region C such that

if a sample { x1, x2, . . . , xn } ̸∈ C, we accept the null hypothesis H0.

And
if a sample { x1, x2, . . . , xn } ∈ C, we reject the null hypothesis H0.

C is called the critical region. We also define the level of significance of the test, denoted by α, such that
when H0 is true, the probability of rejecting it is not bigger than α, namely

P ({ x1, x2, . . . , xn } ∈ C|H0 is true) ≤ α.

Thus, the main procedure in our hypothesis testing is to find the critical region C given a level of
significance α.

Two-sided hypothesis testing concerning µx. Let µ0 ∈ R be a constant. We set the null hypothesis
and the alternative hypothesis as follows

H0 : µx = µ0, H1 : µx ̸= µ0. (1.68)

Recall that the sample mean, X , is a point estimator for µx (see Remark 1.8.4). Then it is reasonable
to accept H0 if X is not too far from µ0. Given α, we choose the critical region to be

C =
{
(X1, X2, . . . , Xn)

∣∣ |X − µ0| > c
}
, (1.69)

64

where c is a number such that if X = µ0,

P (|X − µ0| > c) = α. (1.70)

Then our main task is to find c that satisfies the above equation.
Suppose the variance σ2

x is known. If X = µ0, then by Equation 1.50,

X ∼ N

(
µ0,

σ2

n

)
.

Define

Z :=
X − µ0

σ/
√
n

, (1.71)

by Remark 1.7.1, Z ∼ N(0, 1). According to Equation 1.70, we can choose c such that

P

(
|Z| > c

√
n

σ

)
= α =⇒ 2P

(
Z >

c
√
n

σ

)
= α =⇒ P

(
Z >

c
√
n

σ

)
=

α

2
.

By definition of zα (Equation 1.43),

c
√
n

σ
= zα/2 =⇒ c =

zα/2σ√
n

. (1.72)

And the critical region for significance level α is given by

C =

{
(X1, X2, . . . , Xn)

∣∣∣∣ |X − µ0| >
zα/2σ√

n

}
. (1.73)

Consequently, we reject the null hypothesis (Equation 1.68) if

|x̄− µ0| > zα/2
σ√
n

i.e.
√
n

σ
|x̄− µ0| > zα/2,

and accept H0 otherwise (see Example 4.2.6).

Remark 1.8.5. We can see that when µ0 = 0, the critical region corresponding to the level of sig-
nificance α in Equation 1.73 is the complement of the 100(1 − α) percent confidence interval for µx

(Equation 1.57).

Suppose we do not know the variance σ2
x. Recall that sample variance S2

x (Equation 1.53) is a
point estimator for σ2

x. Similar to Equation 1.71, we are interested in the following random variable

T :=

√
n(X − µ0)

Sx
. (1.74)

We want to find c such that when µx = µ0,

P (|T | > c) = α.

Note that when µ = µ0, T induces a t−distribution with n− 1 degrees of freedom. By Equation 1.48,
we choose

c = tα/2,n−1.

Hence to achieve level of significance α, we reject H0 (Equation 1.68) if
∣∣∣∣
√
n(x− µ0)

sx

∣∣∣∣ > tα/2,n−1

and accept H0 otherwise.

65

One-sided hypothesis testing concerning µx. Now we consider the same null hypothesis with a
different alternative hypothesis as follows:

H0 : µ = µ0, H1 : µ > µ0. (1.75)

We refer to such a test as one-sided test.
In this case, we will reject H0 when X is much bigger than u0 since when X is smaller, it is more

likely for H0 to be true than for H1 to be true. In other words, the critical region is of the following
form

C =
{
(X1, X2, . . . , Xn)

∣∣ X − µ0 > c
}
. (1.76)

To find the value of c, we assume H0 is true. Then by definition, c should be chosen such that

P (X − µ0 > c) = α.

In case the variance σ2
x is known, by the definition of Z (Equation 1.71),

P

(
Z >

c
√
n

σ

)
= α.

By definition of zα (Equation 1.43),

c
√
n

σ
= zα =⇒ c =

zασ√
n
. (1.77)

The critical region for significance level α is then given by

C =

{
(X1, X2, . . . , Xn)

∣∣∣∣ X − µ0 >
zασ√
n

}
.

Thus, we reject the null hypothesis (Equation 1.75) if

x− µ0 >
zασ√
n

i.e.
√
n

σ
(x− µ0) > zα

and accept H0 otherwise (see Example 4.2.7).
Suppose we know a good estimate of c for the critical region in Equation 1.76. Let µ0 = 0. We

have
C =

{
(X1, X2, . . . , Xn)

∣∣ X > c
}
. (1.78)

Then by Equation 1.77, to test whether µx is different from 0 with significance level α, the number of
data required is at least (see Example 4.2.7)

n =
σ2

c2
z2α. (1.79)

In case we do not know the variance σ2
x. By definition of T (Equation 1.74), we have

P

(
T >

c
√
n

Sx

)
= α

Then according to Equation 1.46,

c
√
n

Sx
= tα,n−1 =⇒ c =

tα,n−1Sx√
n

.

Thus the significance level α test is to reject H0 (Equation 1.75) if
√
n(x− µ0)

sx
> tα,n−1

and accept H0 otherwise. When n is large (≥ 30), we reject H0 if (see Example 4.2.7)
√
n(x− µ0)

sx
> zα. (1.80)

66

Suppose we want to test if the mean µx is bigger than 0 with significance level α and we have a
good estimate for c. Set µ0 = 0. The number of data required is at least

n =
s2x
c2

t2α,n−1.

For large n (n ≥ 30), we have (see Example 4.2.7)

n =
s2x
c2

z2α. (1.81)

Two-sided hypothesis testing about µx and µy. For the rest of this part, let Y denote a normal ran-
dom variable independent from X with mean µy and variance σ2

y . Furthermore, let { Y1, Y2, . . . , Ym }
denote a sample from the distribution induced by Y with sample mean Y and sample variance S2

y .
We would like to test the following hypotheses:

H0 : µx = µy, H1 : µx ̸= µy. (1.82)

Since X and Y are point estimators for µx and µy respectively, X −Y is a point estimator for µx−µy.
Then it is reasonable to reject H0 when |X − Y | is far from zero. Given α, our critical region is of the
form

C =
{
(X1, X2, . . . , Xn, Y1, Y2 . . . , Ym)

∣∣ |X − Y | > c
}
, (1.83)

where c is chosen such that

P (|X − Y | > c|H0 is true) = P (|X − Y | > c|µx = µy) = α. (1.84)

Our task is to decide how to choose the value of c.
In case the variances σ2

x and σ2
y are known, by Equation 1.61, when µx = µy (i.e. when H0 is true),

we have
X − Y√
σ2
x
n +

σ2
y

m

∼ N(0, 1). (1.85)

By Equation 1.44,

P


−zα/2 <

X − Y√
σ2
x
n +

σ2
y

m

< zα/2


 = 1− α =⇒ P


 |X − Y |√

σ2
x
n +

σ2
y

m

> zα/2


 = α.

Thus, we let

c = zα/2

√
σ2
x

n
+

σ2
y

m
. (1.86)

To achieve significance level α, we reject H0 if

|x− y| > zα/2

√
σ2
x

n
+

σ2
y

m

and accept H0 otherwise (see Example 4.2.8).
Furthermore, suppose m = n and we have a good estimate for c. To test if µx ̸= µy with signifi-

cance level α, the number of data required is at least (see Example 4.2.8)

n =
z2α/2(σ

2
x + σ2

y)

c2
. (1.87)

In case the variances are unknown but we know that σx = σy. Let σ = σx = σy. By Equation 1.66,
when µx = µy,

X − Y√
S2
p(1/n+ 1/m)

∼ tn+m−2.

67

According to Equation 1.48,

P



∣∣∣∣∣∣

X − Y√
S2
p(1/n+ 1/m)

∣∣∣∣∣∣
> tα/2,n+m−2


 = α.

Thus, we let
c = tα/2,n+m−2

√
S2
p(1/n+ 1/m)

For a test with significance level α, we reject H0 if

|x− y| > tα/2,n+m−2

√
s2p(1/n+ 1/m)

and accept H0 otherwise. Such a test is called the student’s t−test.
For large n and m, we reject H0 if (see Example 4.2.11)

|x− y| > zα/2

√
s2p(1/n+ 1/m), or equivalently,

|x− y|√
s2p(1/n+ 1/m)

> zα/2. (1.88)

Furthermore, when n = m, we have (see Equation 1.65)

S2
p(1/n+ 1/m) =

(n− 1)S2
x + (n− 1)S2

y

2n− 2
× 2

n
=

S2
x + S2

y

n
,

and we reject H0 if (see Examples 4.2.8 and 4.2.9)

|x− y|√
s2x+s2y

n

> zα/2. (1.89)

In this case, suppose we have a good estimate for c, to have a student’s t−test with significant level
α, the number of data we need for both samples is given by (see Examples 4.2.8 and 4.2.9)

n = z2α/2
S2
x + S2

y

c2
. (1.90)

If we further assume that the unknown variances σ2
x and σ2

y are not equal, it can be shown
that [Wel47]

X − Y√
S2
x
n +

S2
y

m

∼ tv,

where

v ≈
(S2

x/n+ S2
y/m)2

(S2
x/n)

2/(n− 1) + (S2
y/m)2/(m− 1)

.

And a test with significance level α rejects H0 if

|x− y|√
s2x
n +

s2y
m

> tα/2,v.

Such a test is called the Welch’s t−test.
When n and m are big (≥ 30), we test if (see Example 4.2.13)

|x− y|√
s2x
n +

s2y
m

> zα/2. (1.91)

Remark 1.8.6. Note that when n = m is big (≥ 30), the Welch’s t−test and the student’s t−test have
the same formula (see Equation 1.89 and 1.91).

68

Both student’s t−test and Welch’s t−test will be useful for leakage assessment in Section 4.2.3.

One-sided hypothesis testing about µx and µy. For one-sided testing, we consider the following
null and alternative hypotheses:

H0 : µx = µy, H1 : µx > µy.

Similar to Equation 1.76, our critical region is given by

C =
{
(X1, X2, . . . , Xn, Y1, Y2, . . . , Ym)

∣∣ X − Y > c
}
, (1.92)

where c is chosen such that
P
(
X − Y > c|µx = µy

)
= α.

We will only discuss the case when σ2
x and σ2

y are known. For unknown variances, we refer the
readers to [Wel47]. By Equations 1.85 and 1.43,

P


 X − Y√

σ2
x
n +

σ2
y

m

> zα


 = α.

Thus, we choose

c = zα

√
σ2
x

n
+

σ2
y

m
. (1.93)

To achieve level of significance α, we reject H0 if

x− y > zα

√
σ2
x

n
+

σ2
y

m

and accept H0 otherwise (see Example 4.2.10).
Furthermore, suppose m = n, we have a good estimate for c, and we know that µx ≥ µy. To test

if µx ̸= µy, the number of data required is at least (see Example 4.2.10)

n =
z2α(σ

2
x + σ2

y)

c2
. (1.94)

1.9 Further Reading

For more detailed discussions on sets, functions, number theory, and abstract algebra, we refer the
readers to [Her96, Chapters 1 – 6] and a series of lecture notes from Frédérique Oggier [Ogg].

[LX04] provides more in-depth studies for finite fields and coding theory.
For probability theory, we refer the readers to [Dur19] and [JP04] for a thorough analysis, and [Ros20]

for practical examples. [Ros20] also provides more insights on statistical methods presented in Sec-
tion 1.8.

Chapter 2

Introduction to Cryptography

Abstract

In this chapter, we first give an introduction to cryptography in general and present
some classical ciphers that were designed a few centuries back. Then we will discuss
how cryptographic algorithms are actually used with different encryption modes.
Keywords: cryptographic primitives, classical cipher, encryption modes

Before we dive into the modern cryptographic algorithms that are in use today (Chapter 3), we
give an introduction to cryptography in general (Section 2.1) and discuss some classical ciphers which
were designed a few centuries back (Section 2.2). In the end, we will discuss how cryptographic
algorithms are actually used with different encryption modes (Section 2.3).

We start with a definition of cryptography.

Definition 2.0.1. Cryptography studies techniques that allow secure communication in the presence
of adversarial behavior. These techniques are related to information security attributes such as confi-
dentiality, integrity, authentication, and non-repudiation.

Below, we give more details on the information security attributes that can be achieved by using
cryptography:

1. Confidentiality aims at preventing unauthorized disclosure of information. There are various
technical, administrative, physical, and legal means to enforce confidentiality. In the context
of cryptography, we are mostly interested in utilizing various encryption techniques to keep
information private.

2. Integrity aims at preventing unauthorized alteration of data to keep them correct, authentic, and
reliable. Similarly to confidentiality, while there are many means of ensuring data integrity, in
cryptography we are looking at hash functions and message authentication codes.

3. Authentication aims at determining whether something or someone is who they claim they are.
In communication, the entities should be able to identify each other. Similarly, the properties of
the exchanged information, such as origin, content, and timestamp, should be authenticated.
In cryptography, we are mostly interested in two aspects: entity authentication and data origin
authentication. For these purposes, signatures, and identification primitives are used.

4. Non-repudiation aims at assuring that the sender of the information is provided with proof of
delivery, and the recipient is provided with proof of the sender’s identity so that neither party
can later deny the actions taken. Similarly to authentication, signatures, and identification
primitives are cryptographic means of supporting non-repudiation.

Note

CIA Triad is a widely utilized information security model, where the abbreviation
stands for confidentiality, integrity, and availability. Therefore, a curious reader
might be interested in knowing why we did not mention the availability. The answer

69

70

Cryptographic
primitives

Unkeyed Public key Symmetric key

Hash functions Block ciphers

Stream ciphers

Message
authentica-
tion codes

Public-
key ciphers

Signatures

Figure 2.1: Categorization of cryptographic primitives. The ones highlighted in blue color will be
discussed in this book.

is rather simple – there are no techniques within cryptography that could contribute
in one way or another to ensure availability. Availability attribute ensures that in-
formation is consistently and readily accessible for authorized entities. One needs to
look into other means of supporting this attribute.

2.1 Cryptographic Primitives

Cryptographic primitives are the tools that can be used to achieve the goals listed in Definition 2.0.1.
The categorization of cryptographic primitives is depicted in Figure 2.1. We have highlighted the
ones that will be discussed in more detail in this book, especially regarding hardware attacks.

Let us briefly explain each primitive.

• Hash functions: hash functions map data of arbitrary length to a binary array of some fixed
length. We provide more details on hash functions in Subsection 2.1.1.

• Public-key ciphers: public-key (or asymmetric) ciphers use a pair of related keys. This pair
consists of a private key and a public key. These keys are generated by cryptographic algorithms
that are based on mathematical problems called one-way functions. A one-way function is a
function that is easy to compute on every input, but it is hard to compute its inverse.1

• Signatures: digital signatures provide means for an entity to bind its identity to a message. This
normally means that the sender uses their private key to sign the (hashed) message. Whoever
has access to the public key can then verify the origin of the message.

• (Symmetric) block ciphers: block ciphers are cryptographic algorithms operating on blocks of
data of a fixed size (generally multiples of bytes for modern cipher designs). They use the
same secret key for the encryption and decryption of data. Block ciphers are detailed in Sub-
section 2.1.2. Three modern block ciphers are discussed in Section 3.1.

• Stream ciphers: stream ciphers are symmetric key ciphers that combine plaintext digits (usually
bits) with the keystream, which is a stream of pseudo-random digits generated by the cipher. The
combination is normally done by a bitwise XOR operation. The idea of stream ciphers comes
from the one-time pad (Subsection 2.2.7).

• Message authentication codes (MACs): A message authentication code is a piece of informa-
tion that is used to authenticate the origin of the message and to protect its integrity. MAC
algorithms are commonly constructed from other cryptographic primitives, such as hash func-
tions and block ciphers.

1It is worth noting that the existence of one-way functions is an open conjecture and depends on P ̸= NP inequality.

71

2.1.1 Hash Functions

A hash function is a computationally efficient function mapping data of arbitrary length to a binary
array of some fixed length, called hash values or message digests.

The following are the properties that should be met in a properly designed cryptographic hash
function:

(a) it is quick to compute a hash-value for any given input;

(b) it is computationally infeasible to generate an input that yields a given hash value (a preimage);

(c) it is computationally infeasible to find a second input that maps to the same hash value when
one input is already known (a second preimage);

(d) it is computationally infeasible to find any pair of different messages that produce the same
hash value (a collision).

Cryptographic hash functions are mostly used for integrity and digital signatures. Message integrity
use case of hash functions works as follows. The user creates a message digest of the original message
at some point in time. At a later time (e.g., after a transmission), the digest is calculated again to check
whether there have been any changes to the original message. In digital signatures, it is common to
first create a message digest that is afterwards digitally signed, rather than signing the entire message
which can be slow in case the message is large (see Section 3.4).

The current NIST standard for hash functions was released in 2015 and is called Secure Hash
Algorithm 3 (SHA-3) [Dwo15]. It is based on Keccak permutation [BDPA13] which uses a previously
developed sponge construction [BDPVA07].

2.1.2 Cryptosystems

We have mentioned three types of ciphers: public-key ciphers, block ciphers, and stream ciphers. In
this subsection, we will provide more discussions on ciphers, which are also called cryptosystems.

When we use ciphers, we normally assume insecure communication. A popular example setting
is that Alice would like to send messages to Bob but Eve is also listening to the communication. The
goal of Alice is to make sure that even if Eve can intercept what was sent, she will not be able to
find the original message. To do so, Alice will first encrypt the message, or the plaintext, and send
the ciphertext to Bob, instead of the original message. Bob will then decrypt the ciphertext to get the
plaintext. For this communication to work, there must be a key for encryption and decryption. It is
clear that the decryption key should be secret from Eve and a basic requirement is that the algorithm
for encryption/decryption should be designed in a way that Eve cannot easily brute force the plaintext
with the knowledge of the ciphertext.

Definition 2.1.1. A cryptosystem is a tuple (P,C,K,E,D) with the following properties:

• P is a finite set of plaintexts, called plaintext space.

• C is a finite set of ciphertexts, called ciphertext space.

• K is a finite set of keys, called key space.

• E = { Ek : k ∈ K }, where Ek : P→ C is an encryption function.

• D = {Dk : k ∈ K }, where Dk : C→ P is a decryption function.

• For each e ∈ K, there exists d ∈ K such that Dd(Ee(p)) = p for all p ∈ P.

If e = d, the cryptosystem is called a symmetric (key) cryptosystem. Otherwise, it is called a public-
key/asymmetric cryptosystem.

Take any c1 = Ee(p1), c2 = Ee(p2) from the ciphertext space C, where e ∈ K. Let d ∈ K be the
corresponding decryption key for e. If c1 = c2, then by definition,

p1 = Dd(c1) = Dd(c2) = p2.

72

Thus, Ee is an injective function (see Definition 1.1.2). We also note that if P = C, Ek is a permutation
of P (see Definition 1.2.3).

There are mainly two types of symmetric ciphers: block ciphers and stream ciphers.

Definition 2.1.2 (Block cipher). A block cipher is a symmetric key cryptosystem with P = C = An for
some alphabet A and positive integer n. n is called the block length.

For classical ciphers that we will see in Section 2.2.1 – Section 2.2.5, A = Z26. For modern cryp-
tosystems that we will discuss in Section 3.1, A = F2 = { 0, 1 }.

Now, if we have a long plaintext p = p1p2 . . . , where each pi ∈ An is one block of plaintext, and a
key k, using a block cipher, we can obtain ciphertext string c as follows2:

c = c1c2 · · · = ek(p1)ek(p2)

But, for a stream cipher, P = C = A are single digits. Encryptions are computed on each digit of
the plaintext. In particular, suppose we have a plaintext string p = p1p2 . . . (where pi ∈ A) and a
key k. We first compute a key stream z = z1z2 . . . using the key k, then the ciphertext is obtained as
follows:

c = c1c2 · · · = ez1(p1)ez2(p2) . . .

A stream cipher is said to be synchronous if the key stream only depends on the chosen key k but not
on the encrypted plaintext. In this case, the sender and the receiver can both compute the keystream
synchronously. In Section 2.2.7 we will see a classical synchronous stream cipher called one-time pad.

2.1.2.1 Converting message to plaintext

An important aspect to clarify is how the message that Alice intends to send is represented as plain-
text.

A B C D E F G H I J K L M N O P Q R S T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

U V W X Y Z
20 21 22 23 24 25

Table 2.1: Converting English letters to elements in Z26.

For classical ciphers that we will discuss in Section 2.2, we will only consider messages consisting
of English letters (A - Z), and we map each letter to an element in Z26. Table 2.1 lists the details of the
mapping from letters to Z26. Thus the plaintext spaces are vector spaces over Z26.

In modern computers, we store data in binary digits, which can be viewed as variables ranging
over F2, or bits (see Definition 1.2.17). An 8−bit binary string is called a byte (see Definition 1.3.7).
Computers often operate on a few bytes at a time. For example, a 64-bit processor operates on eight
bytes at a time. In computer architecture, a word is defined as the unit of data of (at most) a certain bit
length that can be addressed and moved between storage and the processor. Therefore, for a 64-bit
processor, the word size is 64 bits.

We have discussed that a byte can be represented as a decimal number between 0 and 255 or
as a hexadecimal number between 0016 and FF16 (see Remark 1.3.3). When modern cryptographic
algorithms are used, the messages are converted to plaintexts which are n-bit binary strings (i.e. vec-
tors in Fn

2), where n is a multiple of 8. For example, Table 2.2 lists the representation of some single
symbols as bytes using ASCII and UTF-8 conversion methods. The second column gives the binary
representation of the byte value and the third column is the corresponding hexadecimal representa-
tion.

2.1.3 Security of Cryptosystems

When the security of a cryptosystem is analyzed, Kerckhoffs’ principle is always followed.

2Such an encryption mode is called an ECB mode, more encryption modes will be introduced in Section 2.3.

73

A 01000001 41
B 01000010 42
a 01100001 61
b 01100010 62
? 00111111 3F

(a) ASCII

Á 11000001 C1
Ä 11000100 C4

Í 11001101 CD
× 11010111 D7
÷ 11110111 F7

(b) UTF-8

Table 2.2: Examples of methods for converting message symbols to bytes. The second column in
each table is the binary representation of the byte value and the third column is the corresponding
hexadecimal representation.

Definition 2.1.3 (Kerckhoffs’ principle). The security of a cryptosystem should depend only on the
secrecy of the key.

In other words, everything is public knowledge except for the secret key.
To discuss the security of cryptosystems, we should also specify the attack assumptions. Nor-

mally, they consist of the attacker’s knowledge and the attacker’s goal. Ciphertext-only attack assumes
the attacker has access to a collection of ciphertexts. Known plaintext attack assumes the attacker has
a collection of plaintext and ciphertext pairs. And in chosen plaintext attack, the attacker has access to
the encryption mechanism such that they can choose plaintexts and obtain the corresponding cipher-
texts. The attacker’s goal can be the recovery of the plaintext or the recovery of the key.

By Kerckhoffs’ principle (Definition 2.1.3), we assume the attacker has knowledge of the cipher
design and communication context, e.g. the sender is a student and might use words like “exam,”
“assignment,” etc.

A ciphertext-only attack scenario is the weakest attacker model, and also the most realistic one.
For example, an intercepted encrypted network traffic falls into this category. As an example of a
known plaintext attack scenario, one can think of the cryptanalysis of Enigma during World War II.
There were situations when the German military broadcast the same message encrypted by different
cryptosystems – for some recipients, it was encrypted by a so-called dockyard cipher (a manual cipher,
relatively easy to cryptanalyze), and for some, it was encrypted by Enigma [Mah45]. If both messages
were intercepted, the allies would possess both the plaintext and the ciphertext, thus making it a
known plaintext attack on Enigma. When it comes to chosen plaintext attacks, one can imagine a
scenario when an encryption device is captured and the attacker can send queries to it and receive
the ciphertexts. As the key would normally be stored in secure storage, the attacker needs to use the
plaintext-ciphertext pairs to recover it. This is a common scenario for hardware attacks. While in the
traditional cryptanalysis setting, a chosen plaintext attack is infeasible for modern ciphers, hardware
attacks can recover the key relatively efficiently, depending on the attacker’s assumptions and the
attack type.

In this book, we say a cipher is broken if the secret key is recovered3. A cipher is said to be perfectly
secure if, in a ciphertext-only attack setting, the attacker cannot obtain any information about the
plaintext no matter how much computing power they have. A cipher is secure in practice if there is
no known attack that can break it within a reasonable amount of time and with a reasonable amount
of computing power. A cipher is said to be computationally secure if breaking it requires computing
power that is not available in practice.

In Section 2.2.7, we will introduce a classical cipher that achieves perfect secrecy. However, we
will see that the key management of this cipher makes it impractical for modern usage. Modern cryp-
tosystems that are popular today are considered to be computationally secure. Most of the ciphers
are designed in a way that the effort taken to break them grows exponentially with the number of
bits of the secret key, which is called key length. Thus, key length is an important factor in the security
of modern ciphers.

3In a more general sense, breaking a cipher means finding a weakness in the cipher algorithm that can be exploited with
a complexity less than brute-force [Sch00].

74

A B C D E F G H I J K L M N O P Q R S T
F G H I J K L M N O P Q R S T U V W X Y

U V W X Y Z
Z A B C D E

Table 2.3: Shift cipher with k = 5. The second row represents the ciphertexts for the letters in the first
row.

2.2 Classical Ciphers

In this section, we will discuss some classical ciphers and analyze their security. We focus on the case
when messages consist of English letters. Those letters are identified with elements in Z26 as shown
in Table 2.1. For easy reading, we will not distinguish letters and elements in Z26. For example, when
the message is A, we may say that the plaintext is A or the plaintext is 0, similarly for ciphertext.

2.2.1 Shift Cipher

Definition 2.2.1 (Shift cipher). Let P = C = K = Z26. For each k ∈ K, define

Ek : Z26 → Z26, p 7→ p+ k mod 26; Dk : Z26 → Z26, c 7→ c− k mod 26.

The cryptosystem (P,C,K,E,D), where E = { Ek : k ∈ K }, and D = {Dk : k ∈ K }, is called the shift
cipher.

By Theorem 1.4.2, Z26 is a commutative ring with addition and multiplication modulo 26. We
also discussed that subtracting k corresponds to adding the additive inverse of k (see Remark 1.4.2).

Example 2.2.1. Let k = 2, we have

−k = −2 mod 26 = 24 mod 26.

Suppose the message is A, then the corresponding plaintext is 0 (see Table 2.1). The ciphertext is given
by

Ek(A) = 0 + 2 mod 26 = 2 mod 26 = C.

When we decrypt the ciphertext using the same key, we get our original message:

Dk(C) = 2− 2 mod 26 = 2 + 24 mod 26 = 0 mod 26 = A.

We note that encrypting using a key k is the same as shifting the letters by k positions, hence the
name “shift cipher”.

Example 2.2.2. For example, when k = 5,

Ek(A) = 0 + 5 mod 26 = F, Ek(Z) = 25 + 5 mod 26 = 4 mod 26 = E.

To encrypt a message, we can follow Table 2.3 and replace letters in the first row with those in the
second row. Suppose the message is I STUDY IN BRATISLAVA. Then the corresponding ciphertext
(omitting the white spaces) is NXYZIDNSGWFYNXQFAF.

When k = 3, the cipher is called the Caesar Cipher, which was used by Julius Caesar around 50
B.C.. It is unknown how effective the Caesar cipher was at the time. But it is likely to have been
reasonably secure since most of Caesar’s enemies would have been illiterate and they might have
also assumed the messages were written in an unknown foreign language.

Now, suppose as an attacker, we know that the ciphertext is NXYZIDNSGWFYNXQFAF. By Kerck-
hoffs’ principle (Definition 2.1.3), we can assume that we also know the communication language is
English, how can we find the corresponding plaintext?

With a moment’s thought, it is easy to see that we can simply try all the possible keys until we
find a plaintext that makes sense. For example, let k = 1, then N should be decrypted to M, X to

75

W, and so on. Eventually, we get MWXYHCMRFVEXMWPEZE, which does not make sense. So we con-
tinue, when k = 2, we get LVWXGBLQEUDWLVODYD. When k = 3, we have KUVWFAKPDTCVKUNCXC,
and for k = 4, we get JTUVEYJOCSBUJTMBWB. Finally, letting k = 5, we get a proper sentence
ISTUDYINBRATISLAVA. Since there are only 25 possible keys (the key is not equal to 0), with a
known ciphertext, it is easy to find the original plaintext and the key!

Such a method of trying every possible key until the correct one is found is called an exhaustive
key search. We have demonstrated that with an exhaustive key search, we can break the shift cipher,
i.e. find the key.

2.2.2 Affine Cipher

Recall that Z∗
n is the set of elements x ∈ Zn such that gcd(x, n) = 1 (Definition 1.4.5).

Definition 2.2.2 (Affine cipher). Let P = C = Z26 and K = { (a, b) | a ∈ Z∗
26, b ∈ Z26 }. For each key

(a, b), define

E(a,b) : Z26 → Z26, p 7→ ap+ b mod 26; D(a,b) : Z26 → Z26, c 7→ a−1(c− b) mod 26.

The cryptosystem (P,C,K,E,D), where E =
{
E(a,b) : (a, b) ∈ K

}
, D =

{
D(a,b) : (a, b) ∈ K

}
, is called

the affine cipher.

Note that when a = 1, we have a shift cipher (Definition 2.2.1).
Next, we will verify that the affine cipher is well-defined. In particular, we will show the follow-

ing:

• Decryption is always possible, i.e. given any a ∈ Z∗
26 and b, y ∈ Z26, a solution for x such that

ax+ b ≡ y mod 26

always exists in Z26.

• Each encryption function Ek is injective, i.e. different plaintexts produce different ciphertexts,
or equivalently, if the solution for ax+ b ≡ y mod 26 exists, then it is unique.

Fix a ∈ Z∗
26, b, y ∈ Z26. To solve the equation

ax+ b ≡ y mod 26

is equivalent to solving the equation

ax ≡ y − b mod 26.

When y varies over Z26, y − b also varies over Z26. Thus we can focus on solutions for

ax ≡ z mod 26, (2.1)

where z ∈ Z26. Since a ∈ Z∗
26, by Theorem 1.4.6, Equation 2.1 has a unique solution. The existence

of the solution proves that decryption is possible, and the uniqueness guarantees that encryption
functions are injective.

Given a key (a, b), to find a−1 mod 26, we can apply the extended Euclidean algorithm (Algo-
rithm 1.2).

Example 2.2.3. Suppose the key for affine cipher is (3, 1), by the extended Euclidean algorithm, we
can find 3−1 mod 26:

26 = 3× 8 + 2, 3 = 2 + 1 =⇒ 1 = 3− (26− 3× 8) = 3× 9− 26 =⇒ 3−1 mod 26 = 9.

To encrypt the word STROM,4 we compute (see Table 2.1):

3× 18 + 1 = 55 ≡ 3 mod 26, 3× 19 + 1 = 58 ≡ 6 mod 26,
3× 17 + 1 = 52 ≡ 0 mod 26, 3× 14 + 1 = 43 ≡ 17 mod 26,
3× 12 + 1 = 37 ≡ 11 mod 26.

So the ciphertext is DGARL. We can list the correspondence between plaintext and ciphertext as fol-
lows:

4Strom is a Slovak word which means tree.

76

A B C D E F G H I J K L M N O P Q R S T
W X Y Z F G H I J K L M N O P Q R S T U

U V W X Y Z
V A B C D E

Table 2.4: Definition of σ, a key for substitution cipher.

A B C D E F G H I J K L M N O P Q R S T
V W X Y Z E F G H I J K L M N O P Q R S

U V W X Y Z
T U A B C D

Table 2.5: Definition of σ−1, where σ ∈ S26 is a key for substitution cipher shown in Table 2.4.

S T R O M
18 19 17 14 12
3 6 0 17 11
D G A R L

We know that 26 = 2× 13. By Theorem 1.4.3,

φ(26) = 26×
(
1− 1

2

)(
1− 1

13

)
= 12.

So there are 12 possible values for a ∈ Z∗
26. And there are 26 possible values for b ∈ Z26. Then the

total number of possible keys (a, b) is 12 × 26 = 312. Similarly to shift cipher, knowing a ciphertext,
we can try each of the 312 keys until we find a plaintext that makes sense. Thus we can break affine
cipher by exhaustive key search.

2.2.3 Substitution Cipher

Recall that the symmetric group of degree n, denoted Sn, is the set of permutations of a set X with
n elements (see Definition 1.2.4). We have discussed that a permutation is a bijective function and
its inverse exists with respect to the composition of functions (see Lemma 1.2.1). In particular, any
permutation σ ∈ S26 has an inverse σ−1.

Definition 2.2.3 (Substitution cipher). Let P = C = Z26, and K = S26. For any key σ ∈ S26, define

Eσ : Z26 → Z26, p 7→ σ(p); Dσ : Z26 → Z26, c 7→ σ−1(c).

The cryptosystem (P,C,K,E,D), where E = { Eσ : σ ∈ K }, D = {Dσ : σ ∈ K }, is called the substi-
tution cipher.

We note that an affine cipher (Definition 2.2.2) is also a substitution cipher.

Example 2.2.4. Define σ as in Table 2.4, then the corresponding table for decryption can be computed
by flipping the two rows of the table (see Table 2.5). For example, to decrypt UIFJNJUWUJPOHWNF,
using Table 2.5, we get THE IMITATION GAME.

We have discussed that |Sn| = n! (see Example 1.2.9). So the size of key space for substitution
cipher is 26! ≈ 4× 1026. Modern computers run at a speed of a few GHz, which is ∼ 109 instructions
per second. There are ∼ 105 seconds per day, so one computer can run ∼ 1014 instructions per day,
or ∼ 1016 instructions per year. If we would like to exhaust every key for substitution cipher, we
will need ∼ 1010 years. Compared to the age of the universe, which is 13.8 billion, i.e. 1.38 × 1010

years, exhaustive key search is impossible with current computation power. However, we will show
in Section 2.2.6 that other methods can be used to break substitution cipher.

77

2.2.4 Vigenère Cipher

For the substitution cipher, one alphabet is mapped to a unique alphabet. Hence such a cipher is also
called a monoalphabetic cipher. Vigenère cipher, named after the French cryptographer Blaise Vigenère,
is a polyalphabetic cipher where one alphabet can be encrypted to different alphabets depending on the
key.

Let m be a positive integer, and let Zm
26 be the set of matrices with coefficients in Z26 of size 1×m.

In other words, Zm
26 is the set of 1 ×m row vectors with coefficients in Z26 (see Definition 1.3.1). As

discussed in Equation 1.4, for any x = (x0, x1, . . . , xm−1), y = (y0, y1, . . . , ym−1) in Zm
26, the addition

x+ y is computed componentwise:

x + y = (x0 + y0, x1 + y1, . . . , xm−1 + ym−1),

where xi + yi is computed with addition modulo 26. Recall that the additive inverse of an element a
in Z26 is given by −a (see Remark 1.4.2). x− y is then computed componentwise using the additive
inverses of yis.

Definition 2.2.4 (Vigenère cipher). Let m be a positive integer and let K = P = C = Zm
26. For each

k ∈ K, define
Ek : Zm

26 → Zm
26, p 7→ p+ k; Dk : Zm

26 → Zm
26, c 7→ c− k.

The cryptosystem (P,C,K,E,D), where E = { Ek : k ∈ K }, D = {Dk : k ∈ K }, is called the Vigenère
cipher.

The key for a Vigenère cipher is also called a keyword since it can be written as a string of letters.
By definition, a Vigenère cipher encrypts m alphabetic characters at a time.

Example 2.2.5. Let m = 6 and choose SECRET as the keyword. Thus the key is

k =
(
18 4 2 17 4 19

)
.

To encrypt AN EXAMPLE, we write the plaintext in groups of six letters and add the keyword to each
group letter by letter, modulo 26.

A N E X A M P L E
0 13 4 23 0 12 15 11 4
18 4 2 17 4 19 18 4 2
18 17 6 14 4 5 7 15 6
S R G O E F H P G

The ciphertext is given by SRGOEFHPG.

Example 2.2.6. Let the keyword be SKALA. So m = 5 and

k =
(
18 10 0 11 0

)
.

To decrypt ZSLWCAZHPR, we write the ciphertext in groups of five letters and add the keyword to
each group letter by letter modulo 26. We get the plaintext HILLCIPHER.

Z S L W C A Z H P R
25 18 11 22 2 0 25 7 15 17
18 10 0 11 0 18 10 0 11 0
7 8 11 11 2 8 15 7 4 17
H I L L C I P H E R

The size of the key space for Vigenère Cipher is given by 26m. If m = 6, it is about 3.1×108 ≈ 228.2,
which is possible to search each key using a computer. However, for larger m, it becomes much more
difficult. If m = 25, 2625 ≈ 2117, which is not feasible with current computation powers.

78

2.2.5 Hill Cipher

Definition 2.2.5 (Hill cipher). Let m be an integer such that m ≥ 2. Let P = C = Zm
26 and

K = {A | A ∈Mm×m(Z26), det(A) ∈ Z∗
26 } .

For each A ∈ K, define

EA : Zm
26 → Zm

26, p 7→ pA; DA : Zm
26 → Zm

26, c 7→ cA−1.

The cryptosystem (P,C,K,E,D), where E = { EA : A ∈ K }, D = {DA : A ∈ K }, is called the Hill
cipher.

By Theorem 1.4.2, Z26 is a commutative ring. We have defined the determinant of a square matrix
with coefficients from a commutative ring R in Section 1.3.1 (Equation 1.6). We discussed that an
m ×m matrix A is invertible in Mm×m(R) if and only if its determinant, det(A), is a unit (see Defi-
nition 1.2.10) in R. Furthermore, when A is invertible, its inverse can be calculated using the adjoint
matrix of A (Theorem 1.3.2). By Lemma 1.4.3, a matrix A ∈ Mn×n(Z26) is invertible if and only if
gcd(det(A), 26) = 1, i.e. det(A) ∈ Z∗

26. Therefore, in the definition of the Hill cipher, we require
det(A) ∈ Z∗

26 so that the decryption can be computed.

Example 2.2.7. Let

A =



2 1 2
3 12 4
0 5 1




be a matrix in M3×3(Z26). We denote by Aij the matrix obtained from A by deleting the ith row and
the jth column. Then

A00 =

(
12 4
5 1

)
, A01 =

(
3 4
0 1

)
, A02 =

(
3 12
0 5

)
.

Following the discussions in Example 1.3.6, we have

det(A00) = 12− 20 mod 26 = −8 mod 26,

det(A01) = 3− 0 mod 26 = 3 mod 26,

det(A02) = 15− 0 mod 26 = 15 mod 26.

Similarly, we can calculate

det(A10) = −9 mod 26, det(A11) = 2 mod 26, det(A12) = 10 mod 26,

det(A20) = −20 mod 26, det(A21) = 2 mod 26, det(A22) = 21 mod 26.

Let aij denote the entry of A at ith row and jth column, then by Equation 1.6,

det(A) =

2∑

j=0

(−1)ja0j det(A0j) mod 26

= (−1)0 × 2× (−8) + (−1)1 × 1× 3 + (−1)2 × 2× 15 mod 26

= −16− 3 + 30 mod 26 = 11.

By the Euclidean algorithm (Algorithm 1.1), we can find gcd(26, 11):

26 = 11× 2 + 4, 11 = 4× 2 + 3, 4 = 3 + 1, 3 = 1× 3 =⇒ gcd(11, 26) = 1.

Thus A is an invertible matrix in M3×3(Z26).
By the extended Euclidean algorithm (Algorithm 1.2),

1 = 4−3 = 4−(11−4×2) = 4×3−11 = (26−11×2)×3−11 = 26×3−11×7 =⇒ 11−1 mod 26 = 7.

By Theorem 1.3.2,

A−1 = −7



−8 9 −20
−3 2 −2
15 −10 21


 mod 26 =




56 −63 140
21 −14 14
−105 70 −147


 mod 26 =




4 15 10
21 12 14
25 18 9


 .

79

Example 2.2.8. Let

A =



2 1 2
3 12 4
0 5 1




be a key for Hill cipher. Suppose the plaintext is CIPHER. By Table 2.1, this corresponds to
(
2 8 15

)

and
(
7 4 17

)
. To encrypt, we calculate

(
2 8 15

)


2 1 2
3 12 4
0 5 1


 mod 26 =

(
2 17 25

)
,

(
7 4 17

)


2 1 2
3 12 4
0 5 1


 mod 26 =

(
0 10 21

)
.

And the ciphertext is CRZAKV.
Now suppose the ciphertext is DOSJBQ. By Table 2.1, this corresponds to

(
3 14 18

)
and

(
9 1 16

)
.

We have calculated in Example 2.2.7 that

A−1 =




4 15 10
21 12 14
25 18 9


 .

We can then compute the plaintext as follows:

(
3 14 18

)



4 15 10
21 12 14
25 18 9


 mod 26 =

(
756 537 388

)
mod 26 =

(
2 17 24

)
,

(
9 1 16

)



4 15 10
21 12 14
25 18 9


 mod 26 =

(
457 435 248

)
mod 26 =

(
15 19 14

)
.

And the plaintext is CRYPTO.

Remark 2.2.1. By Definition 2.1.2, shift cipher, affine cipher, and substitution cipher are block ciphers
of block length 1. Vigenère cipher and Hill cipher are block ciphers of block length m.

2.2.6 Cryptanalysis of Classical Ciphers

In this subsection, we will discuss the cryptanalysis of the classical ciphers introduced in the previous
subsections. Cryptanalysis comes from the Latin words kryptós (hidden) and analýein (to analyze).
The goal of cryptanalysis is to decrypt the ciphertext without knowing the key. Successful cryptanal-
ysis recovers the plaintext or even the key. We recall the different assumptions of attack described in
Section 2.1.3.

Example 2.2.9 (Known plaintext attack – Hill cipher). Let us consider a known plaintext attack on
Hill cipher. Suppose we know m = 2, i.e. A ∈ M2×2(Z26), and we have a string of plaintext ATTACK
as well as its corresponding ciphertext FTMTIM. By Definition 2.2.5, we have

EA

((
0 19

))
=
(
5 19

)
, EA

((
19 0

))
=
(
12 19

)
, EA

((
2 10

))
=
(
8 12

)
.

The first two plaintext-ciphertext pairs give us
(
0 19
19 0

)
A mod 26 =

(
5 19
12 19

)
. (2.2)

The inverse of a 2 × 2 matrix can be computed using Equation 1.7, where the computations should
be mod 26. We have (

0 19
19 0

)−1

= 3−1

(
0 7
7 0

)
mod 26 =

(
0 11
11 0

)
.

80

A 0.082 B 0.015 C 0.028 D 0.043 E 0.127 F 0.022
G 0.020 H 0.061 I 0.070 J 0.002 K 0.008 L 0.040
M 0.024 N 0.067 O 0.075 P 0.019 Q 0.001 R 0.060
S 0.063 T 0.091 U 0.028 V 0.010 W 0.023 X 0.001
Y 0.020 Z 0.001

Table 2.6: Probabilities of each letter in a standard English text [BP82].

Together with Equation 2.2,

A =

(
0 11
11 0

)(
5 19
12 19

)
mod 26 =

(
2 1
3 1

)
.

We can verify this key using the third plaintext-ciphertext pair

(
2 10

)(2 1
3 1

)
mod 26 =

(
8 12

)
.

We have seen that an exhaustive key search can be used to break affine cipher, where the attacker
can find both the plaintext and the key. But this does not apply to substitution cipher or Vigenère
cipher. Next, we will discuss other cryptanalysis methods that can be used to break those ciphers.

2.2.6.1 Frequency analysis

By Kerckhoffs’ principle (Definition 2.1.3), we assume we know the plaintext is an English text. We
also know the cipher used for communication. We assume a ciphertext-only attacker model, and we
will show how to recover both the plaintext and the key using frequency analysis for affine cipher and
Vigenère cipher.

As the plaintext is an English text, we first analyze the probabilities for the appearance of each
letter in a standard English text. For example, Table 2.6 lists the analysis results from [BP82]. In
particular, we observe that E has the highest probability and the second most common letter is T.
Similarly, [BP82] also shows that the most common two consecutive letters are TH, HE, IN, . . . ; and
the most common three consecutive letters are THE, ING, AND,

Given a ciphertext that is encrypted using a monoalphabetic cipher (i.e. one alphabet is mapped
to a unique alphabet), we expect a permutation of the letters in the ciphertext to have similar fre-
quencies as in Table 2.6.

Example 2.2.10. Suppose the cipher used is an affine cipher and we have the following ciphertext

VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

We can calculate the frequencies of each letter that appear in the text:

V S I O R K P N Z T L C F H M Y A
8 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1

The most frequent letter is V, and the second most frequent one is S. Thus, it makes sense to assume V
is the ciphertext corresponding to E and S to T. Let the key be (a, b). By Table 2.1 and Definition 2.2.2,
we have the following equations:

4a+ b = 21 mod 26, 19a+ b = 18 mod 26,

which gives
15a = 23 mod 26.

By the extended Euclidean algorithm,

26 = 15× 1 + 11, 15 = 11× 1 + 4, 11 = 4× 2 + 3, 4 = 3 + 1,

81

and

1 = 4− 3 = 4− (11− 4× 2) = −11 + 4× 3 = −11 + (15− 11)× 3

= 15× 3− 11× 4 = 15× 3− (26− 15)× 4 = 15× 7− 26× 4.

Hence, we have 15−1 mod 26 = 7 and

a = 23× 15−1 mod 26 = 23× 7 mod 26 = 5 mod 26.

Furthermore, we get
b = 21− 4a mod 26 = 21− 4× 5 mod 26 = 1.

To decrypt the message, we compute the decryption key by finding a−1 mod 26 = 5−1 mod 26:

26 = 5× 5 + 1 =⇒ 1 = 26− 5× 5 =⇒ 5−1 mod 26 = −5 mod 26 = 21.

Applying the decryption key (21, 1) to the ciphertext, we get the following plaintext:

EVERYTHING IS KNOWN EXCEPT FOR THE SECRET KEY.

We note that the same technique works for substitution cipher since it is also monoalphabetic. But
a longer ciphertext might be needed since we do not have equations to solve for the key. Instead, we
must guess the mapping between each distinct letter in the ciphertext to the 26 alphabets (see [Sti05]
Section 1.2.2).

Remark 2.2.2. Suppose the length of the keyword m is determined for Vigenère cipher. We take
every mth letter from the ciphertext and obtain m ciphertexts. Then each of them can be considered
as the ciphertext of the shift cipher with a key given by the corresponding letter in the keyword.

Example 2.2.11. Suppose we have the following ciphertext generated with Vigenère cipher (Defini-
tion 2.2.4) and we know that the keyword length m = 3.

SJRRIBSWRKRAOFCDACORRGSYZTCKVYXGCCSDDLCCEKOAMBHGCEKEPRS
TJOSDWXFOGMBVCCTMXHGXKNKVRCMLDLCMMNRIPDIVDAGVPZOXFOWYWI.

Take every third letter, we have the following three ciphertexts

SRSKODOGZKXCDCOBCESOWOBCXXKCDMRDDVOOW,
JIWRFARSTVGSLEAHEPTSXGVTHKVMLMIIAPXWI,
RBRACCRYCYCDCKMGKRJDFMCMGNRLCNPVGZFY.

We note that each of them can be considered as the ciphertext of a shift cipher, where the keys cor-
respond to each letter of the keyword for the Vigenère cipher (as mentioned in Remark 2.2.2). The
frequencies of each letter in the first ciphertext are as follows:

O D C S K X R B W G Z E M V
7 5 5 3 3 3 2 2 2 1 1 1 1 1

The most frequent letter is O, and we assume O (14) is the ciphertext corresponding to E (4). And this
gives us the first letter of the keyword

14− 4 mod 26 = 10 mod 26 = K.

The frequencies of each letter in the second ciphertext are as follows:

I A S T V W R G L E H P X M J F K
4 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1

Similarly, we assume E (4) is encrypted as I (8). And the second letter of the keyword is

8− 4 mod 26 = 4 mod 26 = E.

The frequencies of each letter in the third ciphertext are:

82

C R Y M G D K F N B A J L P V Z
7 5 5 3 3 3 2 2 2 1 1 1 1 1 1 1

And we have the third letter of the keyword

2− 4 mod 26 = 24 mod 26 = Y.

Thus we have recovered the keyword KEY. Computing decryption with the keyword we get the
following plaintext

IF THE DISTANCE BETWEEN TWO APPEARANCES OF THE SAME WORD
IS A MULTIPLE OF M, THE CORRESPONDING PARTS IN THE
CIPHERTEXT WILL BE THE SAME.

Next, we will discuss two methods to determine the length m of the keyword for a Vigenère
cipher.

2.2.6.2 Kasiski test – Vigenère cipher

We observe that if the distance between two appearances of the same sequence of alphabets in the
plaintext is a multiple of m, the corresponding parts in the ciphertext will be the same. Kasiski test
looks for identical parts of ciphertext and records the distance between those parts. Then we know
that m is a divisor for all the distance values.

Example 2.2.12. Suppose the plaintext is

THE MEETING WILL BE IN THE CAFE AND THE STARTING TIME IS TEN

and the keyword is KEY (m = 3). The encryption gives us

THE MEETING WILL BE IN THE CAFE AND THE STARTING TIME IS TEN
KEY KEYKEYK EYKE YK EY KEY KEYK EYK EYK EYKEYKEY KEYK EY KEY
DLC WICDMLQ AGVP ZO ML DLC MEDO ELN XFO WRKVRSRE DMKO MQ DIL

The first two appearances of THE have distance 15, which is a multiple of 3 and hence the corre-
sponding parts in the ciphertext are the same DLC. But the third appearance of THE has distance 7
from the second appearance and the corresponding parts in the ciphertext are different.

On the other hand, if we have only the ciphertext, we can observe the two identical parts DLC
with distance 15, then we can conclude that very likely m is a divisor of 15, i.e. m = 1, 3, 5, 15. To
decide the exact value of m, a longer ciphertext is needed, or frequency analysis (see Example 2.2.11)
can be applied assuming different values of m until a meaningful plaintext is found.

2.2.6.3 Index of coincidence – Vigenère cipher

Definition 2.2.6. Let x = x1x2 . . . xn be a string of n alphabetic characters. The index of coincidence of
x, denoted by Ic(x), is the probability that two random elements of x are identical.

Example 2.2.13. Let x be a long random text. If we randomly choose a letter from x, we expect that
the probability for each letter to be chosen is close to 1/26. Then, if we randomly choose two letters
from x, the probability for those two letters to be the same is close to 1/262. The index of coincidence
for x will be close to

Ic(x) ≈ 26

(
1

26

)2

= 0.038.

Example 2.2.14. Let x be a long English text. If we randomly choose a letter from x, we expect that the
probabilities for each letter to be chosen are similar to the values listed in Table 2.6. If we randomly
choose two letters from x, the probability for both letters to be A is then given by 0.0822, and the
probability for both to be B is 0.0152, etc. Thus, the index of coincidence for x can be approximated
as

Ic(x) ≈
25∑

i=0

p2i = 0.065.

83

Remark 2.2.3. If x is a ciphertext string obtained using any monoalphabetic cipher, we would expect
Ic(x) to be close to 0.065. The individual probabilities for different alphabets will be permuted, but
the sum will be unchanged.

Let f0, f1, . . . , f25 denote the frequencies of letters A, B, . . . , Z in x. If we randomly choose a letter,
the probability of each letter appearing is then given by

(
fi
2

)
(
n
2

) .

We have the following formula for Ic(x):

Ic(x) =

∑25
i=0

(
fi
2

)
(
n
2

) =

∑25
i=0 fi(fi − 1)

n(n− 1)
. (2.3)

Example 2.2.15. Let x be the ciphertext from Example 2.2.11. The total number of letters is 110 and
the frequencies of each letter are

C R O D S K G M V X I W A B F Y T L E P J Z H N
12 9 7 7 7 6 6 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2

By Equation 2.3, the index of coincidence of x is

Ic(x) =
1

110× 109
(12× 11 + 9× 8 + · · ·+ 2× 1) = 0.004454.

Given a ciphertext c = c1c2 . . . cn output from Vigenère cipher. To find the length of the keyword
m, for each m ≥ 1, we construct substrings of c by taking every mth letter.

c1 = c1cm+1 . . .

c2 = c2cm+2 . . .

...
cm = cmc2m . . .

If m is the keyword length, we expect Ic(ci) to be close to 0.065 (see Remark 2.2.3). Otherwise, ci will
be more random and Ic(ci) will be closer to 0.038 (See Example 2.2.13)

Example 2.2.16. Suppose we have the same ciphertext as in Example 2.2.11, and we do not know the
value of m.
Assume m = 1, we have calculated that

Ic(c) = 0.004454

in Example 2.2.15.
Assume m = 2, we have

c1 = SRISRROCAORSZCVXCSDCEOMHCKPSJSWFGBCTXGKKRMDCMRPIDGPOFWW
c2 = JRBWKAFDCRGYTKYGCDLCKABGEERTODXOMVCMHXNVCLLMNIDVAVZXOYI

and
Ic(c1) = 0.05253, Ic(c2) = 0.03636.

Assume m = 3,
c1 = SRSKODOGZKXCDCOBCESOWOBCXXKCDMRDDVOOW
c2 = JIWRFARSTVGSLEAHEPTSXGVTHKVMLMIIAPXWI
c3 = RBRACCRYCYCDCKMGKRJDFMCMGNRLCNPVGZFY

and
Ic(c1) = 0.07958, Ic(c2) = 0.04054, Ic(c3) = 0.06984.

Thus it is more likely that m = 3. The exact value can be verified by frequency analysis as shown in
Example 2.2.11 to see if the recovered plaintext is meaningful.

84

2.2.7 One-time Pad

In this subsection, we will discuss a type of synchronous stream cipher (see Section 2.1.2) called
one-time pad, which was invented by Gilbert Vernam in 1917.

Definition 2.2.7 (One-time pad). Given a positive integer n, let P = C = K = Fn
2 . For any k ∈ K,

define
Ek : Fn

2 → Fn
2 , p 7→ p⊕ k Dk : Fn

2 → Fn
2 , c 7→ c⊕ k

The cryptosystem (P,C,K,E,D), where E = { Ek : k ∈ K }, D = {Dk : k ∈ K }, is called the one-time
pad.

Recall that vector addition in Fn
2 is defined as bitwise XOR, denoted by ⊕ (see Definition 1.3.6).

For encryption, we require the key to be chosen randomly with uniform probability (see Defini-
tion 1.7.3) from K. This requirement will be justified in Theorem 2.2.1. Furthermore, we note that
if the attacker has knowledge of one pair of plaintext p and its corresponding ciphertext c, they can
recover the key by computing p⊕ c = p⊕ p⊕ k = k. Thus each key can be used only once.

One distinct feature of the one-time pad from the previously introduced classical ciphers is that it
achieves perfect secrecy (see Section 2.1.3). Before proving this, we will first formalize the notion of
perfect secrecy.

Let P, C, and K denote the plaintext space, ciphertext space, and key space respectively for a
given cryptosystem. The random experiment we are interested in is encryption using one key and
one plaintext for communication. The sample space (see Section 1.7) is Ω = P×K.

Let p := { (p, k) | k ∈ K } denote the event that p is encrypted. Similarly, k := { (p, k) | p ∈ P }
denotes the event that k is used for encryption. c := { (p, k) | Ek(p) = c } denotes the event that c is
the ciphertext. Note that p and k are independent.

By Kerckhoffs’ principle, P (p) and P (k) are known to the attacker. Then the cryptosystem is
perfectly secure if p and c are independent (Definition 1.7.4) for any p and c, or equivalently (Equa-
tion 1.28)

P (p ∩ c) = P (p)P (c), i.e. P (p|c) = P (p).

Example 2.2.17 (An example of cipher that is not perfectly secure). Let

P = { 0, 1 } , K = { x, y } , C = { α, β } .

Define the encryption functions as follows

Ex(0) = Ey(1) = α, Ex(1) = Ey(0) = β.

Suppose

P (0) =
1

3
, P (1) =

2

3
, P (x) =

1

5
, P (y) =

4

5
.

Then
P (α) = P (x ∩ 0) + P (y ∩ 1) = P (x)P (0) + P (y)P (1) =

3

5
,

and

P (0|α) = P (0)P (α|0)
P (α)

=
P (0)P (x)

P (α)
=

1

9
.

We have
P (1|α) = 1− P (0|α) = 8

9
,

and
P (β) = 1− P (α) =

2

5
.

Similarly, we get

P (0|β) = 2

3
, P (1|β) = 1

3
.

Thus P (p|c) ̸= P (p) for all p ∈ P, c ∈ C and the cipher is not perfectly secure.
In particular, if the attacker knows the ciphertext is α, they can conclude that it is more likely that

the plaintext is 1 rather than 0; and if the ciphertext is β, they can conclude that it is more likely for
the plaintext to be 0.

85

We recall uniform probability measures from Definition 1.7.3.

Theorem 2.2.1. One-time pad is perfectly secure if and only if the probability measure on the key
space is uniform.

Proof. Fix a positive integer n, let P = C = K = Fn
2 . For any p ∈ P and c ∈ C, if c is the ciphertext

corresponding to p, then we know the key used is kp,c := p⊕ c. Thus

P (c|p) = P (kp,c).

=⇒ Fix c ∈ C, for any p, we have

P (kp,c) = P (c|p) = P (p ∩ c)

P (p)
=

P (p)P (c)

P (p)
= P (c),

which shows that the probability of kp,c is not dependent on p and the probabilities of all kp,cs are the
same for this fixed c. When p takes all possible values in P, we have all possible values of kp,c ∈ K.
Thus we can conclude that P (k) is the same for all k ∈ K.
⇐= Since { q | q ∈ P } is a finite partition of Ω, by Theorem 1.7.2, for any c ∈ C and any p ∈ P,

P (p|c) = P (c|p)P (p)∑
q∈P P (c|q)P (q)

=
P (kp,c)P (p)∑
q∈P P (kq,c)P (q)

.

Since the probability measure on the key space is uniform,

P (k) =
1

|K| , ∀k ∈ K.

Also,
∑

q∈P P (q) = 1. We have

P (p|c) = P (kp,c)P (p)∑
q∈P P (kq,c)P (q)

=
P (p)∑
q∈P P (q)

= P (p).

We note that brute force of the key does not work for one-time pad – by brute force, the attacker
can obtain any plaintext of the same length as the original plaintext.

However, key management is the bottle neck of one-time pad. With a plaintext of length n, we
will also need a key of length n. Furthermore, as we have mentioned earlier, each key can only be
used once. Thus it is necessary to share a key of the same length as the message each time before the
communication. This makes it impractical to use one-time pad.

2.3 Encryption Modes

We have seen a few examples of classical block ciphers. For messages that are longer than the block
length, the way we encrypted them (e.g. see Examples 2.2.8 and 2.2.5) can be described by Figure 2.2.
Similarly, the decryption method we have applied (e.g. see Examples 2.2.8 and 2.2.6) corresponds to
Figure 2.3.

Ek

p0

k

c0

Ek

p1

k

c1

Ek

p2

k

c2

· · · · · · Ek

pℓ

k

cℓ

Figure 2.2: ECB mode for encryption.

86

Dk

c0

k

p0

Dk

c1

k

p1

Dk

c2

k

p2

· · · · · · Dk

cℓ

k

pℓ

Figure 2.3: ECB mode for decryption

In general, when we use a symmetric block cipher of block length n to encrypt a long message, we
first divide this long message into blocks of plaintexts of length n. Then we apply certain encryption
mode to encrypt the plaintext blocks. If the last block has a length of less than n, padding might be
required. Different methods exist for padding, e.g, using a constant, or using a random number.

The simplest encryption mode is the mode we have been using so far, which is called electronic
codebook (ECB) mode. ECB mode is easy to use, but the main drawback is that the encryption of
identical plaintext blocks produces identical ciphertext blocks. For an extreme case, if the plaintext
is either all 0s or all 1s, it would be easy for the attacker to deduce the message given a collection
of plaintext and ciphertext pairs. Due to this property, it is also easy to recognize patterns of the
plaintext in the ciphertext, which makes statistical attacks easier (e.g. frequency analysis of the affine
cipher described in Example 2.2.10). For example, Figure 2.4 (b) gives an example for encryption
using ECB mode. Compared to the original image in Figure 2.4 (a), we can see a clear pattern of the
plaintext from the ciphertext.

(a) Original picture (b) ECB encrypted (c) CBC encrypted

Figure 2.4: Original picture and encrypted picture with ECB and CBC modes.

To avoid such problems, we can use the cipherblock chaining (CBC) mode. The encryption and
decryption are shown in Figures 2.5 and 2.6 respectively, where IV stands for initialization vector. An
IV has the same length as the plaintext block and is public. We can see that with CBC, the same
plaintext is encrypted differently with different IVs. Figure 2.4 (a) encrypted with CBC mode is
shown in Figure 2.4 (c), where no clear pattern can be seen.

Ek

p0

k

c0

Ek

p1

k

c1

Ek

p2

k

c2

IV

· · · · · · Ek

pℓ

k

cℓ

· · · · · · Ek

pℓ

k

cℓ

Figure 2.5: CBC mode for encryption.

Furthermore, if a plaintext block is changed, the corresponding ciphertext block will also be
changed, affecting all the subsequent ciphertext blocks. Hence CBC mode can also be useful for
authentication.

87

Dk

p0

k

c0

Dk

p1

k

c1

Dk

p2

k

c2

IV

· · · · · · Dk

pℓ

k

cℓ

· · · · · · Dk

pℓ

k

cℓ

Figure 2.6: CBC mode for decryption.

However, with CBC mode, the receiver needs to wait for the previous ciphertext block to arrive to
decrypt the next ciphertext block. In real-time applications, output feedback (OFB) mode can be used to
make communication more efficient. As shown in Figures 2.7 and 2.8, the encryption function is not
used for encrypting the plaintext blocks, rather it is used for generating a key sequence. Ciphertext
blocks are computed by XORing the plaintext blocks and the key sequence. Such a design allows the
receiver and the sender to generate the key sequence simultaneously before the ciphertext is sent.

Ek

c0

k

p0

Ek

c1

k

p1

Ek

c2

k

p2

IV

· · · · · · Ek

cℓ

k

pℓ

Figure 2.7: OFB mode for encryption.

In a way, OFB mode can be considered as a synchronous stream cipher (see Section 2.1.2). An-
other advantage of OFB mode is that padding is not needed. However, the encryption of a plaintext
block does not depend on the previous blocks, which makes it easier for the attacker to modify the
ciphertext blocks.

Ek

p0

k

c0

Ek

p1

k

c1

Ek

p2

k

c2

IV

· · · · · · Ek

pℓ

k

cℓ

Figure 2.8: OFB mode for decryption.

88

2.4 Further Reading

We refer the readers to [Sti05, Chapter 1] for more discussions on classical ciphers; and to [MVOV18]
for a detailed presentation on different cryptographic primitives. As for encryption modes and
padding schemes, we refer the readers to [PP09, Chapter 5].

In Section 2.2.7 we introduced a classical stream cipher – one-time pad. The area of stream ciphers,
albeit less discussed in the cryptography books than its block cipher counterpart, encompasses many
modern algorithm designs. We do not go into details in this book, interested readers will find more
information in [KPP+22].

The physical attacks we will present in Chapters 4 and 5 are for symmetric block ciphers, one
particular public-key cipher (RSA), and RSA signatures. There is also plenty of research on physical
attacks on other cryptographic primitives, e.g. hash functions [HH11, HLMS14, KMBM17], post-
quantum public-key algorithms [MWK+22, PSKH18, XIU+21, PPM17], or stream ciphers [BMV07,
BT12, KDB+22].

Chapter 3

Modern Cryptographic Algorithms and their
Implementations

Abstract

When the keys for encryption and decryption are the same in a cryptosystem, it is a
symmetric cipher. Otherwise, it is a public key/asymmetric cipher.

In this chapter, we will detail the designs of three symmetric block ciphers – DES,
AES, and PRESENT as well as one public key cipher – RSA. We will also discuss
how RSA can be used for digital signatures. Moreover, we will present different
techniques for implementing those algorithms.
Keywords: DES, AES, PRESENT, RSA, RSA signatures, bit-sliced implementation

We have defined cryptosystem/cipher in Definition 2.1.1. When the keys for encryption and
decryption are the same, it is a symmetric cipher. Otherwise, it is a public-key/asymmetric cipher. In
general, symmetric key ciphers are faster, but they require key exchange before communication.

In this chapter, we will detail the designs of three symmetric block ciphers – DES (Section 3.1.1),
AES (Section 3.1.2), and PRESENT (Section 3.1.3) as well as one public key cipher – RSA (Section 3.3).
We will also discuss how RSA can be used for digital signatures (Section 3.4). Moreover, we will
present different techniques for implementing those algorithms (Sections 3.2 and 3.5).

3.1 Symmetric Block Ciphers

For the construction of symmetric block ciphers, two important principles are followed by modern
cryptographers – confusion and diffusion. Shannon first introduced them in his famous paper [Sha45].

Confusion obscures the relationship between the ciphertext and the key. To achieve this, each
part of the ciphertext should depend on several parts of the key. For example, in Vigenère cipher,
each letter of the plaintext and each letter of the key influence exactly one letter of the ciphertext.
Consequently, we can use the Kasiski test (Section 2.2.6.2) or index of coincidence (Section 2.2.6.3)
to attack the Vigenère cipher. Diffusion obscures the statistical relationship between the plaintext
and the ciphertext. Each change in the plaintext is spread over the ciphertext, with the redundancies
being dissipated. For example, monoalphabetic ciphers (Section 2.2.4) have very low diffusion – the
distributions of letters in plaintext correspond directly to those in the ciphertext. That is also why
frequency analysis (Section 2.2.6.1) can be applied to break those ciphers.

As mentioned in Section 2.1.2, for modern symmetric block ciphers, P = C = Fn
2 for a positive

integer n, which is called the block length of the cipher. Furthermore, the key space is also a vector
space over F2 and its dimension is called the key length of the cipher. Each key k ∈ K is called a master
key.

A symmetric block cipher design specifies a round function and a key schedule. Encryption of a
plaintext block consists of a few rounds of round functions, possibly with minor differences. Each
round function takes the cipher’s current state as an input and outputs the next state. The key sched-
ule takes the master key k and outputs the keys for each round, which are called round keys. In most

89

90

cases, the key schedule is an invertible function. In particular, given one or more round keys, the
master keys can be calculated.

By Kerckhoffs’ principle, round functions and key schedule specifications are public, but the mas-
ter key (hence also the round keys) are secret. In physical attacks that we will discuss in the later parts
of the book, the attacker normally aims to recover some round key(s) and then use the inverse key
schedule to find the master key.

To be more specific, suppose we have a symmetric block cipher with round function F and in
total Nr number of rounds. Let Ki denote the round key for round i and Si denote the cipher state at
the end of round i. For a plaintext p ∈ Fn

2 , the corresponding ciphertext c ∈ Fn
2 can be computed as

follows1:

S0 = p,

S1 = F (S0,K1),

S2 = F (S1,K2),

...
SNr = F (SNr−1,KNr),

c = SNr.

To perform decryption, we require that for any given round key Ki, F (·,Ki) has an inverse, i.e.

F−1(F (x,Ki),Ki) = x, ∀x ∈ Fn
2 .

In this case, given ciphertext c, plaintext p can be computed as follows:

SNr = c,

SNr-1 = F−1(SNr,KNr),

...
S1 = F−1(S2,K2),

S0 = F−1(S1,K1),

p = S0.

f

f

f

L0 R0

L3 R3

K1

K2

K3

Figure 3.1: An illustration of Feistel cipher encryption algorithm.

We recall for a vector space over F2, vector addition is given by bitwise XOR, denoted ⊕ (Defini-
tion 1.3.6). XOR with the round key is a common operation in round functions of symmetric block
ciphers.

1The round function for the last round might be a bit different, as for the case of AES (see Section 3.1.2).

91

Plaintext Master key

KS

SB1
1 SB1

2 · · · SB1
ℓ

SB2
1 SB2

2 · · · SB2
ℓ

SBn
1 SBn

2 · · · SBn
ℓ

Ciphertext

K0

K1

K2

Kn−1

Kn

Permutation

Permutation

Permutation

1

Figure 3.2: An illustration of SPN cipher encryption algorithm.

Another common function is a substitution function called Sbox, denoted SB,

SB : Fω1
2 → Fω2

2 .

Normally ω1 or/and ω2 is a divisor of the block length n and a few Sboxes are applied in one round
function. When ω1 = ω2, SB is a permutation on Fω1

2 and we say that the Sbox is a ω1−bit Sbox.
There are mainly two types of symmetric block ciphers – Feistel cipher and Substitution–permutation

network (SPN) cipher.
For a Feistel cipher, the cipher state at the beginning/end of each round is divided into two halves

of equal length. The cipher state at the end of round i is denoted as Li and Ri, where L stands for left
and R stands for right. The round function F is defined as

(Li, Ri) = F (Li−1, Ri−1,Ki), where Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1,Ki). (3.1)

We note that f is a function that does not need to have an inverse since the function F defined as in
Equation 3.1 is always invertible:

Li−1 = Ri ⊕ f(Li,Ki), Ri−1 = Li.

92

Furthermore, the ciphertext is normally given by RNr||LNr (i.e. swapping the left and right side of
the cipher state at the end of the last round). In this case, if we let Ri and Li denote the right and left
part of the cipher state at the end of round i in the decryption, then the decryption computation is
the same as in Equation 3.1 except that the round keys are in reverse order as that for encryption. An
illustration of Feistel cipher can be seen in Figure 3.1.

Let ω be a divisor of n, the block length, and let ℓ = n/ω. The design of an SPN cipher encryption
is shown in Figure 3.2, where SB is an ω−bit Sbox. In most cases, ω = 4, 8.

Each round of an SPN cipher normally consists of bitwise XOR with the round key, application
of ℓ parallel ω−bit Sboxes, and a permutation on Fn

2 . The encryption starts with XOR with a round
key, also ends with XOR with a round key before outputting the ciphertext. Otherwise, the cipher
states in the second (or the last) round are all known to the attacker. Those two operations are called
whitening. For decryption, the inverse of Sbox and permutation are computed, and round keys are
XOR-ed with the cipher state in reverse order compared to that for encryption.

3.1.1 DES

Let us first look at one Feistel cipher – Data Encryption Standard (DES). DES was developed at IBM
by a team led by Horst Feistel and the design was based on Lucifer cipher [Sor84]. It was used as the
NIST standard from 1977 to 2005. Furthermore, it has a significant influence on the development of
cipher design.

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

(a) IP

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

(b) IP−1

Table 3.1: Initial permutation (IP) and final permutation (IP−1) in DES algorithm.

The block length of DES is n = 64, i.e. P = C = F64
2 . Hence Li, Ri ∈ F32

2 . The master key length is
56, i.e. K = F56

2 . The round key length is 48. The total number of rounds Nr = 16. An illustration of
DES encryption is shown in Figure 3.3. Each DES round function follows the structure as described
in Equation 3.1.

Before the first round function, the encryption starts with an initial permutation (IP). The inverse of
IP, called the final permutation (IP−1) is applied to the cipher state after the last round before outputting
the ciphertext. Initial and final permutations are included for the ease of loading plaintext/ciphertext.
Initial and final permutations are shown in Table 3.1. For example, in IP, the 1st bit of the output is
from the 58th bit of the input. The 2nd bit of the output is from the 50th bit of the input.

Note

For DES specification, we consider the 1st bit of a value as the leftmost bit in its
binary representation. For example, the 1st bit of 3 = 0112 is 0, the 2nd bit is 1 and
the last bit is 1.

At the ith round, the function f in the round function of DES takes input Ri−1 ∈ F32
2 and round

key Ki ∈ F48
2 , then outputs a 32−bit intermediate value as follows:

f(Ri−1,Ki) = PDES(Sboxes(EDES(Ri−1)⊕Ki)).

Firstly, Ri−1 is passed to an expansion function EDES : F32
2 → F48

2 . Then the output EDES(Ri−1) is
XOR-ed with the round key Ki, producing a 48−bit intermediate value. This 48−bit value is divided
into eight 6−bit subblocks. Eight distinct Sboxes, SBj

DES : F6
2 → F4

2 (1 ≤ j ≤ 8), are applied to each

93

f

f

f

f

IP

L0 R0

IP−1

Ciphertext

K1

K2

K15

K16

Figure 3.3: An illustration of DES encryption algorithm.

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1

Table 3.2: Expansion function EDES : F32
2 → F48

2 in DES round function. The 1st bit of the output is
given by the 32nd bit of the input. The 2nd bit of the output is given by the 1st bit of the input.

of the 6 bits. Finally, the resulting 32−bit intermediate value goes through a permutation function
PDES : F32

2 → F32
2 . An illustration of f is shown in Figure 3.4.

Details of the expansion function EDES are given in Table 3.2. 16 bits of the input are repeated and
affect two bits of the output, which influence two Sboxes. Such a design makes the dependency of
the output bits on the input bits spread faster and achieves higher diffusion.

The design of the first Sbox is shown in Table 3.3, and the rest of the Sboxes are detailed in
Appendix C. To use those tables, take an input of one Sbox, say b1b2b3b4b5b6, the output corresponds

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 3.3: SB1
DES in DES found function.

to row b1b6 and column b2b3b4b5. We note that each row of each of the Sbox tables is a permutation of
integers 0, 1, . . . , 15.

Example 3.1.1. Suppose the input of SB1
DES is

b1b2b3b4b5b6 = 100110.

According to Table 3.3, the row number is given by b1b6 = 2. The column number is given by

94

Ri−1 Ki

Expansion (EDES)

/ 32 / 48

/ 48

SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8

Permutation (PDES)

Figure 3.4: Function f in DES round function.

b2b3b4b5 = 0011 = 3. Hence the output is 8 = 1000. Similarly (see Table C.1 (b)),

SB3
DES(100110) = 9 = 1001

The details of the permutation function PDES are given in Table 3.4.

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Table 3.4: Permutation function PDES : F32
2 → F32

2 in DES round function. The 1st bit of the output is
given by the 16th bit of the input. The 2nd bit of the output comes from the 7th bit of the input.

The key schedule of DES takes a 64−bit master key as input and outputs round keys of length 48.
An illustration of the key schedule is in Figure 3.5, where PC stands for permuted choice.

Each 8th bit of the master key is a parity-check bit of the previous 7 bits, i.e. the XORed value
of those 7 bits. PC1 reduces 64−bit input to 56 bit by ignoring those parity-check bits and outputs
a permutation of the remaining 56 bits. Then the output is divided into two 28−bit halves (see
Table 3.5). Each half rotates left by one or two bits, depending on the round (see Table 3.6). Finally,

Left
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

Right
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 3.5: Left and right part of the intermediate values in DES key schedule after PC1. The 1st bit of
the left part comes from the 57th bit of the master key (input to PC1).

PC2 selects 48 bits out of 56 bits, permutes them, and outputs the round key (see Table 3.7).
For some master keys, the key schedule outputs the same round keys for more than one round.

Those master keys are called weak keys. Weak keys should not be used. It can be shown that there are
in total four of them:

• 01010101 01010101,

• FEFEFEFE FEFEFEFE,

• E0E0E0E0 F1F1F1F1,

• 1F1F1F1F 0E0E0E0E.

Remark 3.1.1. From the design of the DES key schedule, we can see that with the knowledge of any
round key, the attacker can recover 48 bits of the master key. The remaining 8 can be found by brute
force. Alternatively, with the knowledge of another round key, the master key can be recovered.

95

Master key

/ 64

PC1

≪ ≪

PC2K1 /
48

≪ ≪

PC2K2 /
48

≪ ≪

PC2K15 /
48

≪ ≪

PC2K16 /
48

Figure 3.5: DES key schedule.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rotation 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 3.6: Number of key bits rotated per round in DES key schedule.

14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2 41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32

Table 3.7: PC2 in DES key schedule.

96

3.1.2 AES

In 1997, NIST published a call for cryptographic algorithms as a replacement for DES. In October
2000, Rijndael was selected as the winner and certain versions of Rijndael are set as the Advanced
Encryption Standard (AES). Rijndael was invented by Belgian cryptographers Joan Daemen and Vin-
cent Rijmen and optimized for software efficiency on 8 and 32 bit processors.

SB

SBAES

✧
✧
✧
✧

SR

column ×




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




✧
✧

✧
✧

MC AK

Figure 3.6: AES round function for round i, 1 ≤ i ≤Nr−1. SB, SR, MC and AK stand for SubBytes,
ShiftRows, MixColumns, and AddRoundKey respectively.

For AES, block length n = 128, number of rounds Nr= 10, 12, 14 with corresponding key lengths
128, 192, 256. The corresponding algorithms are hence named AES-128, AES-192, and AES-256 re-
spectively. The original design of Rijndael also allows for other key lengths and block lengths. As
shown in Table 3.8, where blue-colored values are specifications adopted by AES.

key length
block length

128 160 192 224 256
128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Table 3.8: Specifications of Rijndael design, where blue-colored values are adopted by AES.

The encryption algorithm starts with an initial AddRoundKey operation. Then the round func-
tion for the first Nr−1 rounds consists of four operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. Finally, the last round (round Nr) consists of SubBytes, ShiftRows, and AddRound-
Key. AddRoundKey is bitwise XOR with the round key and SubBytes is the application of 8−bit
Sboxes. ShiftRows permutes the bytes and MixColumns is a function on 32−bit values (four bytes).
Figure 3.6 illustrates the AES round function.

The inverse of SubBytes, ShiftRows, and MixColumns are denoted as InvSubBytes, InvShiftRows,
and InvMixColumns respectively. The first round of AES decryption computes AddRoundKey, In-
vShiftRows, and InvSubBytes. Then the round function for the next Nr−1 rounds consists of Ad-
dRoundKey, InvMixColumns, InvShiftRows, and InvSubBytes. Finally, there is an additional Ad-
dRoundKey operation. The round keys for decryption are in reverse order as those for encryption.

To give more details on the AES round function, we represent the AES cipher state as a four-by-
four matrix of bytes: 



s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 . (3.2)

Recall that one byte is a vector in F8
2 and can be represented as a hexadecimal number between 00

and FF (see Definition 1.3.7 and Remark 1.3.3). As discussed in Section 1.5.1, a byte can also be
identified as an element in F2[x]/(f(x)), where f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x] is an irreducible
polynomial over F2.

97

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 3.9: AES Sbox.

Remark 3.1.2. We refer to
(
si0 si1 si2 si3

)
as the (i+ 1)th row of the cipher state, and



s0j
s1j
s2j
s3j




as the (j + 1)th column of the cipher state.

The 8−bit Sbox in AES can be described using Table 3.9, for example, SBAES(12) = C9. Different
from the eight Sboxes in DES, AES Sbox can also be defined algebraically. Let

A =




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1




, a =




0
1
1
0
0
0
1
1




,

then

SBAES(z) =

{
Az−1 + a z ̸= 0

a z = 0
(3.3)

where z−1 is the inverse of z as an element in F2[x]/(f(x)) (see Section 1.5.1).

Example 3.1.2. SBAES(00) = a = 011000112 = 63.

Example 3.1.3. Suppose the input of AES Sbox is 03 = 000000112, which corresponds to x + 1 ∈
F2[x]/(f(x)). We have shown in Example 1.5.21 that 03−1 = 111101102. Then

A




1
1
1
1
0
1
1
0




+ a =




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1







1
1
1
1
0
1
1
0




+




0
1
1
0
0
0
1
1




=




0
0
0
1
1
0
0
0




+




0
1
1
0
0
0
1
1




=




0
1
1
1
1
0
1
1




.

98

So SBAES(03) = 011110112 = 7B, which agrees with Table 3.9.

For decryption, we need to compute the inverse of SubBytes, InvSubBytes. Let g denote the
function

g(z) = Az + a.

Then by Equation 3.3, InvSubBytes computes

SB−1
AES(z) =

{
(g−1(z))−1 g−1(z) ̸= 0

0 g−1(z) = 0
,

where g−1(z) is given by (see [DR02])

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0




z +




0
0
0
0
0
1
0
1




InvSubBytes can also be described using a table, as detailed in Table 3.10.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 BE BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 3.10: Inverse of AES Sbox.

Example 3.1.4. Let z = 63 = 011000112. Then

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0







0
1
1
0
0
0
1
1




+




0
0
0
0
0
1
0
1




=




0
0
0
0
0
1
0
1




+




0
0
0
0
0
1
0
1




=




0
0
0
0
0
0
0
0




,

which is equal to 00. And we have SB−1
AES(63) = 00.

99

Example 3.1.5. Let z = 8C = 100011002. Then

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0







1
0
0
0
1
1
0
0




+




0
0
0
0
0
1
0
1




=




0
1
0
1
1
1
1
0




+




0
0
0
0
0
1
0
1




=




0
1
0
1
1
0
1
1




,

which corresponds to
x6 + x4 + x3 + x+ 1 ∈ F2[x]/(f(x)).

By the Euclidean algorithm

f(x) = (x2 + 1)(x6 + x4 + x3 + x+ 1) + (x5 + x3 + x2),

x6 + x4 + x3 + x+ 1 = x(x5 + x3 + x2) + (x+ 1),

x5 + x3 + x2 = (x4 + x3 + x+ 1)(x+ 1) + 1.

Then by the extended Euclidean algorithm

1 = (x5 + x3 + x2) + (x4 + x3 + x+ 1)(x+ 1)

= (x5 + x3 + x2) + (x4 + x3 + x+ 1)((x6 + x4 + x3 + x+ 1) + x(x5 + x3 + x2))

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1) + (x5 + x4 + x2 + x+ 1)(x5 + x3 + x2)

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1)

+(x5 + x4 + x2 + x+ 1)(f(x) + (x2 + 1)(x6 + x4 + x3 + x+ 1))

= (x5 + x4 + x2 + x+ 1)f(x) + (x7 + x6 + x5 + x4)(x6 + x4 + x3 + x+ 1).

And we have

(x6 + x4 + x3 + x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 = 111100002 = F0,

which gives SB−1
AES(8C) = F0

As the name suggests, the ShiftRows operation shifts the bytes in the rows of the cipher state.
Recall the representation of the AES cipher state from Equation 3.2. Then the ShiftRows operation
can be described by the following transformation:




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


→




s00 s01 s02 s03
s11 s12 s13 s10
s22 s23 s20 s21
s33 s30 s31 s32


 .

The first row does not change. The second row rotates left by one byte. The third row rotates left by
two bytes. Finally, the last row rotates left by three bytes.

In another representation, let us denote the input of ShiftRows using cipher state representation
in Equation 3.2. Let the output of ShiftRows be a matrix B with entries bij (0 ≤ i, j ≤ 3). Then




b0j
b1j
b2j
b3j


 =




s0j
s1(j+1 mod 4)

s2(j+2 mod 4)

s3(j+3 mod 4)


 , 0 ≤ j < 4. (3.4)

For decryption, the inverse of ShiftRows, InvShiftRows, can be easily deduced.
The MixColumns function takes each of the four columns of the cipher state (Equation 3.2)




s0j
s1j
s2j
s3j


 , j = 0, 1, 2, 3,

100

as input. The column is considered as a polynomial over F2[x]/(f(x)):

s3jx
3 + s2jx

2 + s1jx+ s0j .

MixColumns multiplies s3jx
3 + s2jx

2 + s1jx + s0j with another polynomial over F2[x]/(f(x)) given
by

g(x) = 03x3 + 01x2 + 01x+ 02.

The multiplication is computed modulo x4 + 1. This design choice is based on specific diffusion and
performance goals. We will not go into the details in this book, interested readers can refer to [DR02].
Let d(x) = d3x

3 + d2x
2 + d1x+ d0 denote the product of s3jx3 + s2jx

2 + s1jx+ s0j with g(x) modulo
x4 + 1. We have

d(x) = (s3jx
3 + s2jx

2 + s1jx+ s0j)(03x
3 + 01x2 + 01x+ 0216) mod (x4 + 1)

= 03s3jx
6 + (01s3j + 03s2j)x

5 + (01s3j + 01s2j + 03s1j)x
4

+(02s3j + 01s2j + 01s1j + 03s0j)x
3 + (02s2j + 01s1j + 01s0j)x

2

+(02s1j + 01s0j)x+ 02s0j mod (x4 + 1)

= (02s3j + 01s2j + 01s1j + 03s0j)x
3 + (03s3j + 02s2j + 01s1j + 01s0j)x

2

+(01s3j + 03s2j + 02s1j + 01s0j)x+ 01s3j

+01s2j + 03s1j + 02s0j . (3.5)

Thus, MixColumns can be considered as multiplying the input column by a matrix:



d0
d1
d2
d3


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







s0j
s1j
s2j
s3j


 . (3.6)

Example 3.1.6. Suppose 


s0j
s1j
s2j
s3j


 =




D4
BF
5D
30


 .

Then 


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







D4
BF
5D
30


 =




04
66
81
E5




For example, we have calculated in Examples 1.5.17 and 1.5.20 that

02× D4 = 101100112, 03× BF = 110110102.

The first entry of the product is then given by

10110011⊕ 11011010⊕ 01011101⊕ 00110000 = 00000100 = 04.

Remark 3.1.3. For any

a =




a0
a1
a2
a3


 , b =




b0
b1
b2
b3


 ,

we have
MixColumns(a+ b) = MixColumns(a) + MixColumns(b),

where the addition is computed modulo f(x). As discussed in Remark 1.5.2, this addition is equiva-
lent to XOR. Consequently, we have

MixColumns(a⊕ b) = MixColumns(a)⊕MixColumns(b).

101

The inverse of MixColumns, InvMixColumns, is defined by multiplying each column of the ci-
pher state by the inverse of g(x) (Equation 3.1.2) modulo x4 + 1. We note that

x4 + 1 = (x+ 1)4

as a polynomial over F2[x]/(f(x)). Since 1 is not a root of g(x), x + 1 does not divide g(x), which
gives

gcd(g(x), x4 + 1) = 1.

We have shown that F2[x]/(f(x)) is a field in Section 1.5.1. g(x)−1 mod x4+1 can be computed using
the extended Euclidean algorithm, similarly to Example 1.5.10. We have

g(x)−1 mod x4 + 1 = 0Bx3 + 0Dx2 + 09x+ 0E.

It can be shown in the same way as in Equation 3.5 that, multiplication by g(x)−1 mod x4 + 1 is
equivalent to multiplication by the following matrix




0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


 . (3.7)

We will discuss the AES key schedule for key length 128, which corresponds to Nr= 10. The
algorithms for other key lengths are defined similarly (see [DR02] for more details). The key schedule
algorithm is named KeyExpansion, shown in Algorithm 3.1. The master key k is written as a four-
by-four array of bytes, denoted by K[4][4] in the algorithm. KeyExpansion expands K[4][4] to a 4×44
array of bytes, denoted by W [4][44]. Since Nr= 10, in total we need 11 round keys. The ith round
key is given by the columns 4i to 4(i + 1) − 1 of W . Note that the 0th round key, i.e. the round key
for whitening at the beginning of the encryption, is given by the first 4 columns of W , which are
equal to the master key (lines 1 – 3). Round constants, denoted Rcon (line 6), is an array of ten bytes,
computed as follows:

Rcon[1] = x0 = 01, and Rcon[j] = xRcon[j − 1] = xj−1, for j > 1.

We have
Rcon = { 01, 02, 04, 08, 10, 20, 40, 80, 1B, 36 } .

Algorithm 3.1: KeyExpansion – AES-128 key schedule.
Input: K[4][4] // master key written as a four-by-four array of bytes

Output: W [4][44]
1 for j = 0, j < 4, j ++ do
2 for i = 0, i < 4, i++ do
3 W[i][j]=K[i][j]

4 for j = 4, j < 44, j ++ do
5 if j mod 4 == 0 then
6 W [0][j] = W [0][j − 4]⊕ SBAES(W [1][j − 1])⊕ Rcon[j/4]
7 for i = 1, i < 4, i++ do
8 W [i][j] = W [i][j − 4]⊕ SBAES(W [i+ 1 mod 4][j − 1])

9 else
10 for i = 0, i < 4, i++ do
11 W [i][j] = W [i][j − 4]⊕W [i][j − 1]

12 return W

102

Rcon ≪SB

Figure 3.7: Key schedule for AES-128.

The key schedule is also depicted in Figure 3.7, where the round keys are represented as four-by-
four grids and each box corresponds to one byte. The rotation << rotates the right-most column by
one byte 



y0
y1
y2
y3


 7→




y1
y2
y3
y0


 .

Remark 3.1.4. We note that with the knowledge of any round key for AES-128 encryption, the at-
tacker can recover the master key using the inverse of the key schedule.

3.1.3 PRESENT

PRESENT was proposed in 2007 [BKL+07] as a symmetric block cipher optimized for hardware im-
plementation. It has block length n = 64, number of rounds Nr= 31, and a key length of either 80
or 128. The Sbox for PRESENT is a 4−bit Sbox. When the key length is 80, the algorithm is called
PRESENT-80.

The round function of PRESENT consists of addRoundKey, sBoxLayer, and pLayer. After 31
rounds, addRoundKey is applied again before the ciphertext output (see Figure 3.8).

Note

As opposed to DES specification, for PRESENT specification, we consider the 0th bit
of a value as the rightmost bit in its binary representation. For example, the 0th bit
of 3 = 0112 is 1, the 1st bit is 1 and the 2nd bit is 0.

addRoundKey takes the current 64−bit cipher state

b63b62 . . . b0

103

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext

Figure 3.8: An illustration of PRESENT encryption algorithm.

and XOR it with the round key
Ki = κi63 . . . κ

i
0, (1 ≤ i ≤ 32)

bitwise
bj = bj ⊕ κij , 0 ≤ j ≤ 63.

sBoxLayer applies sixteen 4−bit Sboxes to each nibble of the current cipher state. The 4−bit Sbox
is given by Table 3.11. For example, if the input is 0, the output is C.

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 3.11: PRESENT Sbox.

pLayer permutes the 64 bits of the cipher state using the following formula:

pLayer(j) =
⌊
j

4

⌋
+ (j mod 4)× 16,

where j denotes the bit position. For example, the 0th bit of the input stays as the 0th bit of the
output, and the 1st bit of the input goes to the 16th bit of the output. It can also be described using
Table 3.12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 3.12: PRESENT pLayer.

Figure 3.9 shows two rounds of PRESENT.

104

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

Ki

Ki+1

Figure 3.9: Two rounds of PRESENT.

79 39 38 33 32 19 18 15 14 0

79 76 75 61 60 20 19 15 14 0

round counterSB

Ki

Ki+1

Figure 3.10: PRESENT-80 key schedule.

Here we detail the key schedule for PRESENT-80. We refer the readers to [BKL+07] for the key
schedule for the 128−bit master key. Let us denote the variable storing the key by k79k78 . . . k0. At
round i, the round key is given by

Ki = κi63κ
i
62 . . . κ

i
0 = k79k78 . . . k16.

After extracting the round key, the variable k79k78 . . . k0 is updated using the following steps:

1. Left rotate of 61 bits, k79k78 . . . k1k0 = k18k17 . . . k20k19;

2. k79k78k77k76 = SBPRESENT(k79k78k77k76);

3. k19k18k17k16k15 = k19k18k17k16k15⊕ round counter;

where SBPRESENT stands for the PRESENT Sbox (Table 3.11) and round counter = 1, 2, . . . , 31. A
graphical illustration is shown in Figure 3.10.

Remark 3.1.5. With the knowledge of any round key for PRESENT-80, the attacker can recover 64
bits of the master key. The remaining 16 bits can be recovered by brute force. Alternatively, with the
knowledge of another round key, the master key can also be revealed.

3.2 Implementations of Symmetric Block Ciphers

In Section 3.1, we saw that there are mainly three building blocks for a symmetric block cipher: bit-
wise XOR with round key, Sbox, and permutation. In this section, we will discuss how to implement
each of them. While we mainly focus on the software implementations of PRESENT and AES, the
main ideas apply in general to other ciphers with similar constructions.

It is easy in both software and hardware to implement bitwise XORwith a round key. In hardware,
there is an XOR gate and almost every processor has a dedicated XOR instruction.

105

3.2.1 Implementing Sboxes

In software, a naı̈ve way to implement Sbox is to use a lookup table. The table is stored as an array
in random access memory or flash memory. The storage space required for an Sbox SB: Fω1

2 →
Fω2
2 is ω2 × 2ω1 . For example, PRESENT has a 4−bit Sbox (Table 3.11) and the storage required is

24 × 4 = 64 bits, or 8 bytes. A lookup table implementation of PRESENT Sbox in pseudocode is
shown in Algorithm 3.2. As current computer architectures normally use word sizes of at least one

Algorithm 3.2: A lookup table implementation of PRESENT Sbox in pseudocode.

1 integer array [1..16] Sbox = {C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}
2 s = Sbox[s] // table lookup

byte (generally multiple bytes), it is not efficient to implement Sbox nibble-wise. To optimize the
execution time, we can merge two PRESENT Sbox table lookups (Algorithm 3.3). However, even

Algorithm 3.3: A more efficient lookup table implementation of PRESENT Sbox in pseu-
docode.
1 integer array [1..16] Sbox = {C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}
2 integer big s = Sbox[s & 0F] // lower nibble; & denotes bitwise AND (see

Definition 1.3.6)

3 big s = big s ∨ (Sbox[(s≫4) & 0F]≪4) // upper nibble; ∨ denotes bitwise OR (see

Remark 1.3.2)

4 s = big s // state update

though we can utilize the space more efficiently, the additional operations take extra computing
time. To avoid the bit shifts and boolean operations, it is better to combine two 4× 4 Sbox tables into
one bigger 8× 8 table (Algorithm 3.4):

SB(0)|SB(0) SB(0)|SB(1) . . . SB(0)|SB(F)
SB(1)|SB(0) SB(1)|SB(1) . . . SB(1)|SB(F)

...
...

...
...

SB(F)|SB(0) SB(F)|SB(1) . . . SB(F)|SB(F)

Algorithm 3.4: A lookup table implementation combining two PRESENT Sboxes in parallel
in pseudocode.

1 integer array [1..256] Sbox = {CC, C5, . . . , C1, C2, 5C, 55, . . . , 51, 52, . . . 2C, 25, . . . , 21, 22}
2 s = Sbox[s] // table lookup of two nibbles in parallel

3.2.2 Implementing Permutations

The efficiency of the implementation is highly dependent on the design of the permutation. For AES
ShiftRows, the bytes are permuted, making it easier to implement. For PRESENT pLayer, the bit level
permutations are “free” in hardware as we just need to reorder the wires, no new gates are required.
However, in software, extracting each bit and putting it in the right position is time-consuming.

3.2.2.1 Implementing pLayer

In this part, we will discuss two methods for implementing PRESENT pLayer by combining it with
sBoxLayer.

The first method is straightforward. We will construct sixteen 4 × 64 lookup tables, TB1, TB2,
. . . , TB16. The input of TBi is given by the ith nibble of the cipher state at the input of sBoxLayer.
The outputs are 64−bit values with mostly 0s except for 4 bits that are related to this ith input nibble
through sBoxLayer and pLayer.

106

Let us consider TB1, whose input is the first nibble of the cipher state at the input of sBoxLayer.
By Table 3.12, the Sbox output corresponding to this nibble should go to bits 0, 16, 32 and 48 of the
output of pLayer. Thus, each entry of TB1 is a 64−bit value with bits in positions 0, 16, 32 and 48
given by the Sbox output, and the other bits are all 0.

Example 3.2.1. For example, if the input is A, the Sbox output should be F = 11112 and

TB1[A] = 0 . . . 010 . . . 010 . . . 010 . . . 1,

where the 0th, 16th, 32nd and 48th bits are 1. Similarly, PRESENT Sbox output for input B is 10002,
and

TB1[B] = 0 . . . 010 . . . 0,

where the 48th bit is 1.

Example 3.2.2. TB2 takes the second nibble of the cipher state as input. The output bits should be
positioned at 1, 17, 33 and 49. Thus

TB2[B] = 0 . . . 010 . . . 0,

where only the 49th bit is 1.

As for the memory consumption, a 4 × 64 table takes 64 × 24 bits and those sixteen tables take
16384 bits of memory. Compared to one Sbox table, which is 64 bits, this is much bigger, but these
tables also implement pLayer of PRESENT. The speed can be further improved by merging two Sbox
computations and constructing eight 8 × 64 lookup tables. The memory consumption will be the
same. But the speed will be much faster.

The second method [GHNZ09, PV13] requires a deeper look at the pLayer design. The aim is to
design four 8 × 8 tables that output the corresponding Sbox values and permutate the bits of each
byte of the sBoxLayer input.

If we analyze Table 3.12 and Figure 3.9, we can see that in round i:

• The 0th bits of bytes at positions 0, 1, 3, 5 in pLayer output come from the 0th nibble of the input
of pLayer, which corresponds to the 0th nibble of the cipher state at sBoxLayer input of round
i;

• The 1st bits of bytes at positions 0, 1, 3, 5 in pLayer output correspond to the 1st nibble of the
cipher state at sBoxLayer input;

• The 2nd bits of bytes at positions 0, 1, 3, 5 in pLayer output correspond to the 2nd nibble of the
cipher state at sBoxLayer input;

• The 3rd bits of bytes at positions 0, 1, 3, 5 in pLayer output correspond to the 3rd nibble of the
cipher state at sBoxLayer input;

• . . .

• The 7th bits of bytes 0, 1, 3, 5 in pLayer output correspond to the 7th nibble of the cipher state
at sBoxLayer input;

Similar observations hold for bytes at positions 2, 4, 6, 7.
We can have the following four tables for the implementation of sBoxLayer and pLayer:

• Table one takes the 0th byte (bits 0 − 7) of sBoxLayer input, the corresponding output will be
the 0th and 1st bits for bytes at positions 0, 1, 3, 5 (bits 0, 1, 16, 17, 32, 33, 48, 49) in the output of
pLayer;

• Table two takes the 1st byte (bits 8 − 15) of sBoxLayer input, the corresponding output will be
the 2nd and 3rd bits for bytes at positions 0, 1, 3, 5 (bits 2, 3, 18, 19, 34, 35, 50, 51) in the output of
pLayer;

107

• Table three takes the 2nd byte (bits 16− 23) of sBoxLayer input, the corresponding output will
be the 4th and 5th bits for bytes at positions 0, 1, 3, 5 (bits 4, 5, 20, 21, 36, 37, 52, 53) in the output
of pLayer;

• Table four takes the 3rd byte (bits 24 − 31) of sBoxLayer input, the corresponding output will
be the 6th and 7th bits for bytes at positions 0, 1, 3, 5 (bits 6, 7, 22, 23, 38, 39, 54, 55) in the output
of pLayer.

The same tables can also be used for the remaining four bytes of the cipher state:

• Table one takes the 4th byte (bits 32− 39) of sBoxLayer input, the corresponding output will be
the 0th and 1st bits for bytes at positions 2, 4, 6, 7 (bits 8, 9, 24, 25, 40, 41, 56, 57) in the output of
pLayer;

• Table two takes the 5th byte (bits 40− 47) of sBoxLayer input, the corresponding output will be
the 2nd and 3rd bits for bytes at positions 2, 4, 6, 7 (bits 10, 11, 26, 27, 42, 43, 58, 59) in the output
of pLayer;

• Table three takes the 6th byte (bits 48−55) of sBoxLayer input, the corresponding output will be
the 4th and 5th bits for bytes at positions 2, 4, 6, 7 (bits 12, 13, 28, 29, 44, 45, 60, 61) in the output
of pLayer;

• Table four takes the 7th byte (bits 56−63) of sBoxLayer input, the corresponding output will be
the 6th and 7th bits for bytes at positions 2, 4, 6, 7 (bits 14, 15, 30, 31, 46, 47, 62, 63) in the output
of pLayer.

Since the input for each table is one byte, we will be computing two Sboxes in parallel. In Al-
gorithm 3.4 we have seen the algorithm for such a computation. To see how the four tables are
computed, we will detail the first three entries of each table. The other entries are calculated with
similar methods.

First, we note that to combine two Sboxes, the lookup table starts with

CC C5 C6 . . .

As mentioned above, one type of input intended for Table one is bits at positions 0−7 of sBoxLayer
input, those bits correspond to bits at positions 0− 7 at sBoxLayer output. The corresponding output
of Table one are bits at positions 0, 1, 16, 17, 32, 33, 48, 49 of pLayer output. According to pLayer
(Table 3.12) design, we will need to permute bits at positions 0 − 7 to 0, 4, 1, 5, 2, 6, 3, 7 so that they
will give us bits at positions 0, 1, 16, 17, 32, 33, 48, 49 of pLayer output. For example, if the input of
Table one is 00, the corresponding sBoxLayer output is CC= 11001100, where the 0th bit is 0. After
permutation, we get 11110000 =F0. Similarly, we get that Table one starts with

F0 B1 B4 . . . (3.8)

If we consider the other set of inputs intended for Table one, which are bits at positions 32 − 39,
they should be first permuted to 32, 36, 33, 37, 34, 38, 35, 39 so that the output will be bits at positions
8, 9, 24, 25, 40, 41, 56, 57. Then we arrive at the same values as in Equation 3.8.

For Table two, the output will later be positioned at the 2nd and 3rd positions in the eight bytes
of the pLayer output. A natural choice is to design it so that the output can be combined with the
outputs of other tables with a binary operation, e.g. ∨. In particular, since the output of Table one
starts with bits from positions 0, 1 and 8, 9, the output of Table two will put bits from positions 2, 3 and
10, 11 in the 2nd and 3rd positions. Thus, Table two permutes bits 8 − 15 to 11, 15, 8, 12, 9, 13, 10, 14,
which then will give bits at 50, 51, 2, 3, 18, 19, 34, 35 for pLayer output. Similarly, bits 40 − 47 will be
permuted to 43, 47, 40, 44, 41, 45, 42, 46 and give bits at 58, 59, 10, 11, 26, 27, 42, 43 for pLayer output.
The first few entries of Table two are as follows:

3C 6C 2D . . .

Table three first permutes bits from 16 − 23 (resp. 48 − 55) to 18, 22, 19, 23, 16, 20, 17, 21 (resp.
50, 54, 51, 55, 48, 52, 49), which then give bits 36, 37, 52, 53, 4, 5, 20, 21 (resp. 44, 45, 60, 61, 12, 13, 28, 29)
of pLayer output. The table starts with

0F 1B 4B . . .

108

Table four first permutes bits from 24 − 31 (resp. 56 − 63) to 25, 29, 26, 30, 27, 31, 24, 28 (resp.
57, 61, 58, 62, 59, 63, 56, 60), which then give bits 22, 23, 38, 39, 54, 55, 6, 7 (resp. 30, 31, 46, 47, 62, 63, 14, 15)
of pLayer output. The table starts with

C3 C6 D2 . . .

A pseudocode for the implementation is detailed in Algorithm 3.5. We represent the ith byte of
the cipher state at sBoxLayer input by bi (i = 0, 1, 2, . . . , 7). The algorithm demonstrates how the bits
0− 7 of the pLayer output can be computed. Other bits can be calculated similarly. In line 1, we pass
the 0th byte of the cipher state at sBoxLayer input, b0, to Table one. The table lookup result is stored
in a1, which gives us bits 0, 1, 16, 17, 32, 33, 48, 49 of pLayer output. In line 5, the leftmost two bits of
s1 are given by the leftmost two bits of a1, which correspond to bits at positions 0 and 1 in pLayer
output. Similarly, s2 (reps. s3, s4) stores bits at positions 2, 3 (resp. 4, 5, 6, 7) at of pLayer. Then those
eight bits are combined together in line 9 to produce the 0th byte of the pLayer output.

Algorithm 3.5: An implementation that combines sBoxLayer and pLayer for PRESENT.
Input: b7, b6, b5, b4, b3, b2, b1, b0, Table one, Table two, Table three, Table four
// b7, b6, b5, b4, b3, b2, b1, b0 is the cipher state at the input of sBoxLayer, each bi

represents one byte
// Table one = { F0, B1, B4, . . . }
// Table two = { 3C, 6C, 2D, . . . }
// Table three = { 0F, 1B, 4B, . . . }
// Table four = { C3, C6, D2, . . . }
Output: cipher state at the output of pLayer
// compute bytes at positions 0, 1, 3, 5 in pLayer output----

1 a1 = Table one[b0]// look up bits 0, 1, 16, 17, 32, 33, 48, 49

2 a2 = Table two[b1]// look up bits 50, 51, 2, 3, 18, 19, 34, 35

3 a3 = Table three[b2]// look up bits 36, 37, 52, 53, 4, 5, 20, 21

4 a4 = Table four[b3]// look up bits 22, 23, 38, 39, 54, 55, 6, 7

// computing bits 0− 7 of pLayer output

5 s1 = a1 & C0// extract bits 0, 1. & denotes bitwise AND (see Definition 1.3.6)

6 s2 = a2 & 30// extract output bits 2, 3

7 s3 = a3 & 0C// extract output bits 4, 5

8 s4 = a4 & 03// extract output bits 6, 7

9 b0 = s1 ∨ s2 ∨ s3 ∨ s4// combine bits, ∨ denotes bitwise OR (see Remark 1.3.2)

// other bits of bytes at positions 0, 1, 3, 5 in pLayer output

10 . . .
// compute bytes at positions 2, 4, 6, 7 in pLayer output---

11 a1 = Table one[b4] // look up bits 8, 9, 24, 25, 40, 41, 56, 57

12 a2 = Table two[b5] // look up bits 58, 59, 10, 11, 26, 27, 42, 43

13 a3 = Table three[b6] // look up bits 44, 45, 60, 61, 12, 13, 28, 29

14 a4 = Table four[b7] // look up bits 30, 31, 46, 47, 62, 63, 14, 15

15 . . .

3.2.2.2 AES T-tables

This part discusses an implementation method combining SubBytes, ShiftRows, and MixColumns
for AES round function. Let SB denote the AES Sbox.

Recall that the cipher state of AES can be represented by a four-by-four matrix of bytes (Equa-
tion 3.2). Let us denote the input of SubBytes by a matrix S. The outputs of SubBytes, ShiftRows, and
MixColumns are represented by matrices A,B, and D respectively. By definition, aij = SB(sij), 0 ≤
i, j < 4. By Equations 3.4 and 3.5,




b0j
b1j
b2j
b3j


 =




a0j
a1(j+1 mod 4)

a2(j+2 mod 4)

a3(j+3 mod 4)


 ,




d0j
d1j
d2j
d3j


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







b0j
b1j
b2j
b3j


 , j = 0, 1, 2, 3.

109

We have



d0j
d1j
d2j
d3j


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







SB(s0j)
SB(s1(j+1 mod 4))

SB(s2(j+2 mod 4))

SB(s3(j+3 mod 4))




=




02
01
01
03


 SB(s0j)⊕




03
02
01
01


 SB(s1(j+1 mod 4))⊕




01
03
02
01


 SB(s2(j+2 mod 4))⊕




01
01
03
02


 SB(s3(j+3 mod 4)),

where j = 0, 1, 2, 3. For a ∈ F8
2, define

T0(a) :=




02
01
01
03


 SB(a), T1(a) :=




03
02
01
01


 SB(a), T2(a) :=




01
03
02
01


 SB(a), T3(a) :=




01
01
03
02


 SB(a).

Then 


d0j
d1j
d2j
d3j


 = T0(s0j)⊕ T1(s1(j+1 mod 4))⊕ T2(s2(j+2 mod 4))T3(s3(j+3 mod 4)),

Thus the four tables T0, T1, T2, T3 of size 8 × 32 can be used to implement SubBytes, ShiftRows, and
MixColumns. Those four tables are called T-tables for AES. We note that to store the T-tables we need
processors with a word size of 32 or above. They cannot be used for the last round of AES as there is
no Mixcolumns operation.

3.2.3 Bitsliced Implementations

Bitsliced implementation of symmetric block ciphers was first introduced by Eli Biham for imple-
menting DES [Bih97]. The goal of a bitsliced implementation is to simulate a hardware implemen-
tation in software so that several plaintext blocks can be encrypted in parallel. The operations in
symmetric block ciphers will be represented as a sequence of logical operations. Naturally, the im-
plementations should be adjusted based on the specific underlying hardware – the word size of the
architecture (see Section 2.1.2). We will see that with word size ω, we can encrypt ω blocks of plaintext
in parallel.

3.2.3.1 Algebraic Normal Form

To introduce bitsliced implementation, we will need to discuss the algebraic normal form for a
Boolean function. Let n be a positive integer in this part.

Definition 3.2.1. A Boolean function is a function φ : Fn
2 → F2.

From the definition, we can see that a Boolean function has 2n possible input values. For each
input value, there are 2 possible output values. Thus, in total, we have 22

n
possible Boolean functions

defined for Fn
2 → F2. In particular, a Boolean function can be specified by giving the output values

for all inputs, such a table is called a truth table.

Example 3.2.3. The parity-check bit defined for 3 bits is a Boolean function

φ : F3
2 → F2

x2x1x0 7→ x0 + x1 + x2.

Its truth table is given by:

x2 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1

φ(x) 0 1 1 0 1 0 0 1

110

Example 3.2.4. Now let use consider the Boolean function defined as follows:

φ0 : F4
2 → F2

x 7→ SBPRESENT(x)0

where SBPRESENT(x)0 is the 0th bit of SBPRESENT(x), the PRESENT Sbox output corresponding to x.
The truth table of φ0 is given by the first five and the second last (the row for φ0(x)) rows in Table 3.13.
For example, if the input is 0, the Sbox output is C= 1100. Then φ0(x) = 0.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
φ0(x) 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
λx 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

Table 3.13: The Boolean function φ0 takes input x and outputs the 0th bit of SBPRESENT(x). The
second last row lists the output of φ0 for different input values. The last row lists the coefficients
(Equation 3.10) for the algebraic normal form of φ0.

Definition 3.2.2. Fix v = vn−1vn−2, . . . , v1v0 ∈ Fn
2 , we define the indicator function for v, denoted 1v,

as follows:

1v : Fn
2 → F2

x 7→
∏

i:vi=1

xi
∏

i:vi=0

(1− xi).

With this definition, for any φ : Fn
2 → F2, we can express φ in the following polynomial expres-

sion:
φ(x) =

∑

v∈Fn
2

φ(v)1v(x).

After simplification, φ can be written as

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
,

which is called the algebraic normal form representation of the Boolean function φ.

Example 3.2.5. Continuing Example 3.2.3, we can find the algebraic normal form of φ as follows

φ(x) =
∑

v∈Fn
2

φ(v)1v(x) = 1001(x) + 1010(x) + 1100(x) + 1111(x)

= x0(1− x1)(1− x2) + x1(1− x0)(1− x2) + x2(1− x0)(1− x1) + x0x1x2

= x0 + x1 + x2 − 2(x0x1 + x0x2 + x1x2) + 4x0x1x2 = x0 + x1 + x2.

It can be proven that the algebraic normal form of a Boolean function is unique.2

Theorem 3.2.1. Every Boolean function φ : Fn
2 → F2 has a unique algebraic normal form representa-

tion

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
. (3.9)

The coefficients λv ∈ F2 are given by
λv =

∑

w≤v

φ(w), (3.10)

where w ≤ v means that wi ≤ vi for all 0 ≤ i ≤ n− 1.
2For the proof, see e.g. [MS77, page 372] and [O’D14, page 149].

111

We note that there are 22
n

Boolean functions defined for Fn
2 → F2. Furthermore, there are 22

n

choices for the coefficients λv (λv = 0, 1 and there are 2n distinct v). Thus the number of distinct
expressions on both sides of Equation 3.9 coincides.

Example 3.2.6. Continuing Example 3.2.3. By Equation 3.10,

λ110 = φ(000) + φ(100) + φ(010) + φ(110) = 0 + 1 + 1 + 0 = 0.

Similarly, we can calculate all the coefficients λ:

λ000 = 0, λ001 = 1, λ010 = 1, λ011 = 1 + 1 = 0,
λ100 = 1, λ101 = 0, λ110 = 0, λ111 = 0.

By Equation 3.9,

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
= λ001x0 + λ010x1 + λ100x2 = x0 + x1 + x2

which agrees with Example 3.2.5.

Example 3.2.7. Continuing Example 3.2.4, we can calculate λv using Equation 3.10. Those values are
given by the last row of Table 3.13. For example,

λ1100 = φ0(0000) + φ0(1000) + φ0(0100) + φ0(1100) = 0 + 1 + 1 + 0 = 0.

By Equation 3.9,

φ0(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
= λ0001x0 + λ0100x2 + λ0110x1x2 + λ1000x3

= x0 + x2 + x1x2 + x3. (3.11)

For example, if the input is 0= 0000, the PRESENT Sbox output is C= 1100, then the output of φ0 is
0 and

x0 + x2 + x1x2 + x3 = 0 + 0 + 0 + 0 = 0.

If the input is 7= 1110, the PRESENT Sbox output is D= 1101, then the output of φ0 is 1 and

x0 + x2 + x1x2 + x3 = 1 + 1 + 1 + 0 = 1.

Similarly, we can define φi(x) = SBPRESENT(x)i for i = 1, 2, 3, where SBPRESENT(x)i is the ith bit of
PRESENT Sbox output for x. We can calculate the algebraic normal form for each of φi in a similar
way (see Appendix D). They are given by:

φ1(x) = x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3, (3.12)
φ2(x) = 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3, (3.13)
φ3(x) = 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3. (3.14)

3.2.3.2 Bitsliced Implementation of PRESENT

In this part, we will use PRESENT as a running example to show how the bitsliced implementation
of a symmetric block cipher is designed.

First, we discuss how to transform the plaintext blocks into bitsliced format. As a simple example,
let us consider block length 3 and a 4−bit architecture, which allows us to encrypt 4 blocks of plaintext
simultaneously. We take 4 plaintext blocks, say

p1 = 010, p2 = 110, p3 = 001, p4 = 100.

The bitsliced format of pjs is given by a 3 × 4 array, denoted S, where each column is given by one
block of plaintext:

S =



0 0 1 0
1 1 0 0
0 1 0 1


 .

112

In particular, if we let S[x] denote the xth row of S, then S[0] corresponds to the 0th bits of pj . S[1]
corresponds to the 1st bits of pj . And S[2] corresponds to the 2nd bits of pj .

Next, we will show how to encrypt 8 plaintext blocks in parallel with PRESENT assuming an
8−bit architecture. Let p1, p2, . . . p8 be 8 plaintext blocks, each of length 64. We convert them into
bitsliced format as described above and store them in a 64× 8 array S0, where S0[y] contains the yth
bits of each plaintext block. Furthermore, for each round key Ki, we construct a 64 × 8 array Keyi
whose columns are given by Ki, i.e.

Keyi[y][z] = Ki[y] ∀0 ≤ z < 8. (3.15)

The bitsliced implementation of the ith round of PRESENT is given in Algorithm 3.6. Line 1
implements addRoundKey. For example, when i = 0, the xth bit of each plaintext (row x of S0)
are XORed with the xth bit of K1 (row x of Key0). To implement the Sbox in bitsliced format, we
refer to the algebraic normal forms for each output bit of the Sbox as a function of the input bits
(see Example 3.2.7). We recall that addition and multiplication in F2 can be implemented as logical
XOR (⊕) and logical AND (&) respectively (see Definition 1.2.17). There are in total 16 Sboxes and
we consider each of them in one loop of line 2. x0, x1, x2, x3 defined in line 3 are arrays of size 8,
each storing one bit of Sbox input from all eight encryption computations. Lines 4 – 7 compute eight
Sboxes in parallel, each corresponding to the encryption of one plaintext block. The 0th bits of the
Sbox outputs are given by the 4bth bits of the cipher state at the end of sBoxLayer, where 0 ≤ b ≤ 15.
Line 4 computes the 0th bits of the Sbox outputs using Equation 3.11. Similarly, lines 5, 6, 7 compute
the 1st, 2nd and 3rd bit of Sbox outputs using Equations 3.12, 3.13 and 3.14 respectively. Finally,
pLayer is implemented by line 8 onwards using Table 3.12. We note that Si[0] (line 8) is an array of 8
bits and we are permuting the 0th bit of cipher state for 8 encryptions simultaneously. The same can
be done for the remaining 63 bits.

Algorithm 3.6: Bitsliced implementation of round i of PRESENT, 1 ≤ i ≤ 31.
Input: Si−1, Keyi// Si−1 is the output of round i− 1. When i = 1, S0 contains the

plaintext blocks in bitsliced format.

// Keyi is the ith round key Ki in bitsliced format given in Equation 3.15.

Output: Si: output of round i
// addRoundKey-------

1 Si−1 = Si−1 ⊕ Keyi// bitwise XOR

// sBoxLayer-------

2 for b = 0, b < 16, b++ do
// Bits of Sbox inputs

3 x0 = Si−1[4b], x1 = Si−1[4b+ 1], x2 = Si−1[4b+ 2], x3 = Si−1[4b+ 3]
// 0th bit of Sbox output

4 state[4b] = x0 ⊕ x2 ⊕ (x1 & x2)⊕ x3
// 1st bit of Sbox output

5 state[4b+1] = x1⊕x3⊕(x1 & x3)⊕(x2 & x3)⊕(x0 & x1 & x2)⊕(x0 & x1 & x3)⊕(x0 & x2 & x3)
// 2nd bit of Sbox output

6 state[4b+2] = 1⊕x2⊕x3⊕(x0 & x1)⊕(x0 & x3)⊕(x1 & x3)⊕(x0 & x1 & x3)⊕(x0 & x2 & x3)
// 3rd bit of Sbox output

7 state[4b+3] = 1⊕x0⊕x1⊕x3⊕(x1 & x2)⊕(x0 & x1 & x2)⊕(x0 & x1 & x3)⊕(x0 & x2 & x3)

// pLayer-------

8 Si[0] = state[0]
9 Si[16] = state[1]

10 Si[32] = state[2]
11 . . .
12 return Si

It is easy to see that with 32−bit (resp. 64−bit) architecture, we can encrypt 32 (resp. 64) plaintext
blocks in parallel. We note that bitsliced implementations are mostly used for bit-oriented ciphers
(e.g. DES, PRESENT). For byte-oriented ciphers (e.g. AES), table-based implementations will likely
give better performance.

113

3.3 RSA

In Section 2.1.2 we have mentioned that there are symmetric-key and asymmetric cryptosystems.
Up to now, we have only seen symmetric cryptosystems, both classical and modern designs. For
symmetric key cipher, a prior communication of the master key (key exchange) is required before
any ciphertext is transmitted. With only a symmetric key cipher, the key exchange may be difficult to
achieve due to, e.g. far distance, and too many parties involved. In practice, this is where asymmetric
key cryptosystem comes into use.

For example, Alice would like to communicate with Bob using AES. To exchange the master key,
k, for AES, she will encrypt k by a public key cryptosystem using Bob’s public key e. Let c = Ee(k).
The resulting ciphertext c will be sent to Bob, and Bob can decrypt it with his secret private key d,
k = Dd(c). Then Alice and Bob can communicate with key k using AES.

Clearly, we require that it is computationally infeasible to find the private key d given the public
key e. In practice, this is guaranteed by some intractable problem.3 However, the cipher might not
be secure in the future. For example, if a quantum computer with enough bits is manufactured, it
can break many public key cryptosystems [EJ96]. Furthermore, we note that a public key cipher is
not perfectly secure (see Section 2.2.7) as the attacker can brute force the key.

In this section, we will be discussing one public key cryptosystem - RSA. It was published in
1977 and named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is the first
public key cryptosystem, and still in use today. The security relies on the difficulty of finding the
factorization of a composite positive integer.

Definition 3.3.1 (RSA). Let n = pq, where p, q are distinct prime numbers. Let P = C = Zn, K =
Z∗
φ(n) − { 1 }. For any e ∈ K, define encryption

Ee : Zn → Zn, m 7→ me mod n,

and the corresponding decryption

Dd : Zn → Zn, c 7→ cd mod n,

where d = e−1 mod φ(n).
The cryptosystem (P,C,K,E,D), where E = { Ee : e ∈ K }, D = {Dd : d ∈ K }, is called RSA.

Recall by Theorem 1.4.3, φ(n) = (p− 1)(q − 1) and by Definition 1.4.5, Z∗
φ(n) consists of elements

in Zφ(n) that are coprime to φ(n), or equivalently, that have multiplicative inverses modulo φ(n).
For encryption, the message sender needs to have knowledge of n and e. They are the public

key for RSA. n is called RSA modulus and e is called the encryption exponent. The private key d for
decryption is kept secret. In this case, only the private key owner can decrypt the message sent to
him.

To generate the keys for RSA, we first generate randomly and independently two large primes p
and q. Then we compute n = pq. Normally p and q are supposed to have equal lengths. For example,
take p and q to be 512-bit primes, and n will be a 1024-bit modulus. Next e ∈ Z∗

φ(n) is chosen. Since
φ(n) is even, e is odd. Finally, we compute d = e−1 mod φ(n).

Example 3.3.1. As a toy example, suppose Bob would like to generate his private and public keys for
RSA. Bob randomly generates p = 3 and q = 5. Then he computes n = 15 and

φ(n) = (3− 1)× (5− 1) = 2× 4 = 8.

From Z∗
8 = { 1, 3, 5, 7 }, Bob chooses e = 3. By the extended Euclidean algorithm, he computes

8 = 3× 2 + 2, 3 = 2× 1 + 1 =⇒ 1 = 3− 2× 1 = 3− (8− 3× 2) = −8 + 3× 3.

Hence his private key d = 3−1 mod 8 = 3.
Suppose Alice would like to send plaintext m = 2 to Bob, using Bob’s public key n = 15 and

e = 3. Alice computes
c = me mod n = 23 mod 15 = 8 mod 15.

3A problem is intractable if there does not exist an efficient algorithm to solve it.

114

After receiving the ciphertext c from Alice, Bob computes the plaintext using his private key

m = cd mod n = 83 mod 15 = 512 mod 15 = 2 mod 15.

Example 3.3.2. Now we will look at a bit larger values for p and q. Let p = 29, q = 41, then n = 1189
and φ(n) = 28 × 40 = 1120. It is easy to verify that 3 ∤ φ(n). Let us choose e = 3. By the extended
Euclidean algorithm

1120 = 3× 373 + 1 =⇒ 1 = 1120− 3× 373.

Hence
d = −373 mod 1120 = 747.

To send plaintext m = 2 to Bob. Alice computes

c = me mod n = 23 mod 1189 = 8 mod 1189.

To decrypt, Bob calculates

m = cd mod n = 8747 mod 1189 = 2 mod 1189.

Since
747 = 512 + 128 + 64 + 32 + 8 + 2 + 1,

we compute

84 mod 1189 = 4096 mod 1189 = 529, 88 mod 1189 = 5292 mod 1189 = 426,
816 mod 1189 = 4262 mod 1189 = 748, 832 mod 1189 = 7482 mod 1189 = 674,
864 mod 1189 = 6742 mod 1189 = 78, 8128 mod 1189 = 782 mod 1189 = 139,
8256 mod 1189 = 1392 mod 1189 = 297, 8512 mod 1189 = 2972 mod 1189 = 223.

And we have

8512+128 mod 1189 = 223× 139 mod 1189 = 83,

864+32 mod 1189 = 78× 674 mod 1189 = 256

88+2+1 mod 1189 = 426× 64× 8 mod 1189 = 525,

8747 mod 1189 = 83× 256× 525 mod 1189 = 2.

Next, we explain why the decryption works. By the choice of e and d,

ed ≡ 1 mod φ(n) =⇒ ed = φ(n)a+ 1 for some a ∈ Z.

Then
cd = (me)d = mφ(n)a+1 = m(p−1)(q−1)am.

By Corollary 1.4.3,
cd ≡ m mod p, cd ≡ m mod q.

Since p and q are distinct prime numbers and n = pq, by Chinese Remainder Theorem (see Theo-
rem 1.4.7 and Example 1.4.19)

cd ≡ m mod n.

We note that, if p or q is known to the attacker, they can factorize n and compute φ(n). Then with
e, d can be computed using the extended Euclidean algorithm (Algorithm 1.2). Thus all p, q, φ(n)
should be kept secret.

RSA can only be secure if computing d from n and e is intractable. Of course, if the attacker can
factorize n with an efficient algorithm, then RSA is broken. However, there is no proof to conclude
if factorizing n is intractable or not. Up to now, the best-known algorithm for integer factorization
has been used to factorize RSA modulus of bit length 768 [KAF+10]. In practice, the most commonly
used RSA modulus n is 1024, 2048, or 4096 bit. Interestingly, it has been proved that if d is known,
then n can be factorized with an efficient algorithm (see [Buc04, Page 172]). On the other hand, there
is no proof that RSA is secure if factoring is computationally infeasible – there might be other ways
to attack RSA [May03].

Normally e is chosen to be small to make the encryption efficient. However, e cannot be too
small. It has been shown that only the n/4 least significant bits of d suffice to recover d in the case
of a small e [BDF98]. Also, d cannot be too small, it was proven that if d < n0.292, then RSA can be
broken [BD00].

115

3.4 RSA Signatures

In this section, we discuss how RSA can be used for digital signatures.
As mentioned in Section 2.1, digital signatures provide a means for an entity to bind its identity

to a message stored in electronic form. This normally means that the sender uses their private key
to sign the (hashed) message. Whoever has access to the public key can then verify the origin of the
message. For example, the message can be electronic contracts or electronic bank transactions.

In more detail, suppose Alice signs a message m with a private key d and generates signature
s. The receiver Bob receives the message and the signature, he can then verify s with public key e
and a verification algorithm. Given m and s, the verification algorithm returns true to indicate a valid
signature and false otherwise.

To use RSA for digital signature, we again let p and q be two distinct primes. Let n = pq. We
choose e ∈ Z∗

φ(n) and compute d = e−1 mod φ(n). Same as for RSA, the public key consists of e and
n. And d is the private key. p, q and φ(n) should be kept secret.

To sign a message m, Alice computes the signature

s = md mod n.

Then Alice sends both m and s to Bob. To verify the signature, Bob computes

se mod n.

If
s ≡ m mod n,

then the verification algorithm outputs true, and false otherwise.
Up to now, the only method known to compute s from m mod n is using d, so if the verification

algorithm outputs true, Bob can conclude that Alice is the owner of d.

Example 3.4.1. Alice chooses p = 5 and q = 7. Then n = 35 and φ(n) = 24. Suppose Alice chooses
e = 5, which is coprime to 24. By the extended Euclidean algorithm

24 = 5× 4 + 4, 5 = 4 + 1 =⇒ 1 = 5− (24− 5× 4) = 24× (−1) + 5× 5,

we have d = e−1 mod 24 = 5. To sign message m = 10, Alice computes

s = md mod n = 105 mod 35 = 5.

Alice sends both the message m = 10 and signature s = 5 to Bob. Bob verifies the signature

se mod n = 55 mod 35 = 10 = m.

The most common attack for a digital signature is to create a valid signature for a message without
knowing the secret key. Such an attack is called forgery. If the goal is to create a valid signature given
a message that was not signed by Alice before, it is called selective forgery. If the goal is to create a
valid signature for any message not signed by Alice before, then the attack is called existential forgery.

There are normally three attacker assumptions. Key-only attack assumes the attacker only has
knowledge of e. Known message attack considers an attacker who has a list of messages previously
signed by Alice. In a chosen message attack, the attacker can request Alice’s signature on a list of
messages.

Next, we discuss the security of RSA signatures with respect to forgery attacks.
First, we consider a known message existential forgery attack. Suppose the attacker, Eve, knows

messages m1,m2 and their corresponding signatures s1 and s2. Eve computes

s = s1s2 mod n, m = m1m2 mod n.

Since
s = md

1m
d
2 mod n = (m1m2)

d mod n = md mod n,

s is a valid signature for m.

116

A chosen message selective forgery attack works as follows. Eve chooses a message m ∈ Zn and
takes any message m1 ∈ Z∗

n that is different from m. She computes

m2 = mm−1
1 mod n.

Eve obtains valid signatures

s1 = md
1 mod n, and s2 = md

2 mod n

for m1 and m2. Then she computes
s = s1s2 mod n.

Since
s = md

1m
d
2 mod n = (m1m2)

d mod n = md mod n,

s is a valid signature for m.
In view of those attacks, RSA signatures are commonly used together with a fast public hash

function h (see Section 2.1.1). To sign a message m, Alice computes the signature

s = h(m)d mod n.

Then she sends both m and s to Bob. Bob computes se mod n and h(m). If

se mod n = h(m),

then Bob concludes the signature is valid.
With a hash function, the two attacks discussed above will not work. Suppose Eve knows mes-

sages m1,m2 and their corresponding signatures s1 and s2. She can compute h(m1) and h(m2) as
h is public. However, to repeat the known message existential forgery attack, she needs to find m
such that h(m) = h(m1)h(m2), which is computationally infeasible according to property (c) of hash
functions listed in Section 2.1.1.

Suppose Eve chooses a message m, and computes h(m). To repeat the chosen message selective
forgery attack, she needs to find m1 such that h(m1) = y for some y ∈ Z∗

n. For the same reason as
above, this is computationally infeasible.

3.5 Implementations of RSA Cipher and RSA Signatures

In this section, we discuss several methods for implementing RSA and RSA signature computations.
Section 3.5.1 presents three methods for implementing modular exponentiation. As we will see, those
methods will require the computations of other modular operations. Then in Section 3.5.2, we discuss
how to efficiently implement modular multiplication.

3.5.1 Implementing Modular Exponentiation

To implement RSA or RSA signatures, we need to compute

ad mod n

for some integer a ∈ Zn, where n = pq is a product of two distinct primes and d ∈ Z∗
φ(n). We

can compute d − 1 modular multiplications, but it will be inefficient for large d. In practice, the bit
length of d ranges in thousands, thus making the calculation infeasible by this naı̈ve method. We will
discuss three methods to make modular exponentiation computations faster.

3.5.1.1 Square and Multiply Algorithm

In this part, let n ≥ 2 be an integer and d ∈ Zφ(n). We discuss how to calculate

ad mod n

for a ∈ Zn.

117

By Theorem 1.1.1, we can write d in the following form

d =

ℓd−1∑

i=0

di2
i,

where di = 0, 1, for 0 ≤ i ≤ ℓd − 1, and

d = dℓd−1 . . . d2d1d0

is the binary representation of d. Then we have

ad = a
∑ℓd−1

i=0 di2
i
=

ℓd−1∏

i=0

(a2
i
)di =

∏

0≤i<ℓd,di=1

a2
i
.

Thus, to compute ad mod n, we can first compute a2
i

for 0 ≤ i < ℓd. Then ad is the product of a2
i

for
which di = 1. One can see that compared to the naı̈ve calculation, requiring d − 1 multiplications,
this method only needs ≈ log2 d multiplications.

This observation leads us to the square and multiply algorithm listed in Algorithm 3.7. Line 5 com-
putes a2

i+1
in loop i. We check each bit of d (line 3), if the ith bit of d is 1, then a2

i
is multiplied to the

result (line 4). As this algorithm starts from the least significant bit of d, i.e. d0, it is also called the
right-to-left square and multiply algorithm. Accordingly, the left-to-right square and multiply algorithm is
listed in Algorithm 3.8. We can see that compared to Algorithm 3.7, Algorithm 3.8 requires one less
variable and hence less storage.

Algorithm 3.7: Right-to-left square and multiply algorithm for computing modular expo-
nentiation

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result ∗ t mod n

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Algorithm 3.8: Left-to-right square and multiply algorithm for computing modular expo-
nentiation.

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n)

Output: ad mod n
1 t = 1
2 for i = ℓd, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Example 3.5.1. Let n = 15, d = 3 = 112, a = 2. Computing

ad mod n = 23 mod 15 = 8 mod 15 = 8

using Algorithm 3.7, we get the values of the variables in each loop as follows:

118

i di t result
0 1 4 2
1 1 1 8

The returned value is 8. Similarly, using Algorithm 3.8, the intermediate values are:

i di t

1 1 2
0 1 8

Where in the last loop, line 3 computes t = 4 and line 5 calculates t = 8 mod 15 = 8.

Example 3.5.2. Let n = 23, d = 4 = 1002, a = 5. Computing

ad mod n = 54 mod 23 = 625 mod 23 = 4

using Algorithm 3.7, we get the values of the variables in each loop as follows:

i di t result
0 0 2 1
1 0 4 1
2 1 16 4

The final result is 4. Using Algorithm 3.8, in the first loop (i = 2), line 3 computes t = 1 mod 23 and
line 5 calculates t = 1× 5 mod 23 = 5 mod 23. The intermediate values are:

i di t

2 1 5
1 0 2
0 0 4

The final output is 4.

3.5.1.2 Montgomery Powering Ladder

Same as in Section 3.5.1.1, in this part, let n ≥ 2 be an integer and d ∈ Zφ(n). We introduce another
method, Montgomery powering ladder, to compute ad mod n for a ∈ Zn.

Montgomery powering ladder was first introduced for efficient computations of elliptic curve
scalar multiplications [Mon87]. Then it was adopted for computing exponentiation in any abelian
group [JY03]. We will present the details of the method used for modular exponentiation. In partic-
ular, the abelian group we consider here is Zn with modular multiplication.

Recall that we have the following binary representation of d

d =

ℓd−1∑

i=0

di2
i.

For 0 ≤ j ≤ ℓd − 1, define

Lj :=

ℓd−1∑

i=j

di2
i−j , Hj := Lj + 1.

Then

2Lj+1 = 2

ℓd−1∑

i=j+1

di2
i−(j+1) =

ℓd−1∑

i=j+1

di2
i−j = −dj +

ℓd−1∑

i=j

di2
i−j = −dj + Lj .

We have
Lj = 2Lj+1 + dj = Lj+1 +Hj+1 + dj − 1 = 2Hj+1 + dj − 2,

and

Lj =

{
2Lj+1 if dj = 0

Lj+1 +Hj+1 if dj = 1
, Hj =

{
Lj+1 +Hj+1 if dj = 0

2Hj+1 if dj = 1
.

119

Then for any a ∈ Zn,

aLj =

{
(aLj+1)2 if dj = 0

aLj+1aHj+1 if dj = 1
, aHj =

{
aLj+1aHj+1 if dj = 0

(aHj+1)2 if dj = 1
. (3.16)

Since

L0 =

ℓd−1∑

i=0

di2
i = d,

to compute ad mod n is equivalent to computing aL0 mod n. By Equation 3.16,

aL0 =

{
(aL1)2 if d0 = 0

aL1aH1 if d0 = 1
.

Similarly, aL1 and aH1 can be computed with aL2 and aH2 . Thus, we can start from the most significant
bit of d, dℓd−1, compute aLℓd−1 and aHℓd−1 , then calculate aLℓd−2 and aHℓd−2 with Equation 3.16, and
so on. Note that

Lℓd−1 = dℓd−1, Hℓd−1 = dℓd−1 + 1

and

aLℓd−1 =

{
1 if dℓd−1 = 0

a if dℓd−1 = 1
, aHℓd−1 =

{
a if dℓd−1 = 0

a2 if dℓd−1 = 1
. (3.17)

Details of Montgomery powering ladder for implementing modular exponentiation are shown in
Algorithm 3.9, where at the end of the jth iteration, R0 and R1 correspond to aLj and aHj respectively.
When j = ℓd − 1, lines 4 – 9 implement Equation 3.17. For j < ℓd − 1, lines 4 – 9 implement
Equation 3.16.

Algorithm 3.9: Montgomery powering ladder for computing modular exponentiation.
Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn, d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 R0 = 1
2 R1 = a
3 for j = ℓd − 1, j ≥ 0, j −− do
4 if dj = 0 then
5 R1 = R0R1 mod n// aHj = aLj+1Hj+1 for j < ℓd − 1

6 R0 = R2
0 mod n// aLj =

(
aLj+1

)2
for j < ℓd − 1

7 else
8 R0 = R0R1 mod n// aLj = aLj+1Hj+1 for j < ℓd − 1

9 R1 = R2
1 mod n// aHj =

(
aHj+1

)2
for j < ℓd − 1

10 return R0

The computations of lines 5 and 6 (respectively lines 8 and 9) can be done in parallel by first
storing the computation results in temporary variables and then assigning to R1 and R0 (respectively
R0 and R1).

Example 3.5.3. Same as in Example 3.5.1, let n = 15, d = 3 = 112, a = 2. We have calculated that
ad mod n = 8. To compute it with Algorithm 3.9, the intermediate values are

j = 1, d1 = 1, R0 = R0R1 mod n = 2,
R1 = R2

1 = 22 mod 15 = 4

j = 0, d0 = 1, R0 = R0R1 mod n = 2× 4 mod 15 = 8

and the final result is 8.

120

Example 3.5.4. Here we repeat the computation in Example 3.5.2. Let n = 23, d = 4 = 1002, a = 5.
We know that ad mod n = 4. With Algorithm 3.9, the intermediate values are

j = 2, d2 = 1, R0 = R0R1 mod n = 5,
R1 = R2

1 = 52 mod 23 = 25 mod 23 = 2

j = 1, d1 = 0, R1 = R0R1 mod n = 5× 2 mod 23 = 10,
R0 = R2

0 = 52 mod 23 = 2

j = 0, d0 = 0, R1 = R0R1 mod n = 2× 10 mod 23 = 20,
R0 = R2

0 = 22 mod 15 = 4

and the final result is 4.

3.5.1.3 Chinese Remainder Theorem (CRT) Based RSA

In this part, we focus on the case when n = pq is the RSA modulus (p, q are distinct odd primes) and
d ∈ Z∗

φ(n) is the private key.
By Chinese Remainder Theorem (see Theorem 1.4.7 and Example 1.4.19), finding the solution for

x ≡ ad mod n

is equivalent to solving
x ≡ ad mod p, x ≡ ad mod q.

By Corollary 1.4.3, we can compute

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

and solve for
x ≡ xp mod p, x ≡ xq mod q. (3.18)

An implementation that computes ad mod n by solving Equation 3.18 is called CRT-based RSA imple-
mentation.

By Equations 1.19 and 1.20, we compute

Mq = q, Mp = p, yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

and
x = xpyqq + xqypp mod n (3.19)

gives us the solution to Equation 3.18.
Calculating x by Equation 3.19 is called the Gauss’s algorithm for CRT. While Garner’s algorithm

calculates
x = xp + ((xq − xp)yp mod q)p. (3.20)

We will show that Equation 3.20 indeed gives the solution to Equation 3.18. First, it is straightforward
to see x ≡ xp mod p. Furthermore,

x ≡ xp + (xq − xp) ≡ xq mod q.

Since xp ∈ Zp, xp < p. Similarly, (xq − xp)yp mod q ≤ q − 1. And

x = xp + ((xq − xp)yp mod q)p < p+ (q − 1)p = n.

Thus x ∈ Zn.

Example 3.5.5. Let us consider the toy example from Example 3.3.1. We have

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3.

Bob receives ciphertext c = 8 from Alice. Instead of computing the plaintext directly using

m = cd mod n = 83 mod 15,

121

we compute

mp = cd mod (p−1) mod p = 83 mod 2 mod 3 = 8 mod 3 = 2,

mq = cd mod (q−1) mod q = 83 mod 4 mod 5 = 512 mod 5 = 2.

By the extended Euclidean algorithm,

5 = 3× 1 + 2, 3 = 2 + 1 =⇒ 1 = 3− (5− 3) = 3× 2− 5.

Thus

yp = p−1 mod q = 3−1 mod 5 = 2 mod 5,

yq = q−1 mod p = 5−1 mod 3 = −1 mod 3 = 2 mod 3.

By Gauss’s algorithm,

m = mpyqq +mqypp mod n = 2× 2× 5 + 2× 2× 3 = 32 mod 15 = 2.

By Garner’s algorithm,

m = mp + ((mq −mp)yp mod q)p = 2 + 0 = 2.

Both algorithms give us the original plaintext from Alice.

Example 3.5.6. Here we look at Example 3.3.2. We have

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747,

and ciphertext c = 8. Then

mp = cd mod (p−1) mod p = 8747 mod 28 mod 29 = 819 mod 29 = 2,

mq = cd mod (q−1) mod q = 8747 mod 40 mod 41 = 827 mod 41 = 2.

By the extended Euclidean algorithm

41 = 29 + 12, 29 = 12× 2 + 5, 12 = 5× 2 + 2, 5 = 2× 2 + 1,

and

1 = 5− 2× (12− 5× 2) = −2× 12 + (29− 12× 2)× 5

= 29× 5− 12× (41− 29) = −41× 12 + 29× 17.

We have

yp = p−1 mod q = 29−1 mod 41 = 17 mod 41,

yq = q−1 mod p = 41−1 mod 29 = −12 mod 29 = 17 mod 29.

By Gauss’s algorithm,

m = mpyqq +mqypp mod n = 2× 17× 41 + 2× 17× 29 mod 1189 = 2380 mod 1189 = 2.

By Garner’s algorithm,

m = mp + ((mq −mp)yp mod q)p = 2 + 0 = 2.

Example 3.5.7. Same as in Example 3.5.6, we keep

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747.

Then we have
yp = 17, yq = 17.

122

Let c = 155, then

mp = cd mod (p−1) mod p = 155747 mod 28 mod 29 = 1019 mod 29 = 21,

mq = cd mod (q−1) mod q = 155747 mod 40 mod 41 = 3227 mod 41 = 9.

To compute 1019 mod 29, we note that

102 mod 29 = 100 mod 29 = 13,

104 mod 29 = 132 mod 29 = 24,

108 mod 29 = 242 mod 29 = 25,

1016 mod 29 = 252 mod 29 = 16.

Thus
1019 mod 29 = 1016 × 102 × 10 mod 29 = 16× 13× 10 mod 29 = 21.

Similarly,

322 mod 41 = 40

323 mod 41 = 32× 40 mod 41 = 9

329 mod 41 = 93 mod 41 = 32

3227 mod 41 = 323 mod 41 = 9.

By Gauss’s algorithm,

m = mpyqq +mqypp mod n = 21× 17× 41 + 9× 17× 29 mod 1189 = 19074 mod 1189 = 50.

By Garner’s algorithm,

m = mp + ((mq −mp)yp mod q)p = 21 + ((9− 21)× 17 mod 41)× 29

= 21 + 1× 29 = 50.

Example 3.5.8. Let us consider Example 3.4.1 for RSA signatures computation. We have

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 10.

To sign message m = 10, Alice computes

sp = md mod (p−1) mod p = 105 mod 4 mod 5 = 0,

sq = md mod (q−1) mod q = 105 mod 6 mod 7 = 5.

By the extended Euclidean algorithm

7 = 5 + 2, 5 = 2× 2 + 1 =⇒ 1 = 5− 2× (7− 5) = 5× 3− 2× 7

We have

yp = p−1 mod q = 3 mod 7,

yq = q−1 mod p = −2 mod 5 = 3.

By Gauss’s algorithm,

s = spyqq + sqypp mod n = 5× 3× 5 mod 35 = 5.

By Garner’s algorithm,

s = sp + ((sq − sp)yp mod q)p = 0 + (5× 3 mod 7)× 5 = 1× 5 = 5.

Compared to Gauss’s algorithm, Garner’s algorithm does not require the final modulo n reduc-
tion.

CRT-based RSA implementation can improve the efficiency of the computation in many ways.
Firstly, yp and yq can be precomputed, which saves time during communication. Secondly, the in-
termediate values during the computation are only half as big compared to those in the compu-
tation of ad mod n since they are in Zp or Zq rather than Zn. Moreover, xp = ad mod (p−1) mod p
and xq = ad mod (q−1) mod q can be calculated by the square and multiply algorithm (Algorithms 3.7
and 3.8) or Montgomery powering ladder (Algorithm 3.9) to further improve the efficiency. In this
case, d mod (p − 1) and d mod (q − 1) are much smaller than d, computing xp or xq requires fewer
multiplications than computing ad mod p or ad mod q.

123

3.5.2 Implementing Modular Multiplication

From the previous subsection, we see that to have more efficient modular exponentiation imple-
mentations, we need to compute modular addition, subtraction, inverse, and multiplications. For
modular addition and subtraction, we can just compute the corresponding integer operations and
then perform a single reduction modulo the modulus. For inverse modulo an integer, as has been
mentioned a few times, we can utilize the extended Euclidean algorithm. Next, we will discuss two
methods for implementing modular multiplication.

Throughout this subsection, let n be an integer of bit length ℓn, in particular

2ℓn−1 ≤ n < 2ℓn . (3.21)

Let a, b ∈ Zn be two integers. Then 0 ≤ a, b < n. We would like to compute

R := ab mod n.

Let us assume the computer’s word size (see Section 2.1.2) is ω. Define

κ :=

⌈
ℓn
ω

⌉
, i.e. (κ− 1)ω < ℓn ≤ κω.

We can write

a = aκ−1||aκ−2|| . . . ||a0, b = bκ−1||bκ−2|| . . . ||b0, 0 ≤ ai, bj < 2ω for 0 ≤ i, j < κ.

where || indicates concatenation. Note that some ai or bj might be 0 if the bit length of a or b is less
than ℓn. Furthermore, we have

a =

κ−1∑

i=0

ai(2
ω)i, b =

κ−1∑

j=0

bj(2
ω)i. (3.22)

Then the product of a and b is given by

t = ab = t2κ−1||t2κ−2|| . . . ||t0,

where
tx =

∑

i,j, i+j=x

aibj , 0 ≤ x ≤ 2κ− 1.

Such a multiplication method can be described by Algorithm 3.10.

Algorithm 3.10: Standard multiplication.
Input: a, b// a, b ∈ Zn, where n ≥ 2 is an integer of bit length ℓn

Output: ab
1 for i = 0, 1, 2 . . . , 2κ− 1, ti = 0// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

// for each bj

2 for j = 0, j < κ, j ++ do
3 T1 = 0

// for each ai

4 for i = 0, i < κ, i++ do
// Ti has bit length at most ω

5 T1||T0 = ti+j + aibj + T1

6 ti+j = T0

7 tj+κ = T1

8 return t2κ−1||t2κ−2|| . . . ||t0

One drawback of Algorithm 3.10 is that a variable with double word size is being processed in
line 5. To see this, the maximum value of the right-hand side in line 5 is

2ω − 1 + (2ω − 1)(2ω − 1) + 2ω − 1 = 22ω − 1.

Moreover, to compute R = t mod n, division by n will be required.

124

Example 3.5.9. As a simple example, let us consider word size ω = 2 and let n = 15 be a 4−bit
integer. Let a = 13 = 11012 and b = 5 = 01012. We have

a0 = 012, a1 = 112, b0 = 012, b1 = 012, κ =

⌈
4

2

⌉
= 2.

The product t = t3||t2||t1||t0 has bit length at most 8. Computations in lines 5 – 7 for each loop are as
follows:

T1||T0 = t0 + a0b0 + T1 = 00 + 01 + 00 = 0001, t0 = 01,
T1||T0 = t1 + a1b0 + T1 = 00 + 11 + 00 = 0011, t1 = 11,
T1||T0 = t1 + a0b1 + T1 = 11 + 01 + 00 = 0100, t1 = 00,
T1||T0 = t2 + a1b1 + T1 = 00 + 11 + 01 = 0100, t2 = 00, t3 = 01

The values for each variable in Algorithm 3.10 are listed below

j i aibj T1 T0 t3 t2 t1 t0
0 0 01 00 01 00 00 00 01
0 1 11 00 11 00 00 11 01
1 0 01 01 00 00 00 00 01
1 1 11 01 00 01 00 00 01

As expected, we get
t = 01000001 = 65 = 13× 5.

Furthermore, if we would like to continue the computation and find ab mod 15, we will divide 65 by
15 and calculate the remainder, which is 5.

3.5.2.1 Blakely’s Method

First proposed in 1983 [Bla83], Blakely’s method for computing modular multiplication interleaves
the multiplication steps with the reduction steps. The product ab is computed as follows

t = ab =

(
κ−1∑

i=0

ai(2
ω)i

)
b =

κ−1∑

i=0

(2ω)iaib,

where ais are given in Equation 3.22. Algorithm 3.11 lists the steps for computing

R = t mod n = ab mod n

with Blakely’s method.

Algorithm 3.11: Blakely’s method for computing modular multiplication.
Input: n, a, b// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn

Output: ab mod n
1 R = 0
// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Note that in line 3,

R ≤ 2ω(n− 1) + (2ω − 1)(n− 1) = (2ω+1 − 1)n− (2ω+1 − 1) < (2ω+1 − 1)n.

Thus, line 4 can be replaced by comparing R with n for 2ω+1 − 2 times and subtract n from R in case
R ≥ n:

125

1 for j = 0, 1, 2 . . . , 2ω+1 − 2 do
2 if R ≥ n then
3 R = R− n

4 else break

In this way, we can avoid dividing by n to compute the remainder. In particular, when ω = 1,
2ω+1−2 = 2. And we have Algorithm 3.12, which is the original proposal from Blakely [Bla83, Koç94].

Algorithm 3.12: Blakely’s method for computing modular multiplication by taking ω = 1.
Input: n, a, b// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn

Output: ab mod n
1 R = 0
2 for i = ℓn − 1, i ≥ 0, i−− do
3 R = 2R+ aib
4 if R ≥ n then R = R− n
5 if R ≥ n then R = R− n

6 return R

Example 3.5.10. Same as in Example 3.5.9, let the word size ω = 2, and

a = 13 = 11012, b = 5, n = 15, ℓn = 4, κ = 2.

We have
a0 = 012 = 1, a1 = 112 = 3.

Let us calculate ab mod n using Algorithm 3.11. For i = 1,

R = 0 + 3× 5 mod 15 = 0 mod 15.

And for i = 0,
R = 0 + 1× 5 mod 15 = 5 mod 15.

We have the final result 13× 5 mod 15 = 5.

Example 3.5.11. Let
a = 55 = 1101112, b = 46, n = 69, ω = 2.

n is a 7−bit integer. Then

a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3, a3 = 0, κ =

⌈
7

2

⌉
= 4.

Computing ab mod n with Algorithm 3.11 gives us the following intermediate values:

i = 3 line 3, R = 0,

line 4, R = 0,

i = 2 line 3, R = 3× 46 = 138,

line 4, R = 138 mod 69 = 0,

i = 1 line 3, R = 1× 46 = 46,

line 4, R = 46 mod 69 = 46,

i = 0 line 3, R = 22 × 46 + 3× 46 = 322,

line 4, R = 322 mod 69 = 46.

We have ab mod n = 46.

126

Now we can expand the modular multiplication computations in the square and multiply algo-
rithm with Blakely’s method. The details are listed in Algorithm 3.13 for right-to-left square and
multiply algorithm, and in Algorithm 3.14 for left-to-right square and multiply algorithm.

Since ℓn is the bit length of n, the bit lengths of the variables “result”, “t” and “a” are at most ℓn.
We can write

result =
κ−1∑

j=0

hj(2
ω)j , t =

κ−1∑

j=0

tj(2
ω)j , a =

κ−1∑

j=0

aj(2
ω)j .

Then, in Algorithm 3.13, lines 5 – 9 implement result = result ∗ t mod n (line 4 of Algorithm 3.7) and

Algorithm 3.13: Right-to-left square and multiply algorithm with Blakely’s method for mod-
ular multiplication.

Input: n, a, d// n ∈ Z, n ≥ 2 has bit length ℓn; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1
2 t = a
3 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

4 if di = 1 then
// lines 5 -- 9 implement result = result∗t mod n

5 R = 0
// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

6 for j = κ− 1, j ≥ 0, j −− do
7 R = 2ωR+ hjt
8 R = R mod n

9 result = R

// lines 10 -- 14 implement t = t ∗ t mod n

10 R = 0
11 for j = κ− 1, j ≥ 0, j −− do
12 R = 2ωR+ tjt
13 R = R mod n

14 t = R

15 return result

lines 10 – 14 implement t = t ∗ t mod n (line 5 of Algorithm 3.7).
Similarly, in Algorithm 3.14, lines 3 – 7 implement t = t ∗ t mod n (line 3 of Algorithm 3.8) and

lines 9 – 13 implement t = a ∗ t mod n (line 5 of Algorithm 3.8).

Example 3.5.12. Let us repeat the computation in Example 3.5.2 with Blakley’s method. We will
calculate

ad mod n = 54 mod 23 = 625 mod 23 = 4.

Suppose the computer word size ω = 2. n = 23 = 101112 has ℓn = 5 bits, then κ = ⌈5/2⌉ = 3. Lines 1
and 2 in Algorithm 3.13 give

result = 1, h0 = 01, h1 = 00, h2 = 00, t = 5 = 01012, t0 = 01, t1 = 01, t2 = 00.

127

Algorithm 3.14: Left-to-right square and multiply algorithm with Blakely’s method for mod-
ular multiplication.

Input: n, a, d// n ∈ Z, n ≥ 2 has bitlength ℓn; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do

// lines 3 -- 7 implement t = t ∗ t mod n

3 R = 0
// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

4 for j = κ− 1, j ≥ 0, j −− do
5 R = 2ωR+ tjt
6 R = R mod n

7 t = R
// ith bit of d is 1

8 if di = 1 then
// lines 9 -- 13 implement t = a ∗ t mod n

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ ajt
12 R = R mod n

13 t = R

14 return t

The intermediate values during the computation are:

i = 0 d0 = 0
loop line 11 j = 2 R = 0

j = 1 R = 2ωR+ t1t mod n = 5 mod 23
j = 0 R = 2ωR+ t0t mod n = 22 × 5 + 1× 5 mod 23 = 2 mod 23

line 14 t = 2 t0 = 10, t1 = 00, t2 = 00

i = 1 d1 = 0
loop line 11 j = 2 R = 0

j = 1 R = 0
j = 0 R = t0t mod n = 2× 2 mod 23 = 4 mod 23

line 14 t = 4 t0 = 00, t1 = 01, t2 = 00

i = 2 d2 = 1
loop line 6 j = 2 R = 0

j = 1 R = 0
j = 0 R = h0t mod n = 4 mod 23

line 9 result = 4

And the output is 4. Similarly, with Algorithm 3.14, line 1 gives

t = 1, t0 = 01, t1 = 00, t2 = 00.

We also have
a = 5, a0 = 01, a1 = 01, a2 = 00.

128

The intermediate values are

i = 2 d2 = 1
loop line 4 j = 2 R = 0

j = 1 R = 0
j = 0 R = t0t mod n = 1 mod 23

line 7 t = 1 t0 = 01, t1 = 00, t2 = 00
loop line 10 j = 2 R = 0

j = 1 R = 2ωR+ a1t = 1 mod 23
j = 0 R = 2ωR+ a0t = 22 + 1 = 5 mod 23

line 13 t = 5 t0 = 01, t1 = 01, t2 = 00

i = 1 d1 = 0
loop line 4 j = 2 R = 0

j = 1 R = t1t mod n = 5 mod 23
j = 0 R = 2ωR+ t0t mod n = 22 × 5 + 5 mod 23 = 25 mod 23 = 2 mod 23

line 7 t = 2 t0 = 10, t1 = 00, t2 = 00

i = 0 d0 = 0
loop line 4 j = 2 R = 0

j = 1 R = 0
j = 0 R = t0t mod n = 2× 2 mod 23 = 4 mod 23

line 7 t = 4

The output is also 4.

Similarly, we can adopt Blakely’s method in Montgomery powering ladder (Algorithm 3.9) and
we get Algorithm 3.15 for computing modular exponentiation. Since ℓn is the bit length of n, the bit
lengths of the variables R0 and R1 are at most ℓn. We can write

R0 =

κ−1∑

i=0

R0i(2
ω)i, R1 =

κ−1∑

i=0

R1i(2
ω)i.

Then lines 5 – 9 implement R1 = R0R1 mod n (line 5 of Algorithm 3.9). Lines 10 – 14 implement
R0 = R2

0 mod n (line 6 of Algorithm 3.9). Lines 16 – 20 implement R0 = R0R1 mod n (line 8 of
Algorithm 3.9). Lines 21 – 25 implement R1 = R2

1 mod n (line 9 of Algorithm 3.9).

Example 3.5.13. Here we repeat the computation in Example 3.5.4 with Algorithm 3.15. Let

n = 23, d = 4 = 1002, a = 5.

We have calculated that ad mod n = 4. Same as in Example 3.5.12, we assume ω = 2. Then we have
ℓn = 5 and κ = 3. With Algorithm 3.15, lines 1 and 2 give

R0 = 1, R00 = 01, R01 = 00, R02 = 00, R1 = 5, R10 = 01, R11 = 01, R12 = 00.

The intermediate values are

j = 2 d2 = 1

loop line 17 i = 2 R = 0

i = 1 R = 0

i = 0 R = R00R1 mod n = 5 mod 23

line 20 R0 = 5 R00 = 01, R01 = 01, R02 = 00

loop line 22 i = 2 R = 0

i = 1 R = 2ωR+R11R1 mod n = 5 mod 23

i = 0 R = 2ωR+R10R1 mod n = 22 × 5 + 5 mod 23 = 2

line 25 R1 = 2 R10 = 10, R11 = 00, R12 = 00
j = 1 d1 = 0

129

Algorithm 3.15: Montgomery powering ladder with Blakely’s method for computing mod-
ular multiplication.

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 R0 = 1
2 R1 = a
3 for j = ℓd − 1, j ≥ 0, j −− do
4 if dj = 0 then

// lines 5 -- 9 implement R1 = R0R1 mod n

5 R = 0
6 for i = κ− 1, i ≥ 0, i−− do

// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

7 R = 2ωR+R0iR1

8 R = R mod n

9 R1 = R
// lines 10 -- 14 implement R0 = R2

0 mod n

10 R = 0
11 for i = κ− 1, i ≥ 0, i−− do
12 R = 2ωR+R0iR0

13 R = R mod n

14 R0 = R

15 else
// lines 16 -- 20 implement R0 = R0R1 mod n

16 R = 0
17 for i = κ− 1, i ≥ 0, i−− do
18 R = 2ωR+R0iR1

19 R = R mod n

20 R0 = R
// lines 21 -- 25 implement R1 = R2

1 mod n

21 R = 0
22 for i = κ− 1, i ≥ 0, i−− do
23 R = 2ωR+R1iR1

24 R = R mod n

25 R1 = R

26 return R0

loop line 6 i = 2 R = 0

i = 1 R = R01R1 mod n = 2 mod 23

i = 0 R = 2ωR+R00R1 mod n = 22 × 2 + 2 mod 23 = 10

line 9 R1 = 10 R10 = 10, R11 = 10, R12 = 00

loop line 11 i = 2 R = 0

i = 1 R = 2ωR+R01R0 mod n = 5 mod 23

i = 0 R = 2ωR+R00R0 mod n = 22 × 5 + 5 mod 23 = 2

line 14 R0 = 2 R00 = 10, R01 = 00, R02 = 00
j = 0 d0 = 0

loop line 6 i = 2 R = 0

i = 1 R = 0

i = 0 R = R00R1 mod n = 2× 10 mod 23 = 20

line 9 R1 = 20

loop line 11 i = 2 R = 0

130

i = 1 R = 0

i = 0 R = R00R0 mod n = 2× 2 mod 23 = 4

line 14 R0 = 4

Hence the output is 4.

3.5.2.2 Montgomery’s Method

In this part, we discuss another method for computing modular multiplication, attributed to Peter
Montgomery [Mon85].

Suppose n is odd and let r = 2ℓn . In particular, gcd(n, r) = 1. By Bézout’s identity (Theorem 1.1.3),
there exist integers r−1 and n̂ such that

rr−1 − nn̂ = 1. (3.23)

We have discussed that such a pair of integers r−1 and n̂ can be found with the extended Euclidean
algorithm.

Remark 3.5.1. We note that for any positive integer t,

rr−1 − nn̂+ trn− trn = 1 =⇒ r(r−1 + tn)− n(n̂+ tr) = 1. (3.24)

Then r−1 + tn, n̂+ tr can replace r−1 and n̂ in Equation 3.23.

For the rest of this part, we further require that n̂ is positive.

Example 3.5.14. Let n = 15. Then ℓn = 4 and r = 24 = 16. By the extended Euclidean algorithm

16 = 15 + 1 =⇒ 1 = 16− 15,

we have r−1 = 1, and n̂ = 1.

Example 3.5.15. Let n = 23. Then ℓn = 5 and r = 25 = 32. By the extended Euclidean algorithm

32 = 23 + 9, 23 = 9× 2 + 5, 9 = 5 + 4, 5 = 4 + 1,

and
1 = 5− (9− 5) = −9 + (23− 9× 2)× 2 = 23× 2− 5× (32− 23) = 23× 7− 32× 5.

Hence r−1 = −5 and n̂ = −7. To make n̂ positive, we can take t = 1 as in Equation 3.24, we have

r−1 = −5 + n = −5 + 23 = 18, n̂ = −7 + r = −7 + 32 = 25.

We can check that
18r − 25n = 18× 32− 25× 23 = 1.

Example 3.5.16. Let n = 57. Then ℓn = 6 and r = 26 = 64. By the extended Euclidean algorithm

64 = 57 + 7, 57 = 7× 8 + 1 =⇒ 1 = 57− (64− 57)× 8 = −64× 8 + 57× 9,

and we have r−1 = −8, and n̂ = −9. To get a positive n̂, we choose (see Remark 3.5.1)

r−1 = −8 + n = −8 + 57 = 49, n̂+ r = −9 + 64 = 55.

We can check that
49r − 55n = 49× 64− 55× 57 = 1.

131

Example 3.5.17. Let n = 1189. Then ℓn = 11 and r = 211 = 2048. By the extended Euclidean
algorithm

2048 = 1189 + 859, 1189 = 859 + 330, 859 = 330× 2 + 199, 330 = 199 + 131,
199 = 131 + 68, 131 = 68 + 63, 68 = 63 + 5, 63 = 5× 12 + 3,
5 = 3 + 2, 3 = 2 + 1,

and

1 = 3− 2 = (63− 5× 12)× 2− 5 = 63× 2− (68− 63)× 25 = (131− 68)× 27− 68× 25

= 131× 27− (199− 131)× 52 = (330− 199)× 79− 199× 52 = 330× 79− (859− 330× 2)× 131

= (1189− 859)× 341− 859× 131 = 1189× 341− (2048− 1189)× 472

= 2048× (−472)− 1189× (−813).

We have r−1 = −472 and n̂ = −813. To have a positive n̂, we take

r−1 = −472 + 1189 = 717, n̂ = 2048− 813 = 1235.

Before computing R = ab mod n, we first introduce Algorithm 3.16, denoted MonPro, which
calculates abr−1 mod n given a, b, n, and n̂.

By Equation 3.23,
1 + nn̂ ≡ 0 mod r.

Then in line 3 of Algorithm 3.16,

t+mn = t+ tn̂n = t(1 + n̂n)

is divisible by r, and the output u is an integer. By our choice of r = 2ℓn and Equation 3.21

t = ab < rn.

From line 2 we know m < r. Hence in line 3,

u <
rn+ rn

r
= 2n,

which shows that lines 4 – 5 calculate u mod n. Furthermore,

u ≡ ab+mn

r
≡ abr−1 +mnr−1 ≡ abr−1 mod n.

Thus, Algorithm 3.16 indeed outputs abr−1 mod n.

Algorithm 3.16: MonPro, Montgomery product algorithm.
Input: n, r, n̂, a, b// n is an odd integer of bit length ℓn; r = 2ℓn; n̂ is a positive

integer satisfying Equation 3.23; a, b ∈ Zn

Output: abr−1 mod n
1 t = ab
2 m = tn̂ mod r

3 u =
t+mn

r
4 if u ≥ n then
5 u = u− n

6 return u

Let x = xℓx−1xℓx−2 . . . x1x0 be a positive integer of bit length ℓx. By definition (see Theorem 1.1.1),
we know that

x =

ℓx−1∑

i=0

xi2
i.

132

If ℓx ≥ ℓn, for any i ≥ ℓn, xi2i is a multiple of r = 2ℓn . Thus,

x mod r =

min{ℓx−1,ℓn−1}∑

i=0

xi2
i.

In other words, to compute x mod r, we just keep the least significant ℓn bits of x. Note that the
integer r − 1 has binary representation given by a binary string with ℓn 1s. We have

x mod r = x & (r − 1).

We know that a, b ≥ 0. Since we also choose n̂ > 0, line 2 can be replaced by

m = tn̂ & (r − 1).

In case x is a multiple of r. We have

2ℓn

∣∣∣∣∣
ℓx−1∑

i=0

xi2
i.

It is easy to show that xi = 0 for 0 ≤ i < ℓn. And

x

r
=

ℓx−1∑

i=ℓn

xi2
i. (3.25)

For any positive integer s ≤ ℓx, we define right shift x by s bits to be the integer xℓx−1xℓx−2 . . . xs.4 We
write

x >> s := xℓx−1xℓx−2 . . . xs. (3.26)

Compared with Equation 3.25, division by r is equivalent to right shift by ℓn. We have shown that
t+mn in line 3 is a multiple of r. Then line 3 can be replaced by

u = (t+mn) >> ℓn.

In summary, Algorithm 3.16 can be rewritten as Algorithm 3.17. The discussions above demon-
strate the main advantage of using MonPro over a standard modular multiplication method – the
operations modulo n is replaced by modulo r, which can be simplified to an AND operation. Further-
more, to compute division by r, we can simply do a right shift.

Algorithm 3.17: MonPro, Montgomery product algorithm.
Input: n, r, n̂, a, b// n is an odd integer of bit length ℓn; r = 2ℓn; n̂ is a positive

integer satisfying Equation 3.23; a, b ∈ Zn

Output: abr−1 mod n
1 t = ab
2 m = tn̂ & (r − 1)// for a non-negative integer, mod r is equivalent to computing AND

with r − 1. This line implements line 2 of Algorithm 3.16.

3 u = (t+mn) >> ℓn// for a non-negative integer, shift right by ℓn bits is

equivalent to division by r = 2ℓn. This line implements line 3 of

Algorithm 3.16.

4 if u ≥ n then
5 u = u− n

6 return u

4Note that when s = ℓx, we have x >> s = 0.

133

Example 3.5.18. Let n = 15, Then

ℓn = 4, r = 24 = 16, r − 1 = 15.

We have
53 mod r = 5, 53 & 15 = 110101 & 1111 = 101 = 5.

Furthermore,
240

r
=

240

16
= 15, 240 >> 4 = 11110000 >> 4 = 1111 = 15.

Example 3.5.19. Let n = 23. Then ℓn = 5 and r = 25 = 32. In Example 3.5.15 we have discussed
that r−1 = 18 and n̂ = 25. We will compute a few modular multiplications which will be useful for
Example 3.5.27.

Let a = 22, b = 22. Following Algorithm 3.16, we have

t = ab = 22× 22 = 484,

m = tn̂ mod r = 484× 25 mod 32 = 4,

u =
t+mn

r
=

484 + 4× 23

32
= 18,

and the output is 18. Indeed, abr−1 mod n = 22× 22× 18 mod 23 = 18.
Let a = 18, b = 18. We have

t = ab = 18× 18 = 324,

m = tn̂ mod r = 324× 25 mod 32 = 4,

u =
t+mn

r
=

324 + 4× 23

32
= 13,

and the output is 13. We can verity that abr−1 mod n = 18× 18× 18 mod 23 = 13.
Let a = 9, b = 13. We have

t = ab = 9× 13 = 117,

m = tn̂ mod r = 117× 25 mod 32 = 13,

u =
t+mn

r
=

117 + 13× 23

32
= 13,

and the output is 13. We can verity that abr−1 mod n = 9× 13× 18 mod 23 = 13.
Let a = 13, b = 13. We have

t = ab = 169,

m = tn̂ mod r = 169× 25 mod 32 = 1,

u =
t+mn

r
=

169 + 1× 23

32
= 6,

and the output is 6. We can verity that abr−1 mod n = 13× 13× 18 mod 23 = 6.
Let a = 13, b = 1. We have

t = ab = 13,

m = tn̂ mod r = 13× 25 mod 32 = 5,

u =
t+mn

r
=

13 + 5× 23

32
= 4,

and the output is 4. We can verity that abr−1 mod n = 13× 18 mod 23 = 4.
Let a = 9, b = 9. We have

t = ab = 81,

m = tn̂ mod r = 81× 25 mod 32 = 9,

u =
t+mn

r
=

81 + 9× 23

32
= 9,

134

and the output is 9. We can verity that abr−1 mod n = 9× 9× 18 mod 23 = 9.
Let a = 9, b = 22. We have

t = ab = 198,

m = tn̂ mod r = 198× 25 mod 32 = 22,

u =
t+mn

r
=

198 + 22× 23

32
= 22,

and the output is 22. We can verity that abr−1 mod n = 9× 22× 18 mod 23 = 22.

Example 3.5.20. Let n = 15, a = 3, b = 5. We have discussed in Example 3.5.14 that r = 24 = 16,
r−1 = 1 and n̂ = 1. Following Algorithm 3.16, we have

t = ab = 3× 5 = 15,

m = tn̂ mod r = 15× 1 mod 16 = 15,

u =
t+mn

r
=

15 + 15× 15

16
= 15,

and the output is 0. Indeed, abr−1 mod n = 15 mod 15 = 0.

Example 3.5.21. Let n = 57, a = 3, b = 5. We have discussed in Example 3.5.16 that r = 64, r−1 = 49
and n̂ = 55. Following Algorithm 3.16, we have

t = ab = 3× 5 = 15

m = tn̂ mod r = 15× 55 mod 64 = 57 mod 64,

u =
t+mn

r
=

15 + 57× 57

64
= 51,

and the output is 51. We can check that

abr−1 mod n = 3× 5× 49 mod 57 = 735 mod 57 = 51.

Example 3.5.22. Let n = 57, a = 21, b = 5. We know from Example 3.5.16 that

r = 64, r−1 = 49, n̂ = 55.

Following Algorithm 3.16, we have

t = ab = 21× 5 = 105

m = tn̂ mod r = 105× 55 mod 64 = 15

u =
t+mn

r
=

105 + 15× 57

64
= 15,

and the output is 15. We can check that

abr−1 mod n = 21× 5× 49 mod 57 = 5145 mod 57 = 15.

For any a ∈ Zn, we define the n−residue of a with respect to r as

ar := ar mod n.

Example 3.5.23. Let n = 15, and a = 3. Then r = 16 and

ar = ar mod n = 3× 16 mod 15 = (3 mod 15)× (16 mod 15) = 3× 1 mod 15 = 3.

Example 3.5.24. Let n = 57, and a = 3, then r = 64 and

ar = ar mod n = 3× 64 mod 57 = (3 mod 57)(64 mod 57) = 3× 7 mod 57 = 21.

To compute R = ab mod n, we note that

R = ab mod n = arbr
−1 mod n = MonPro(ar, b).

We refer to such a computation as Montogomery’s method for modular multiplication. Details are
given in Algorithm 3.18.

135

Algorithm 3.18: Montgomery’s method for computing modular multiplication.
Input: n, r, a, b// n an odd integer of bit length ℓn; r = 2ℓn; a, b ∈ Zn

Output: ab mod n
1 Compute a positive n̂ with the extended Euclidean algorithm (Algorithm 1.2)
2 ar = ar mod n
3 u = MonPro(n, r, n̂, ar, b)// Algorithm 3.16 or 3.17

4 return u

Example 3.5.25. Let n = 15, a = 3, and b = 5. We have discussed that ar = 3 (see Example 3.5.23) and
MonPro(3, 5) = 0 (see Example 3.5.20). Then by Algorithm 3.18, ab mod n = 0. Indeed, ab mod n =
3× 5 mod 15 = 0.

Example 3.5.26. Let n = 57, a = 3, and b = 5. We know that ar = 21 (see Example 3.5.20) and
MonPro(21, 5) = 15 (see Example 3.5.22). Then by Algorithm 3.18, ab mod n = 15. We can check that
ab mod n = 3× 5 mod 57 = 15.

Utilizing MonPro for computing modular multiplication as in Algorithm 3.18 is not optimal as
it requires computing ar mod n for each multiplication. Even though n̂ can be precomputed by the
extended Euclidean algorithm, it is time-consuming. MonPro will be more useful when multiple
multiplications are computed. We will discuss a more efficient way of using MonPro.

By Corollary1.4.2, the set
Zn
r := { ar = ar mod n | a ∈ Zn }

contains the same elements modulo n as in Zn. We define addition +Mon and multiplication ×Mon
operation on Zn

r as follows:

ar +Mon br := (a+ b)r, ar ×Mon br := (ab)r mod n.

Then we have the following lemma.

Lemma 3.5.1. (Zn
r ,+Mon,×Mon) is a commutative ring with additive identity 0r and multiplicative

identity 1r.

Proof. Firstly, (a + b)r = (a + b)r mod n and (ab)r = abr mod n are both in Zn
r . Thus Zn

r is closed
under +Mon and ×Mon.

Associativity and commutativity of +Mon follows from that for addition in Zn. The identity ele-
ment for +Mon is 0r = 0 mod n since for any ar ∈ Zn

r ,

ar + 0r = ar mod n+ 0 mod n = ar.

The inverse of ar with respect to +Mon is (−a)r, where −a is the inverse of a in Zn with respect to
addition modulo n:

ar + (−a)r = ar mod n+ (−a)r mod n = ar − ar mod n = 0 mod n = 0r.

We have proved that (Zn
r ,+Mon) is an abelian group.

Now, for any ar, br, cr ∈ Zn
r .

(ar ×Mon br)×Mon cr = (ab)r ×Mon cr = (abc)r = abcr mod n

ar ×Mon (br ×Mon cr) = ar ×Mon (bc)r = (abc)r = abcr mod n.

Hence
(ar ×Mon br)×Mon cr = ar ×Mon (br ×Mon cr)

and ×Mon is associative. Moreover,

ar ×Mon (br +Mon cr) = ar ×Mon (b+ c)r = (a(b+ c))r = (ab+ ac)r = (ab)r +Mon (bc)r

= ar ×Mon br +Mon ar ×Mon cr,
so the distributive law holds for ×Mon and +Mon. The identity element for ×Mon is 1r = r mod n since

ar ×Mon 1r = 1r ×Mon ar = ar.

Hence, (Zn
r ,+Mon,×Mon) is a commutative ring (see Definition 1.2.8).

136

Remark 3.5.2. We note that

ar ×Mon br = (ab)r = abr mod n = arbrr−1 mod n = arbrr
−1 mod n = MonPro(ar, br).

Thus, MonPro(ar, br) implements the multiplication in the ring (Zn
r ,+Mon,×Mon).

Now we can apply the Montgomery product algorithm MonPro (Algorithm 3.16 or 3.17) for com-
puting multiplications in the right-to-left (Algorithm 3.7) and the left-to-right (Algorithm 3.8) square
and multiply algorithms. The details are listed in Algorithms 3.19 and 3.20.

Algorithm 3.19: Montgomery right-to-left square and multiply algorithm.
Input: n, r, n̂, a, d // n is an odd integer of bit length ℓn; r = 2ℓn; n̂ is given by

Equation 3.23; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 resultr = r mod n
2 tr = ar mod n
3 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

4 if di = 1 then
5 resultr = MonPro(n, r, n̂, resultr, tr)// resultr = resultr ×Mon tr

6 tr = MonPro(n, r, n̂, tr, tr)// tr = tr ×Mon tr

7 t = MonPro(n, r, n̂, resultr, 1,)// t = tr ×Mon 1 = resultr × r−1 mod n

8 return result

By Lemma 3.5.1 and Remark 3.5.2, lines 5 and 6 in Algorithm 3.19 compute

resultr = resultr ×Mon tr and tr = tr ×Mon tr

respectively. It follows from Algorithm 3.7 that lines 1 – 6 in Algorithm 3.19 calculate

tr = (ar)
d mod n = (ad)r mod n.

Then line 7 removes r from (ad)r and outputs the final result.

Algorithm 3.20: Montgomery left-to-right square and multiply algorithm.
Input: n, r, n̂, a, d // n is an odd integer of bit length ℓn; r = 2ℓn; n̂ is given by

Equation 3.23; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 tr = r mod n
2 ar = ar mod n
3 for i = ℓd − 1, i ≥ 0, i−− do
4 tr = MonPro(n, r, n̂, tr, tr)// tr = tr ×Mon tr

5 if di = 1 then
6 tr = MonPro(n, r, n̂, tr, ar)// tr = tr ×Mon ar

7 t = MonPro(n, r, n̂, tr, 1)// t = tr ×Mon 1 = trr
−1 mod n

8 return t

Similarly, lines 4 and 6 in Algorithm 3.20 compute

tr = tr ×Mon tr and tr = tr ×Mon ar

respectively. It follows from Algorithm 3.8 that lines 1 – 6 in Algorithm 3.20 calculate

tr = (ar)
d mod n = (ad)r mod n.

Then line 7 removes r from (ad)r mod n and outputs the final result.

137

Example 3.5.27. Let
n = 23, d = 4 = 1002, a = 5.

In Example 3.5.2, we have computed

ad mod n = 54 mod 23 = 625 mod 23 = 4

with square and multiply algorithm. In Example 3.5.12 we showed the steps when modular multipli-
cations in the square and multiply algorithm are done with Blakely’s method. Now we calculate the
same modular exponentiation with the square and multiply algorithm and Montgomery’s method
for modular multiplication.

According to Example 3.5.15 that

r = 32, r−1 = 18, n̂ = 25.

For the detailed computations with MonPro below, we refer to Example 3.5.19.
Following Algorithm 3.19, lines 1 and 2 give

resultr = 32 mod 23 = 9, tr = 5× 32 mod 23 = 22.

For i = 0, d0 = 0, line 6 computes

tr = MonPro(23, 32, 25, 22, 22) = 18.

For i = 1, d1 = 0, line 6 computes

tr = MonPro(23, 32, 25, 18, 18) = 13.

For i = 2, d2 = 1, line 5 computes

tr = MonPro(23, 32, 25, 9, 13) = 13.

Then line 6 computes (note that this computation does not affect the final output)

tr = MonPro(23, 32, 25, 13, 13) = 6.

Finally line 7 computes
t = MonPro(23, 32, 25, 13, 1) = 4.

Following Algorithm 3.20, lines 1 and 2 give

tr = 32 mod 23 = 9, ar = 5× 32 mod 23 = 22.

For i = 2, d2 = 1, line 4 computes

tr = MonPro(23, 32, 25, 9, 9) = 9.

Then line 6 computes
tr = MonPro(23, 32, 25, 9, 22) = 22.

For i = 1, d1 = 0, line 4 computes

tr = MonPro(23, 32, 25, 22, 22) = 18.

For i = 0, d1 = 0, line 4 computes

tr = MonPro(23, 32, 25, 18, 18) = 13.

Finally, line 7 computes the output

tr = MonPro(23, 32, 25, 13, 1) = 4.

138

Algorithm 3.21: Montgomery powering ladder with Montgomery’s method for modular
multiplication.

Input: n, r, n̂, a, d // n is an odd integer of bit length ℓn; r = 2ℓn; n̂ is given by

Equation 3.23; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 R0 = r mod n
2 R1 = ar mod n
3 for j = ℓd − 1, j ≥ 0, j −− do
4 if dj = 0 then
5 R1 = MonPro(n, r, n̂, R0, R1)// R1 = R0 ×Mon R1

6 R0 = MonPro(n, r, n̂, R0, R0)// R0 = R0 ×Mon R0

7 else
8 R0 = MonPro(n, r, n̂, R0, R1)// R0 = R0 ×Mon R1

9 R1 = MonPro(n, r, n̂, R1, R1)// R1 = R1 ×Mon R1

10 R0 = MonPro(n, r, n̂, R0, 1)// R0 = R0 ×Mon 1 = R0 × r−1 mod n

11 return R0

We can also apply the Montgomery product algorithm (Algorithm 3.16 or 3.17) to Montgomery
powering ladder (Algorithm 3.9) for computing modular exponentiation. We have Algorithm 3.21.

By Lemma 3.5.1 and Remark 3.5.2, lines 5 and 6 in Algorithm 3.21 compute

R1 = R0 ×Mon R1, R0 = R0 ×Mon R0

respectively. Similarly, lines 8 and 9 in Algorithm 3.21 compute

R0 = R0 ×Mon R1, R1 = R1 ×Mon R1.

It follows from Algorithm 3.9 that lines 1 – 9 in Algorithm 3.21 calculate

(ar)
d mod n = (ad)r mod n.

Then line 10 removes r from (ad)r mod n and outputs the final result.

Example 3.5.28. We repeat the computation in Example 3.5.27 with Algorithm 3.21. We have

n = 23, a = 5, d = 4 = 1002, r = 32, r−1 = 18, n̂ = 25.

For the detailed computations with MonPro below, we refer to Example 3.5.19.
Lines 1 and 2 in Algorithm 3.21 give

R0 = r mod n = 32 mod 23 = 9, R1 = ar mod n = 5× 32 mod 23 = 22.

For j = 2, d2 = 1, line 8 computes

R0 = MonPro(23, 32, 25, 9, 22) = 22.

Since d1 = d0 = 0, for the rest of the computations, only R0 is relevant for the result. For j = 1, line 6
calculates

R0 = MonPro(23, 32, 25, 22, 22) = 18.

For j = 0, line 6 calculates
R0 = MonPro(23, 32, 25, 18, 18) = 13.

Finally, line 10 gives the output

R0 = MonPro(23, 32, 25, 13, 1) = 4.

139

3.6 Further Reading

Figures. We note that figures in this chapter are adjusted versions of drawings from [Jea16]. [Jea16]
includes plenty of source files for various cryptographic-related illustrations.

Implementation of symmetric block ciphers. For more discussions on implementations of symmet-
ric block ciphers, we refer the readers to [Osw]. For a detailed analysis of algebraic normal form and
Boolean functions, we refer the readers to [O’D14].

Bitsliced implementation of DES can be found in e.g. [MPC00, Kwa00]. For AES, [KS09] discusses
a bitsliced implementation for 64−architecture and [SS16] presents the design for 32−bit architec-
ture. More efficient bitsliced implementations of PRESENT can be found in [BGLP13] for 64−bit
architecture and in [RAL17] for 32−bit architecture.

A related novel way of implementing symmetric block ciphers called Fixslicing was introduced in
2020 [ANP20, AP20] to achieve efficient software constant-time implementations. The main idea is to
have an alternative representation of several rounds of the cipher by fixing the bits within a certain
register to never move.

RSA security. Currently, a few hundred qubits (a quantum counterpart to the classical bit) are pos-
sible for a quantum computer [Cho22]. To break RSA, thousands of qubits are required [GE21].
Nevertheless, post-quantum public key cryptosystems are being proposed (see e.g. [HPS98, BS08])
to protect communications after a sufficiently strong quantum computer is built.

Implementations of RSA. For more discussions on different methods for implementing RSA, we
refer the readers to [Koç94]. [Koç94] also discusses how Garner’s algorithm (Equation 3.20) can be
designed for solving simultaneous linear congruences in general. For a more efficient way to imple-
ment the extended Euclidean algorithm, see [Sti05, Algorithm 5.3].

Digital Signatures. There are other digital signatures based on different public key cryptosystems.
For more discussions, we refer the readers to [Buc04, Chapter 12].

Secret key. In Section 2.2.6 we have seen that exhaustive key search can be used to break shift cipher
and affine cipher. The lesson is that the key space should be big enough so the attacker cannot brute
force the secret key. This size is determined by the current computation power. For example, the
56-bit secret key of DES was successfully broken in 1998 [Fou98]. The U.S. National Institute for
Standards and Technology (NIST) issues recommendations for key sizes for government institutions
in the USA. According to those, 80-bit keys were “retired” in 2010 [BBB+07], and lesser than 112-
bit keys were considered insufficient from 2015 onward [BD16]. National Security Agency (NSA)
currently requires AES-256 for Top Secret classification since 2015 due to the emergence of quantum
computing [Age15].

Chapter 4

Side-Channel Analysis Attacks and
Countermeasures

Abstract

Side-channel analysis attacks target cryptographic implementations passively. The
attacks exploit the possibility of the attacker observing the physical characteristics
of a device that is running a cryptographic algorithm. The attacker obtains the side-
channel information, e.g. power consumption, electromagnetic emanation, execu-
tion time, etc, and then utilizes such information to recover the secret key.

In this chapter, we will focus on power analysis attacks that exploit power con-
sumption information. Different attack methodologies on symmetric block ciphers
and on RSA will be presented. Corresponding countermeasures will also be dis-
cussed.
Keywords: side-channel attacks, power analysis attack, simple power analysis, dif-
ferential power analysis, hiding, masking

Side-channel analysis attacks target cryptographic implementations passively. The attacks exploit
the possibility of the attacker observing the physical characteristics of a device that is running a
cryptographic algorithm. The attacker obtains the so-called side-channel information, e.g. power
consumption, electromagnetic emanation, execution time, etc, and then utilizes such information to
recover the secret key.

In this chapter, we will focus on power analysis attacks that exploit power consumption infor-
mation. The attack methodologies can be used in a similar manner when electromagnetic emanation
(EM) is analyzed.

Although side-channel analysis attacks can refer to a wide range of attacks, including timing anal-
ysis [Koc96], cache attacks [GMWM16], etc., in this book, we use the terminology side-channel analysis
attacks only in the narrower meaning which refers to power analysis attacks. In short, we also write
side-channel analysis as SCA.

Device under test. The device that the attacker takes measurements of is called the device under test
(DUT). For example, it can be a microcontroller, running a software implementation, an FPGA, or an
ASIC, realizing a hardware implementation.

For power analysis attacks we study in this chapter, we assume the attacker has certain knowl-
edge of the implementation. For example, how to interface with the encryption routine, whether
the computation is executed serially or in parallel, whether the implementation is round-based or
bit-sliced, or whether some types of countermeasures are present. Generally, this type of information
can also be obtained by reverse engineering, visual inspection of the side-channel measurements, or
sometimes just with a simple trial-and-error technique.

Attacker goal. The ultimate goal of the attacker is to recover the master key of a symmetric block
cipher or the private key of a public key cipher.

140

141

Attacker’s assumptions. Based on the assumption of whether the attacker can obtain a similar device
to the target device, we distinguish two types of SCA attacks:

• Non-profiled SCA. If the attacker does not have access to a similar device, just the target device
or just the measurements coming from the target device, we talk about a non-profiled SCA. In a
general scenario, this attack utilizes a set of measurements where a fixed secret key is used to
encrypt multiple (random) plaintexts.

• Profiled SCA. If we assume the attacker has access to a clone device of the target device, then
they can carry out a profiled SCA. This attack operates in two phases. In the profiling phase, the
attacker acquires side-channel measurements for known plaintext/ciphertext and known key
pairs. This set of data is used to characterize or model the device. Then in the attack phase,
the attacker acquires a few measurements from the target device, which is usually identical to
the clone device, with known plaintext/ciphertext and an unknown key. These measurements
from the target device are then tested against the characterized model from the clone device.

Source code

The source code and measurement data for this chapter can be found in the following
link

https://github.com/XIAOLUHOU/SCA-measurements-and-analysis---
-Experimental-results-for-textbook

4.1 Experimental Setting

Power analysis measures the power consumption of the DUT in the form of a voltage change. The
most convenient device to capture the voltage change over time is a digital sampling oscilloscope– a
device that takes samples of the measured voltage signal over time. We refer to each sample point as
a time sample. More information on measurement setups is provided in Section 6.1.

To be able to target the correct time slot, in our experiments, a trigger signal is raised to high (5V)
during the computation that we want to capture and lowered afterward. One measurement consists
of the voltage values for each time sample in this duration. It can be stored in an array of length equal
to the total number of time samples in the measured time interval. It can also be drawn in a graph
where the x−axis corresponds to time samples and the y−axis records the voltage values.1 Thus, we
refer to the result of one measurement as a (power) trace.

Device under test and oscilloscope. For the experiments in this chapter, we used a ready-to-use
measurement platform NewAE ChipWhisperer-Lite. The program code was running on a 32−bit
ARM Cortex-M4 microcontroller (STM32F3) with a clock speed of ≈ 7.4 MHz. ADC was set to cap-
ture the samples at 4× that speed, i.e. ≈ 29.6 MHz with a 10−bit resolution. However, for plotting
purposes, we normally reduced the number of time samples. The measurement setup is depicted
in Figure 4.1. The Chipwhisperer-Lite board is in the middle of the picture in black color, handling
the communication with the DUT and the acquisition. The red PCB on the right is the CW 308 UFO
board – a breakout board with the DUT – ARM Cortex-M4 (blue board) mounted on top. The con-
trolling and data processing were done from a laptop, from the Jupyter environment available for the
ChipWhisperer platform. In the back, there is a Teledyne T3DSO3504 benchtop oscilloscope that was
used mainly for convenience purposes – to precisely locate the time intervals in the initial analysis
stage.

Figure 4.2 shows one power trace for the first five rounds of PRESENT encryption. In order to see
the trace more clearly, we have added a sequence nop instructions before and after the five rounds
cipher computation. This trace has in total 18500 time samples. Certain patterns can be seen from
the trace and we can deduce the corresponding operations in each time interval. For example, from
time sample 0 − −1434 and from time sample 17514 − −18500 we have nop instructions. We can

1Note that, in the case of ChipWhisperer, which will be used for our experiments and analysis, the y−axis does not
show the actual voltage value but a 10-bit value proportional to the current going through the shunt resistor.

https://github.com/XIAOLUHOU/SCA-measurements-and-analysis----Experimental-results-for-textbook
https://github.com/XIAOLUHOU/SCA-measurements-and-analysis----Experimental-results-for-textbook

142

Figure 4.1: Side-channel measurement setup used for the experiments: a laptop, the ChipWhisperer-
Lite measurement board (black), and the CW308 UFO board (red) with the mounted ARM Cortex-
M4 target board (blue). Note that the benchtop oscilloscope in the back was only used for the initial
analysis – all the measurements were done by the ChipWhisperer.

also see the five repeated patterns in the figure and deduce the duration of each round, as indicated
in the figure by red dotted lines. In terms of time samples, one round takes on average 3216 time
samples. In this particular case, we reduced the number of samples by a factor of 3 (simply by taking
every third sample) so that the patterns would still be visible to the reader. That means, with the
ADC speed of ≈ 29.6 MHz, one round takes (3216 × 3)/29.6 ≈ 325.9µs. It is important to note that
for presentation purposes, we used an unoptimized software implementation of PRESENT.

Datasets. Four datasets will be analyzed in more detail in the later parts of this chapter. All the
datasets capture one round of software implementation of PRESENT. The description of each of them
is given below:

• Fixed dataset A: This dataset contains 5000 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext ABCDEF1234567890.

• Fixed dataset B: This dataset contains 5000 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext 84216BA484216BA4.

• Random plaintext dataset: This dataset contains 5000 traces with a fixed round key

FEDCBA0123456789, (4.1)

and a random plaintext for each trace.

• Random dataset: This dataset contains 10000 traces with a random round key and a random
plaintext for each trace.

In each case, the execution of the cipher is surrounded by nop instructions so that the round operation
patterns can be clearly distinguished from the provided plots. While the raw traces are all 5000 time
samples long, for plotting and analysis purposes, we shorten them to 3600 time samples as the later
parts correspond to nop instructions and do not contain any useful information. We also note that
for these datasets, we reduced the number of collected time samples by a factor of 3.

4.1.1 Attack Methods

There are two main classical power analysis attack methods, simple power analysis (SPA) and differ-
ential power analysis (DPA). SPA assumes the attacker has access to only one or a few measurements

143

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

P
ow

er
co
n
su
m
p
ti
on

Figure 4.2: Power trace of the first 5 rounds of PRESENT encryption. A sequence of nop instructions
was executed before and after the cipher computation to clearly distinguish the operations.

corresponding to some fixed inputs. In DPA, we assume the attacker can take measurements for a
potentially unlimited number of different inputs. We will present several DPA attacks on symmetric
block ciphers (Sections 4.3.1, and 4.3.2) as well as DPA (Section 4.4.1) and SPA (Section 4.4.2) attacks
on RSA.

We will also discuss a newly proposed side-channel assisted differential plaintext attack (SCADPA) on
SPN ciphers (Section 4.3.3). The amount of traces needed is in between that for SPA and DPA, mostly
dependent on the measurement equipment.

4.2 Side-channel Leakages

In the later parts of the chapter, we will see that by analyzing the power consumption, we can deduce
the secret key. Consequently, we also refer to the power consumption as the leakage of the device. We
consider the leakage consists of two parts: signal and noise. Signal refers to the part of the leakage
containing useful information for our attack; the rest is noise. For example, suppose we would like to
recover the hamming weight of an intermediate value. In that case, the part of the leakage correlated
to the hamming weight of that intermediate value is our signal.

Before we see how leakage can be defined and modeled, we show that it is dependent on the
operations being executed and the data being processed.

We first take the Fixed dataset A described in Section 4.1. The average of those 5000 traces is
shown in Figure 4.3. As mentioned in Section 4.1, each trace in this dataset corresponds to one round
of PRESENT computation surrounded by nop operations. By visual inspection, we can deduce that
the beginning (time samples 0− 209) and the ending (time samples 3381− 3600) parts that consist of
relatively uniform patterns correspond to nop instructions. Other than that, we can see three distinct
patterns between them. Since one round of PRESENT consists of addRoundKey, sBoxLayer, and
pLayer (see Figure 3.8), we can roughly identify each of these three operations in the trace – they
correspond to the blue (time samples 210 − 382), pink (time samples 383 − 567), and green (time
samples 568− 3380) parts of the trace, respectively. In this case, one round computation corresponds
to 3170 time samples, which is fewer than that in Figure 4.2. Such a difference can be caused by round
counter and loop operations, register updates of round keys, etc., that are additionally computed
in the five round PRESENT implementation. These observations demonstrate that the leakage is
dependent on the operations being executed in the DUT.

For another experiment, with the experimental setup described in Section 4.1, we have conducted
measurements for one round of PRESENT with a fixed round key. A total of 1000 traces were col-
lected, each for a random plaintext with the 0th bit equal to 0. The averaged trace is shown in
Figure 4.4. With the same key, we collected traces for 1000 plaintexts with the 0th bit equal to 1. And
the averaged trace is shown in Figure 4.5. We can see that those two averaged traces are very simi-
lar. Unsurprisingly, they also look similar to the trace in Figure 4.3. Thus, the time interval for each
operation in the first round of PRESENT corresponds to that in Figure 4.3 as well.

144

0 382 1,000 2,000 3,000 3,380

−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.3: The averaged trace for 5000 traces from the Fixed dataset A (see section 4.1). The blue, pink,
and green parts of the trace correspond to addRoundKey, sBoxLayer, and pLayer, respectively.

0 1,000 2,000 3,000

−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.4: The averaged trace for 1000 plaintexts with the 0th bit equal to 0. The computation
corresponds to one round of PRESENT with a fixed round key.

We can gain more information when we take the difference between traces in Figures 4.4 and 4.5.
The difference trace is shown in Figure 4.6. There are a few peaks in this difference trace, and apart
from those peaks, most of the points are close to zero. Those peaks indicate that the 0th bit of the
plaintext is related to the computations at the corresponding time samples. Compared with Fig-
ure 4.3, we can see that the first and second peaks correspond to addRoundKey and pLayer op-
erations. In particular, these observations show that the leakage is dependent on the data being
processed in the DUT.

Note

In the SCA attacks we will see in this book, we will only be interested in operation
or/and data-dependent leakages.

SPA typically exploits the relationship between the executed operations and the
leakage (power consumption). DPA and SCADPA focus on the relationship between
the processed data and the leakage (power consumption).

To analyze the leakage better, we model the leakage, signal, and noise at a given point in time
as random variables. In particular, for a fixed time sample t, let Lt, Xt, and Nt denote the random
variables corresponding to the leakage, signal, and noise, respectively. As we consider the leakage
consists of signal and noise, we can write

Lt = Xt +Nt. (4.2)

Since Xt contains the part of the leakage that is useful to us and the rest is noise, we make the

145

0 1,000 2,000 3,000

−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.5: The averaged trace for 1000 plaintexts with the 0th bit equal to 1. The computation
corresponds to one round of PRESENT with a fixed round key.

0 376 569 1,000 2,000 3,000

−2

0

2
·10−3

Time sample

L
ea
ka
ge

Figure 4.6: The difference between traces from Figures 4.4 and 4.5.

“independent noise assumption” (see e.g. [Pro13]) and assume Nt and Xt are independent random
variables. When Xt is a constant, according to Equations 1.36 and 1.33, we have

Var(Lt) = Var(Nt), Xt = E [Lt]− E [Nt] , (4.3)

But how do we decide when Xt is constant? That depends on the information we would like
to obtain from the traces. Let us consider one round of PRESENT computation. Suppose we are
interested in the 0th Sbox output of the sBoxLayer (the right-most Sbox in Figure 3.9), denoted by v.
If we want information revealing the exact value of v, then for any given time sample t, the signal
Xt is considered to be constant across the following dataset: measurements for computations of one
round of PRESENT with a fixed master key and plaintexts with a fixed 0th nibble. The identical 0th
nibble in plaintexts and fixed key guarantees the same 0th Sbox output. We can also use random
master keys that result in the first round key having the same 0th nibble. If we want information
revealing the Hamming weight of v, then measurements with master keys and plaintexts that result
in a fixed wt (v) would correspond to constant Xts.

4.2.1 Distribution of the Leakage

Since we are only interested in either data or operation-related leakages, for a given point in time t, if
we fix the operation and the data, we get a constant signal, i.e., Xt is a constant. In the following, we
will show that, in this case, the experimental results (histograms) demonstrate that it is reasonable to
consider the distribution induced by Lt to be a normal distribution (see Example 1.7.23).

146

We note that since the noise comes from many sources, e.g., environment, other components in
the DUT, setup, etc, it can be considered as a combination of various independent random variables.
Thus, according to the central limit theorem [Dud14]2, it is reasonable to assume the distribution in-
duced by the noise is normal.

Let us take the Fixed dataset A described in Section 4.1. Figure 4.7 shows a small part from five
randomly selected traces. We can see that they are very similar, with minor differences. As the signal
is the same, the minor differences are caused by the noise. We will further characterize the noise
using histograms.

383 384 385 386 387 388 389

−0.05

0.00

0.05

0.10

0.15

Time sample

L
ea
ka
ge

Figure 4.7: Part of five random traces from the Fixed dataset A (see Section 4.1).

Recall that the averaged trace of those 5000 traces in Fixed dataset A is shown in Figure 4.3. Take t =
3520. As we have mentioned in the discussion regarding Figure 4.3, this time sample corresponds to
nop operations. If we plot the histogram of leakages L3520 across those 5000 traces, we get Figure 4.8.
Most leakages are around 0.0435, and very few are below 0.037 or above 0.049.

3.750 4.050 4.350 4.650 4.950

·10−2

0

200

400

600

800

Leakage

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

Figure 4.8: Histogram of leakages at time sample t = 3520 across 5000 traces from the Fixed dataset A.

Now we take another time sample t = 2368, which gives the highest peak in Figure 4.3 and
corresponds to pLayer computation. The histogram of leakages L2368 across those 5000 traces is
shown in Figure 4.9. Most leakages are around 0.213 and very few are below 0.207 or above 0.219
Compared to Figure 4.8, we have much higher leakage values. This is because t = 3520 corresponds
to nop operations, and for t = 2368, we have PRESENT round computations.

For both cases, the shapes of the histograms are similar to the PDF of a normal distribution (see
Figure 1.2). If we take a different time sample, the histogram will be similar, with differences in the
values on the x-axis. In other words, the distribution induced by the leakages can be approximated
by normal distributions. As mentioned, all traces correspond to the same operation and data in the

2Roughly speaking, the central limit theorem says that if we combine different independent random variables, the
resulting distribution tends to be normal.

147

0.201 0.204 0.207 0.210 0.213 0.216 0.219 0.222

0

200

400

600

Leakage

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

Figure 4.9: Histogram of leakages at time sample t = 2368 across 5000 traces from the Fixed dataset A.

DUT for a fixed time sample, resulting in a constant Xt. Thus, the variants in the leakage are caused
by the noise.

Leakage Models. One important concept for a power analysis attack is the leakage model, namely a
model that estimates how the leakage is related to the data being processed. A good leakage model
can make the attack more efficient (see Section 4.3.2).

Three commonly used leakage models are identity leakage model, Hamming distance leakage model,
and Hamming weight leakage model. Assume a value v is being processed in the DUT, and right before
it, another value u was used by the DUT. Then, according to the identity leakage model, the leakage is
correlated (see Definition 1.7.8) to v. The Hamming distance leakage model assumes that the leakage
is correlated to dis (v,u), the Hamming distance between v and u (see Equation 1.24). Following the
Hamming weight leakage model, the leakage will then be correlated to wt (v), the Hamming weight
of v (see Definition 1.6.10). We refer the readers to subsection 6.1.1 for more explanations of why
there are side-channel leakages when the data in the DUT is changed.

In particular, let noise ∼ N(0, σ2) be a normal random variable with mean 0 and variance σ2. For
the identity leakage model, the modeled leakage is given by

L(v) = v + noise.

For the Hamming distance leakage model, we have

L(v) = dis (v,u) + noise.

Similarly, for the Hamming weight leakage model,

L(v) = wt (v) + noise. (4.4)

Even though the actual leakage may not be exactly equal to the modeled leakage L(v), those leakage
models can be used to approximate the behavior of the actual leakages or for statistical analysis (see
Section 4.3.1). For example, our previous experiments have demonstrated that the identity leakage
model is realistic since when the data is fixed, the distribution of leakages is close to a normal dis-
tribution. It can be shown that the other two leakage models are also realistic (see [MOP08, Section
4.3]).

In this book, we will focus on two leakage models: the identity leakage model and the Hamming
weight leakage model.

4.2.2 Estimating Leakage Distributions

In this subsection, we look at the analysis of leakages from a statistical point of view and provide con-
crete examples of methods for analyzing unknown distribution parameters discussed in Section 1.8.2.
We consider the DUT computing PRESENT encryption with a fixed plaintext and a fixed key. We

148

have shown that in this case, we can assume Lt induces a normal distribution for a given time sam-
ple t. Let µt and σ2

t denote the mean and variance of this normal distribution.
For the running example, we focus on the Fixed dataset A as described in Section 4.1. Let t = 2368,

which gives the highest peak in Figure 4.3 and corresponds to the computation of pLayer. We have
seen the histogram of the leakages at this time sample in Figure 4.9. With the terminologies from
Section 1.8.2, a sample for L2368 is given by all leakage values at t = 2368 from those 5000 traces in
Fixed dataset A. We can use our sample to estimate the mean (µt) and variance (σ2

t) of the distribution
induced by L2368 (assuming it is normal) using point estimators given by sample mean and sample
variance (see Remark 1.8.4). Let M = 5000 denote our sample size.

Example 4.2.1 (Example of approximating mean and variance with sample mean and sample vari-
ance). By Equation 1.49, the sample mean is given by the average of leakages at time sample 2368
across those 5000 traces. We have

l2368 ≈ 0.2132.

Following Equation 1.53, we have also computed the sample variance

s22368 ≈ 8.5196× 10−6. (4.5)

Then the sample mean 0.2132 is an estimate for µ2368, and the sample variance 8.5196 × 10−6 is an
estimate for σ2

2368.

We can also estimate the mean with an interval estimator.

Example 4.2.2 (Example of interval estimator for the mean). Since we do not know the variance of
L2368, by Equation 1.59, a 100(1− α) percent confidence interval for µ2368 is given by

(
l2368 − tα/2,M−1

s2368√
M

, l2368 + tα/2,M−1
s2368√
M

)
.

Take α = 0.01. Then according to Remark 1.8.2 and Table 1.4, we get

t0.005,4999 ≈ z0.005 = 2.576.

By Equation 4.5,
s2368 =

√
8.5196× 10−6 ≈ 2.9188× 10−3.

And a 99% confidence interval for µ2368 is
(
0.2132− 2.576× 2.9188× 10−3

√
5000

, 0.2132 + 2.576× 2.9188× 10−3

√
5000

)
≈ (0.2131, 0.2133) . (4.6)

Assume we know the variance of L2368 is actually given by σ2
2368 = 8.5196× 10−6. Suppose we want

to find an estimate for µt with precision c = 0.001 and 99% of confidence. By Equation 1.58, the
number of traces we need to collect is given by

σ2
2368

c2
z2α/2 =

8.5196× 10−6

0.0012
× 2.5762 ≈ 57, (4.7)

where 1 − α = 0.99 gives α = 0.01 and as mentioned above, z0.005 = 2.576. Thus, we should collect
at least 57 traces to get a 99% percent confidence interval for µ2368.

Since the number of traces to be collected is more than 30, according to Equation 1.60, if we do
not know the variance of Lt, we can use the sample variance s22368 to compute the number of traces
required. In this case, we will get the same result as in Equation 4.7 since we have assumed the
variance to be equal to this sample variance.

Now we take the Fixed dataset B described in Section 4.1. We again look at the time sample t =
2368. Let L′

2368 denote the random variable corresponding to the leakage at time sample 2368 for one
round encryption of the plaintext 84216BA484216BA4 with round key FEDCBA0123456789. Let
µ′
2368 and σ

′2 denote the mean and variance of L′
2368 respectively. Then the Fixed dataset B provides a

sample for L′
2368. Similarly to Example 4.2.1, we can compute the sample mean and sample variance

for L′
2368 with this sample, and we have

l′2368 ≈ 0.2133, s
′2
2368 ≈ 8.6198× 10−6. (4.8)

149

Example 4.2.3 (Example of interval estimator for the mean). Let us assume L2368 and L′
2368 are inde-

pendent. We further assume that we know that the actual variances for L2368 and L′
2368 are equal to

the sample variances we have computed. Suppose we want to find an estimation for µ2368 − µ′
2368.

By Equation 1.62, a 99% confidence interval estimate for µ2368 − µ′
2368 is given by


l2368 − l′2368 − z0.005

√
σ2
2368

M
+

σ
′2
2368

M
, l2368 − l′2368 + z0.005

√
σ2
2368

M
+

σ
′2
2368

M




=
(
0.2132− 0.2133− 2.576

√
(8.5196× 10−6 + 8.6198× 10−6)/5000,

0.2132− 0.2133 + 2.576
√

(8.5196× 10−6 + 8.6198× 10−6)/5000
)

=
(
−2.5082× 10−4, 5.0820× 10−5

)

On the other hand, by Equation 1.63, to achieve an estimation with precision, say c = 0.001, and
100(1− α) confidence, the number of data required to collect is given by

z2α/2(σ
2
2368 + σ

′2
2368)

c2
.

Take α = 0.01, then z0.005 = 2.576 and we have

z20.005(σ
2
2368 + σ

′2
2368)

c2
=

2.5762 × (8.5196× 10−6 + 8.6198× 10−6)

0.0012
≈ 114.

If we assume we do not know the variances, but we know that σ2368 = σ
′
2368, by Equation 1.67,

the number of traces to collect is given by

2z2α/2s
2
p

c2
=

2× 2.5762 × 8.5697× 10−6

0.0012
≈ 114,

where

s2p =
(M − 1)s2x + (M − 1)s2y

M +M − 2
=

s2x + s2y
2

=
8.5196× 10−6 + 8.6198× 10−6

2
= 8.5697× 10−6.

Remark 4.2.1. We note that the sample variances of L2368 and L′
2368 are very close. This is expected

as it has been shown in Equation 4.3 that the variances σ2
2368 and σ

′2
2368 are both equal to the variance

of the noise at time sample 2368.

For now, we have seen how to analyze the leakage at one particular time sample by approximat-
ing its distribution with a normal distribution. Similarly, we can also approximate the distribution
of leakages across different time samples. In this case, we consider a random vector (see Defini-
tion 1.7.9) instead of a random variable. Thus, we would approximate the distributions induced by
the leakages as multivariate normal distributions (Gaussian distributions). It can be seen from Defi-
nition 1.7.10 that to find a good Gaussian distribution for approximating the noise/leakage, we just
need to approximate the mean vector and covariance matrix. We will see in Section 4.3.2.3 that the
profiling phase of the template attack is exactly to calculate estimations for the mean vector and the
covariance matrix. In reality, leakages at different time samples are correlated (see Definition 1.7.8).
However, the effort to calculate the covariance matrix grows quadratically with the number of con-
sidered time samples. Thus, in practice, only a small part of the traces would be profiled with a
non-diagonal covariance matrix (see Example 1.7.24).

4.2.3 Leakage Assessment

In the rest of this chapter, we will see various attacks on cryptographic implementations. As a devel-
oper, one might want to evaluate the implementation and conclude if it is vulnerable to SCA. On the
other hand, different new attacks are being developed, and it is impractical to verify the security of
our implementation against all of them. Leakage assessment aims to solve this problem by analyz-
ing the power trace and answering whether any data-dependent information can be detected in the
traces of the DUT.

150

Note

We note that the leakage assessment methods do not provide any conclusions in
cases where data-dependent leakage is not detected. Therefore, the absence of data-
dependent leakage indicated by a particular method does not prove that the imple-
mentation is leakage-free.

In this part, we discuss a method for leakage assessment based on student’s t−test and Welch’s
t−test (see Section 1.8.3). The methodology is also referred to as test vector leakage assessment (TVLA).

Consider a DUT running PRESENT encryption and fix a time sample t. We also fix an interme-
diate value v. For example, the input plaintext or one Sbox output. We take the signal as the part
of the leakage related to v. Let Lt and L′

t denote the leakages at time sample t corresponding to two
encryptions with different fixed values of v.

Example 4.2.4 (Example of Lt and L′
t). If we take v to be the plaintext, following the convention, we

require the key to be the same, then Lt and L′
t would correspond to encryptions of two different fixed

plaintexts with the same key. For example, we can take Fixed dataset A and Fixed dataset B as samples
of Lt and L′

t for the first round of the encryption.
If we take v to be the 0th Sbox output in the first round of PRESENT, then Lt and L′

t would
correspond to encryptions that result in two different 0th Sbox outputs. For example, let us take
Random dataset, we have 634 traces corresponding to v = 0 and 651 traces corresponding to v = F.
Those two sets of traces provide us with samples of Lt and L′

t for the first round of the encryption.

As discussed before, when the signal is fixed, we assume a normal distribution can approximate
the distribution induced by Lt. We can write

Lt = Xt +Nt, L′
t = X ′

t +N ′
t ,

with
Lt ∼ N(µt, σ

2
t), L′

t ∼ N(µ′
t, σ

′2
t).

Since (see Equation 4.2)
Lt = Xt +Nt,

and the signal Xt is a constant, the variance of Lt is given by the variance of Nt and the mean of Lt is
given by the sum of the constant Xt and the mean of Nt, as shown in Equation 4.3. In other words,

µt = Xt + E [Nt] , σ2
t = Var(Nt). (4.9)

Similarly, we have
µ′
t = X ′

t + E
[
N ′

t

]
, σ

′2
t = Var

(
N ′

t

)

As the noise is independent of the signal, we have Nt = N ′
t . Consequently,

µt −Xt = µ′
t −X ′

t, σ2
t = σ

′2
t . (4.10)

Before going into details about the TVLA methodology, we recall hypothesis testing techniques
from Section 1.8.3. We can use those techniques to test hypotheses about µt and µ′

t.

Example 4.2.5 (Example of a hypothesis). If we are interested in whether µt = 0, we can set a hy-
pothesis that µt = 0.

Example 4.2.6 (Example of two-sided hypothesis testing concerning µx). Let v be the plaintext and
we use Fixed dataset A (see Section 4.1) as a sample for Lt (i.e. Lt denotes the leakage at time sample t
for one round encryption of the plaintext ABCDEF1234567890with round key FEDCBA0123456789).
Fix t = 2368, which gives the highest peak in Figure 4.3 and corresponds to the computation of
pLayer. Recall that in Example 4.2.1, we have calculated a sample mean of l2368 ≈ 0.2132 for L2368.
We would like to know if µ2368 = 0. Following Equation 1.68, we have null and alternative hypothe-
ses given by

H0 : µ2368 = 0, H1 : µ2368 ̸= 0.

151

Suppose we know the variance is equal to the sample variance we have computed in Exam-
ple 4.2.1, namely we assume

σ2
2368 = 8.5196× 10−6, which gives σ2368 ≈ 2.9188× 10−3.

There are in total 5000 traces in Fixed dataset A. For a test with significance level α = 0.01, the critical
region is given by Equation 1.69, with (see Equation 1.72)

c =
zα/2σ√
5000

= 2.576× 2.9188× 10−3

√
5000

≈ 1.06× 10−4,

where z0.005=2.576 (see Table 1.4). Since the sample mean

l2368 ≈ 0.2132 > c,

we reject the null hypothesis and conclude that µ2368 ̸= 0. The probability that our decision is wrong
is given by α = 0.01.

Example 4.2.7 (Example of one-sided hypothesis testing concerning µx). With the same notation as
in Example 4.2.6, suppose we know that the mean of L2368, µ2368, is at least 0, we would like to know
if it is bigger than 0. We set µ0 = 0 in Equation 1.75 and get the following null hypothesis and the
alternative hypothesis

H0 : µ2368 = 0, H1 : µ2368 > 0.

First, let us assume we know the variance is equal to the sample variance we computed in Exam-
ple 4.2.1. There are in total 5000 traces in Fixed dataset A, for a test with significance level α = 0.01,
the critical region is given by Equation 1.76, with (see Equation 1.77)

c = z0.01
σ2368√
5000

=
2.326× 2.9188× 10−3

√
5000

≈ 9.601× 10−5,

where z0.01 = 2.326 (see Table 1.4). Since our sample mean

l2368 ≈ 0.2132 > c,

we reject the null hypothesis and conclude that µ2368 > 0. The probability that our decision is wrong
is given by α = 0.01.

Furthermore, we also would like to check how many traces are required for a test with significance
level α = 0.01. For this, we need to choose a value of c. Considering the value of the sample mean and
sample variance, let us choose c = 0.001 in Equation 1.78. According to Equation 1.79, the number of
traces to collect is then

σ2
2368

c2
z2α =

8.5196× 10−6

0.0012
× 2.3262 ≈ 46. (4.11)

Now, suppose we do not know the variance σ2
2368. Since the number of traces is big, according to

Equation 1.80, we compute

√
5000× l2368

s2368
=
√
5000× 0.2132

2.9188× 10−3
≈ 5165,

which is bigger than z0.01 = 2.326. Thus, we can reject the null hypothesis and conclude that µ2368 >
0. The probability of a wrong decision is given by α = 0.01. As for the number of traces needed, by
Equation 1.81, we will use the sample variance and reach the same result as in Equation 4.11.

Example 4.2.8 (Example of two-sided hypothesis testing about µx and µy). The same as in Exam-
ple 4.2.3, we take the leakages at t = 2368 from the Fixed dataset B as a sample for L′

2368. We have
computed the sample mean and sample variance for this random variable, given in Equation 4.8. We
would like to know if the mean of L2368 (µ2368) and the mean of L′

2368 (µ′
2368) are the same. We set the

following hypotheses (see Equation 1.82)

H0 : µ
′
2368 = µ2368, H1 : µ

′
2368 ̸= µ2368.

152

Assume we know the variances for both random variables are equal to the sample variances
that we have computed (see Equations 4.5 and 1.82). There are in total 5000 traces in both Fixed
dataset A and Fixed dataset B, for a test with significance level α = 0.01, the critical region is given by
Equation 1.83, with (see Equation 1.86)

c = z0.005

√
σ2
2368

5000
+

σ
′2
2368

5000
= 2.576×

√
8.5196× 10−6 + 8.6198× 10−6

5000
≈ 0.00015,

where z0.005 = 2.576 (see Table 1.4). Since our sample mean

l′2368 − l2368 ≈ 0.0001 < c,

we accept the null hypothesis and conclude that µ′
2368 = µ2368. The probability that our decision is

wrong is given by α = 0.01.
Moreover, to check how many traces are needed for a test with significance level α = 0.01, we

choose c = 0.001 in Equation 1.86. According to Equation 1.87, the number of traces to collect is then

z2α/2
σ2
2368 + σ

′2
2368

c2
= 2.5762 × 8.5196× 10−6 + 8.6198× 10−6

0.0012
≈ 114. (4.12)

In case we do not know the variances, since the number of traces in both datasets is 5000, follow-
ing the student’s t−test, we compute (see Equation 1.89)

|l′2368 − l2368|√
s22368+s

′2
2368

5000

=
0.0001√

8.5196×10−6+8.6198×10−6

5000

≈ 1.7 < z0.005.

We accept the null hypothesis and conclude that µ′
2368 = µ2368. The probability that our decision is

wrong is given by α = 0.01.
Set c = 0.001, then the number of traces needed for a student’s t−test with significance level

α = 0.01 is given by (see Equation 1.90)

z20.005
s22368 + s

′2
2368

c2
= 2.5762 × 8.5196× 10−6 + 8.6198× 10−6

0.0012
≈ 114.

Example 4.2.9 (Another example of two-sided hypothesis testing about µx and µy). Similar to Exam-
ple 4.2.8, let us now look at a different time sample t = 392. We can compute the sample mean and
sample variance of L392 with Fixed dataset A. They are given by

l392 ≈ −0.0525, s2392 ≈ 1.5141× 10−6.

With Fixed dataset B, we get the sample mean and sample variance of L′
392 as follows

l′392 ≈ −0.0501, s
′2
392 ≈ 1.4801× 10−6.

Similar to Example 4.2.8, we set the following hypotheses (see Equation 1.82)

H0 : µ
′
392 = µ392, H1 : µ

′
392 ̸= µ392.

Let α = 0.01. Then according to student’s t−test with significance level α, we compute (see Equa-
tion 1.89)

|l′392 − l392|√
s2392+s

′2
392

5000

=
0.0024√

1.5141×10−6+1.4801×10−6

5000

≈ 98.1 > z0.005 (z0.005 = 2.576).

We reject the null hypothesis and conclude that µ′
392 ̸= µ392. The probability that our decision is

wrong is given by α = 0.01.
Set c = 0.001, then the number of traces needed for a student’s t−test with significance level

α = 0.01 is given by (see Equation 1.90)

z20.005
s2392 + s

′2
392

c2
= 2.5762 × 1.5141× 10−6 + 1.4801× 10−6

0.0012
≈ 20.

153

Example 4.2.10 (Example of one-sided hypothesis testing about µx and µy). With the same notations
as in Example 4.2.9, suppose we know that

µ′
392 ≥ µ392.

We would like to know if µ′
392 > µ392. Then we have the following hypotheses

H0 : µ
′
392 = µ392, H1 : µ

′
392 > µ392.

Firstly, suppose we know the variances for both random variables are equal to the sample vari-
ances that we have computed. There are 5000 traces in both Fixed dataset A and Fixed dataset B. For a
test with significance level α = 0.01, the value of c in the critical region given by Equation 1.92 is (see
Equation 1.93)

c = zα

√
σ2
392 + σ

′2
392

5000
= 2.326×

√
1.5141× 10−6 + 1.4801× 10−6

5000
≈ 5.692× 10−5,

where z0.01 = 2.326. Since
l′392 − l392 = 0.0024 > c,

we reject the null hypothesis and conclude that µ′
392 > µ392. The probability of this choice being

wrong is given by α = 0.01.
Set c = 0.001. Then, the number of traces to collect for a hypothesis test with a level of significance

α = 0.01 (zα = 2.326) is given by (see Equation 1.94)

z2α(σ
2
392 + σ

′2
392)

c2
=

2.3262 × (1.5141× 10−6 + 1.4801× 10−6)

0.0012
≈ 17.

Remark 4.2.2. According to Equation 4.10

Xt = X ′
t, ⇐⇒ µt = µ′

t. (4.13)

Then Example 4.2.8 concludes that when we take the signal to be part of the leakage related to the
plaintext value, the signals at time sample 2368 for one round encryption of plaintexts ABCDEF1234567890
and 84216BA484216BA4 with the same round key FEDCBA0123456789 are very likely to be equal,
according to our measurements Fixed dataset A and Fixed dataset B. The probability of the conclusions
being wrong is 0.01. On the other hand, Example 4.2.9 concludes that the signals at time sample 392
are likely to be different (with a probability of 0.01 being wrong).

Furthermore, we see that to decide if the signals are different at a particular time sample with
c = 0.0013 and significance level 0.01 (i.e., probability of making wrong conclusions) we do not need
that many traces.

Next, let us consider v being the 0th Sbox output in the first round of PRESENT. In this case, we
can take Lt to be the leakages for a fixed value of v at time sample t and L′

t to be the leakages for
another fixed value of v at t.

Example 4.2.11. When we consider v to be the 0th Sbox output in the first round of PRESENT, there
are 16 different values of v that we can consider. Let Lt and L′

t denote the random variable for
leakages corresponding to v = 0 and v = F at time sample t. We would like to know if the signals at
time sample t = 392 are the same for those two values of v.

Take the Random dataset. As mentioned in Example 4.2.4, we have 634 traces for v = 0 and 651
traces for v = F. We take those 634 (resp. 651) traces as a sample for Lt (resp. L′

t). The same as in
Examples 4.2.8 and 4.2.9 we make the following hypotheses:

H0 : µ
′
392 = µ392, H1 : µ

′
392 ̸= µ392.

Firstly, we compute the sample means and sample variances for L392 and L′
392:

l392 ≈ −0.0425, s2392 ≈ 2.2962× 10−6, l′392 ≈ −0.0539, s
′2
392 ≈ 2.7378× 10−6.

3We note that this value of c can be considered as a precision.

154

Let α = 0.01. Then following student’s t−test with significance level α we compute (see Equa-
tion 1.65)

s2p =
(634− 1)s2392 + (651− 1)s

′2
392

634 + 651− 2
=

633× 2.2962× 10−6 + 650× 2.7378× 10−6

1283
≈ 2.5199× 10−6.

and (see Equation 1.88)

|l392 − l′392|√
s2p(

1
634 + 1

651)
≈ |−0.0425 + 0.0539|√

2.5199× 10−6 × 3.1134× 10−3
≈ 128.7 > z0.005 (z0.005 = 2.576).

We reject the null hypothesis and conclude that µ′
392 ̸= µ392. The probability that our decision is

wrong is given by α = 0.01.

Remark 4.2.3. Note that in Examples 4.2.8 and 4.2.9, the sample sizes (number of traces) are the same
(both are 5000), but in Example 4.2.11, the sample sizes are different for Lt and L′

t. Thus, instead of
using Equation 1.89 as in Examples 4.2.8 and 4.2.9, we applied Equation 1.88. But those two equations
are the same when the sample sizes are equal.

We have seen before that the leakage Lt is dependent on the data being processed in the device.
In fact, as mentioned at the beginning of Section 4.2, some SCA attacks (see Sections 4.3.1, 4.3.3,
and 4.4.2) exploit the dependency of the leakage on certain intermediate values. If the leakage is not
exploitable, we would expect, at least, that the signals at time sample t should be the same when the
only difference is the values of the data being processed. With our notations above, this means that
we would like to test if Xt = X ′

t, or equivalently µt = µ′
t ((see Remark 4.2.2), for two different fixed

values of a certain intermediate value v.

Example 4.2.12. Continuing Remark 4.2.2 and the above discussion, we can conclude that the leak-
ages at time sample 392 for our implementation of PRESENT on our DUT are very likely to be vul-
nerable to SCA attacks.

Another approach to analyzing whether the leakage is exploitable is to consider the signals for a
fixed value of v and that for random values of v. Let Lr

t denote the random variable corresponding
to the leakage at time sample t for encryptions corresponding to random values of v. Let Xr

t and N r
t

be the random variables for the corresponding signal and noise. We have

Lr
t = Xr

t +N r
t .

With our assumptions and modeling, the signal Xt is a constant for a fixed value of v at time t.
When the value of v is random, Xr

t is itself a random variable that varies depending on v. It is not
easy to approximate the distribution induced by Lr

t in this case. However, following the convention,
we still use a normal distribution for the approximation.

To see that this makes sense, let us take the Random plaintext dataset and plot the histogram of
leakages at t = 392 across 5000 traces from this dataset. We get Figure 4.10. This corresponds to
random values of v when v is taken to be the plaintext. As another example, the histogram for
leakages at t = 392 across the 10000 traces from the Random dataset is shown in Figure 4.11. In this
case, we can consider the leakage corresponds to random values of v when v is taken to be the 0th
Sbox output. Those two figures demonstrate that it is reasonable to approximate the distribution
induced by the leakage Lr

t with a normal distribution.
Suppose

Lr
t ∼ N(µr

t , σ
r2
t).

Since the noise is independent of the signal, we have Nt = N r
t . By Equations 1.33, 1.36 and 4.9,

µr
t = E [Xr

t] + E [N r
t] , σr2

t = Var(Xr
t) + Var(N r

t) = Var(Xr
t) + σ2

t .

We have
µt −Xt = µr

t − E [Xr
t] , σr2

t ̸= σ2
t . (4.14)

155

−5.500 −5.000 −4.500 −4.000
·10−2

0

200

400

600

Leakage

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

Figure 4.10: Histogram of leakages at time sample t = 392 across 5000 traces from the Random plain-
text dataset.

−6.000 −5.500 −5.000 −4.500 −4.000
·10−2

0

500

1,000

Leakage

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

Figure 4.11: Histogram of leakages at time sample t = 392 across 10000 traces from the Random
dataset.

Same as before, in case the leakage is not exploitable at time sample t, we expect the signal to be a
constant at t, namely

Xt = Xr
t , and equivalently µr

t = µt. (4.15)

Consequently, our hypotheses will be the same as in Examples 4.2.8, 4.2.9, and 4.2.11. The difference
is that in this case, σr2

t ̸= σ2
t . For this reason, we apply Welch’s t−test instead of the student’s t−test.

Example 4.2.13. We consider the signal given by the plaintext value, i.e. v = plaintext. Let t = 392.
Then we can take Fixed dataset A as a sample for L392 and Random plaintext dataset as a sample for Lr

392

We know that (see Example 4.2.11)

l392 ≈ −0.0525, s2392 ≈ 1.5141× 10−6.

We can also compute
lr392 ≈ −0.0488, sr2392 ≈ 1.1700× 10−5.

We would like to test if µt = µr
t . Thus, we set the following hypotheses

H0 : µ
r
392 = µ392, H1 : µ

r
392 ̸= µ392.

Let α = 0.01. Then following Welch’s t−test with significance level α we compute (see Equation 1.91)

|l392 − lr392|√
s2392
5000 +

sr2392
5000

=
| − 0.0525 + 0.0488|√

1.5141×10−6

5000 + 1.1700×10−5

5000

≈ 72.0 > z0.005.

156

We reject the null hypothesis and conclude that µr
392 ̸= µ392. The probability that our decision is

wrong is equal to α = 0.01.

Example 4.2.14. Now we consider the signal to be given by the 0th Sbox output. For the fixed signal
we choose v = 0. Take the Random dataset. Let Lt and Lr

t denote the random variables corresponding
to leakages for v = 0 and random values of v at time sample t respectively.

We know that there are 634 traces for v = 0. Fix t = 392. In Example 4.2.11 we have computed

l392 ≈ −0.0425, s2392 ≈ 2.2962× 10−6.

For the random values of v, we can take the whole dataset, which contains 10000 traces, as a sample
for Lr

t . We have
lr392 ≈ −0.0487, s2392 ≈ 1.1624× 10−5.

Let α = 0.01. Then according to Welch’s t−test with significance level α we compute (see Equa-
tion 1.91)

|l392 − lr392|√
s2392
634 +

sr2392
5000

=
| − 0.0425 + 0.0487|√

2.2962×10−6

634 + 1.1624×10−5

10000

≈ 89.6 > z0.005.

We reject the null hypothesis and conclude that µr
392 ̸= µ392. The probability that our decision is

wrong = α = 0.01.

The rationale of the TVLA methodology is that if the leakage is not exploitable, the encryptions
corresponding to two different intermediate values (or the encryption corresponding to one fixed
intermediate value and that to a random intermediate value) should exhibit identical signals. Then
according to Equation 4.13 (or Equation 4.15), the corresponding leakages will have the same means.
With the help of the student’s t−test (or Welch’s t−test), we make hypotheses about means of leak-
ages and test if they are equal.

Recall that for student’s t−test and Welch’s t−test (when the sample size is big), we need to
choose a significance level α and compare computations using our samples with a threshold zα/2 (see
Equations 1.88 and 1.91). For TVLA, following the convention, we set zα/2 = 4.5. By Equation 1.43,
this threshold corresponds to

α

2
= 1− Φ(zα) = 1− Φ(4.5) = 1− 0.9999966023268753 ≈ 3.4× 10−6.

The significance level is given by
α ≈ 6.8× 10−6.

This means that there is a 6.8 × 10−4 percent chance that we would reject the null hypothesis (i.e.
conclude that the means are different) in case it is true (i.e. the means are in fact the same).

The steps for TVLA are as follows

TVLA Step 1 Identify the cryptographic implementation for analysis. In principle, TVLA can be used
for analyzing leakages of implementations for any type of algorithm. In practice, they are
mostly used for the analysis of symmetric block cipher implementations.

TVLA Step 2 Choose the intermediate value v. The choice of v determines how we measure our traces.
TVLA tests if different values of v result in different signals.

TVLA Step 3 Experimental setup and measure leakages. As we can imagine, for the actual attacks, ex-
perimental setups are crucial factors for success. For leakage assessment, it would be better
to carry out measurements with equipment that is expected to be used by attackers that we
would like to protect against.

We will prepare two datasets, denoted by T1 and T2. To get the first dataset T1, we choose a
fixed value for v. Then we randomly take M1 inputs for the cryptographic implementation
such that the value of v is equal to this fixed value. One trace is taken for each input.

For the second dataset T2, there are two options.

157

a) Fixed versus fixed. Choose a different fixed value for v. Then randomly take M2 inputs
for the cryptographic implementation such that the value of v is equal to this fixed
value. One trace is collected for each input.

b) Fixed versus random. Randomly take M2 inputs for the cryptographic implementation
so that the value of v is random. One trace is collected for each input.

Let us represent those two sets of traces as follows

T1 = {ℓ(1)1 , ℓ
(1)
2 , . . . , ℓ

(1)
M1
}, T2 = {ℓ(2)1 , ℓ

(2)
2 , . . . , ℓ

(2)
M2
}.

Each trace ℓ
(i)
j = (l

(i)
j1 , l

(i)
j2 , . . . , l

(i)
jq) contains q time samples (i = 1, 2).

For our illustrations, we will consider two choices of v – the plaintext and the 0th Sbox
output. When v is given by the plaintext, we take

T1 = Fixed dataset A, T2 = Fixed dataset B

for the fixed versus fixed setting and

T1 = Fixed dataset A, T2 = Random plaintext dataset

for the fixed versus random setting. For both cases, we will demonstrate the results for
M1 = M2 = 5000 and M1 = M2 = 50.

When v is given by the 0th Sbox output, we take

T1 = traces in Random dataset for v = 0, T2 = traces in Random dataset for v = F

for the fixed versus fixed setting. As discussed in Example 4.2.4, M1 = 634, M2 = 651. For
the fixed versus random setting, we choose

T1 = traces in Random dataset for v = 0, T2 = Random dataset

and M1 = 634, M2 = 10000. For all our traces, q = 3600.

TVLA Step 4 t-test for one time sample. Fix a time sample t. Let L(1)
t and L

(2)
t denote the random variable

corresponding to leakages at time sample t for computations resulting in datasets T1 and T2

respectively. Suppose

L
(1)
t ∼ N(µ

(1)
t , σ

(1)2
t), L

(2)
t ∼ N(µ

(2)
t , σ

(2)2
t).

By definition (see Equations 1.49 and 1.53), we compute the sample mean and sample vari-

ance for L(1)
t (resp. L(2)

t), denoted by l
(1)
t and s

(1)2
t (resp. l(2)t and s

(2)2
t):

l
(1)
t =

1

M1

M1∑

j=1

l
(1)
jt , l

(2)
t =

1

M2

M2∑

j=1

l
(2)
jt ,

and

s
(1)2
t =

1

M1 − 1

M1∑

j=1

(
l
(1)
jt − l

(1)
t

)2

, s
(2)2
t =

1

M2 − 1

M2∑

j=1

(
l
(2)
jt − l

(2)
t

)2

.

Then we propose the following null and alternative hypotheses:

H0 : µ
(1)
t = µ

(2)
t , H1 : µ

(1)
t ̸= µ

(2)
t . (4.16)

Depending on our setting, we choose between the student’s t−test and the Welch’s t−test.
As we have discussed above, for the fixed versus fixed setting, the noise for both cases is
assumed to be the same and (see Equation 4.10)

σ
(1)2
t = σ

(2)2
t ,

hence the usage of student’s t−test. In the fixed versus random setting, the noises are dif-
ferent, and we have (see Equation4.14)

σ
(1)2
t ̸= σ

(2)2
t ,

hence the application of Welch’s t−test.

158

a) student’s t−test for the fixed versus fixed setting. When the second dataset T2 is measured
according to the fixed versus fixed setting, following the student’s t−test, we compute
(see Equation 1.65)

s2p =
(M1 − 1)s

(1)2
t + (M2 − 1)s

(2)2
t

M1 +M2 − 2

and (see Equation 1.88)

t− valuet :=
l
(1)
t − l

(2)
t√

s2p(1/M1 + 1/M2)
. (4.17)

b) Welch’s t−test for the fixed versus random setting. When the second dataset T2 is measured
according to the fixed versus random setting, following Welch’s t−test, we compute

t− valuet :=
l
(1)
t − l

(2)
t√

s
(1)2
t
M1

+
s
(2)2
t
M2

. (4.18)

Then we compare the t−valuet with our threshold 4.5. In case

t− valuet > 4.5, or t− valuet < −4.5

we reject the null hypothesis. Following the previous discussions, this means that the signals
at time sample t are different for computations with two fixed values of v (or for a fixed value
of v and random values of v). We conclude that there is a high chance that data-dependent
leakage appears at time sample t.

TVLA Step 5 Repeat TVLA Step 4 for all time samples t.

We note that when the t−value is between −4.5 and 4.5 for all time samples 1, 2, . . . , q, we cannot
conclude that the implementation is safe. As there might be other attacks that do not exploit the
dependency of leakages on the chosen v.

Now, we show some results of the TVLA on our datasets. Let us first take v to be the plaintext. For
the fixed versus fixed setting, we take Fixed dataset A and Fixed dataset B as samples for our analysis.
The t−values with student’s t−test (Equation 4.17) are shown in Figure 4.12, where we have used the
entire datasets and M1 = M2 = 5000. We can see that most of the time samples have t−values outside
of the threshold. This is not surprising as the implementation does not have any countermeasures.
In Section 4.3.1 we will see that using this implementation, with just a few traces, we can recover the
first round key. If we reduce the number of traces for computing the t−values, we will get different
results. For example, when we take 50 traces, i.e., M1 = M2 = 50, we have Figure 4.13. Compared to
Figure 4.12, the absolute values of t−values are much smaller. This this shows that when the sample
size is bigger, it is more likely for us to capture information about the inputs from the leakages.

For the fixed versus random setting, t−values with Welch’s t−test (Equation 4.18) are computed
with Fixed dataset A and Random plaintext dataset. The results are shown in Figures 4.14 and 4.15 for
M1 = M2 = 5000 and M1 = M2 = 50 respectively. Similarly, we also observe higher |t|−values
with more traces. Furthermore, compared to Figures 4.12 and 4.13, the |t|−values are much lower.
This shows that it is more likely for us to distinguish between leakages corresponding to two fixed
plaintexts rather than between leakages for a fixed plaintext and for random plaintexts.

Next, we take v to be the 0th Sbox output. We use Random dataset as samples for our random
variables corresponding to leakages. For the fixed versus fixed setting, we take the M1 = 634 traces
for v = 0 as T1 and M2 = 651 traces for v = F as T2. The t−values with student’s t−test (Equa-
tion 4.17) are shown in Figure 4.16. For the fixed versus random setting, we take the M1 = 634 traces
for v = 0 as T1 and the whole dataset as T2 (M2 = 10000). Following Welch’s t−test, the t−values
(Equation 4.18) are shown in Figure 4.18. Again, we also show the results when fewer traces are used
for the computations. The t−values can be found in Figures 4.17 and 4.19.

In summary, we have the following observations:

159

0 1,000 2,000 3,000
−400

−200

0

200

400

Time sample

t−
va
lu
e

Figure 4.12: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with Fixed dataset
A and Fixed dataset B. The signal is given by the plaintext value and the fixed versus fixed setting is
chosen. Blue dashed lines correspond to the threshold 4.5 and −4.5.

0 1,000 2,000 3,000

−40

−20

0

20

40

60

Time sample

t−
va
lu
e

Figure 4.13: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with 50 traces from
Fixed dataset A and 50 traces from Fixed dataset B. The signal is given by the plaintext value and the
fixed versus fixed setting is chosen. Blue dashed lines correspond to the threshold 4.5 and −4.5.

• When more traces are used (i.e. when the sample size is bigger), it is more likely for us to cap-
ture information about the intermediate values from the leakages. We will see in Section 4.3.2.4
that more traces indeed indicate higher chances for the attacks to be successful.

• When v is given by the 0th Sbox output, the highest |t|−value is obtained at 392 for all cases we
have analyzed. We will see that this is the point of interest (POI) for our attack (Section 4.3.2).

• Compared to v being the plaintext, the |t|−values are in general smaller with much fewer time
samples crossing the threshold when v is given by the 0th Sbox output. This is unsurprising
as we would expect more computations to be correlated with the plaintext rather than a single
Sbox output.

160

0 1,000 2,000 3,000

−100

−50

0

50

100

150

Time sample

t−
va
lu
e

Figure 4.14: t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with Fixed dataset A
and Random plaintext dataset. The signal is given by the plaintext value and the fixed versus random
setting is chosen. Blue dashed lines correspond to the threshold 4.5 and −4.5.

0 1,000 2,000 3,000

−10

0

10

Time sample

t−
va
lu
e

Figure 4.15: t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with 50 traces from
Fixed dataset A and 50 traces from Random plaintext dataset. The signal is given by the plaintext value
and the fixed versus random setting is chosen. Blue dashed lines correspond to the threshold 4.5 and
−4.5.

4.2.4 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is commonly used in electrical engineering and signal processing, and the
general definition is

SNR =
Var(signal)
Var(noise)

,

where Var refers to the variance of a random variable (see Equation 1.35).
In our case, for a fixed time sample t, Xt represents the signal, which is part of the leakage relevant

to our attack. And the SNR at time t is given by

SNRt =
Var(Xt)

Var(Nt)
. (4.19)

Var(Xt) measures how much the leakage varies at time sample t due to the signal. Var(Nt) measures
how much the leakage varies due to the noise. Thus, SNR quantifies how much information is leaked
at time sample t from the measurements. The higher the SNR, the lower the noise.

Example 4.2.15. Suppose we are interested in the Hamming weight of an 8−bit intermediate value at
time sample t. In particular, the intermediate value we would like to analyze is from F8

2. We further
assume that the leakage Lt is equal to the modeled leakage following the Hamming weight leakage

161

0 392 1,000 2,000 3,000
−50

0

50

100

Time sample

t−
va
lu
e

Figure 4.16: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. T1 contains M1 = 634 traces and T2 contains M2 = 651 traces. The signal is given by
the 0th Sbox output and the fixed versus fixed setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and −4.5.

0 392 1,000 2,000 3,000

0

20

40

Time sample

t−
va
lu
e

Figure 4.17: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. Both T1 and T2 contain 50 traces (i.e. M1 = M2 = 50). The signal is given by the
0th Sbox output and the fixed versus fixed setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and −4.5.

model (Equation 4.4). Thus Xt = wt (v) for v ∈ F8
2. Then the variance of the signal is given by

Var(wt (v)) for v ∈ F8
2. By definition (Equation 1.31),

E [wt (v)] =
1

|F8
2|
∑

v∈F8
2

wt (v) =
1

28

8∑

i=1

i

(
8

i

)
=

1

28

8∑

i=1

8!

(i− 1)!(8− i)!

=
8

28

8∑

i=1

7!

(i− 1)!(7− (i− 1))!
=

8

28

7∑

j=0

(
7

j

)
=

8× 27

28
= 4.

And

E
[
wt (v)2

]
=

1

|F8
2|
∑

v∈F8
2

wt
(
v2
)
=

1

28

8∑

i=1

i2
(
8

i

)
=

1

28

8∑

i=1

i
8!

(i− 1)!(8− i)!

=
8

28

(
8∑

i=1

(i− 1)
7!

(i− 1)!(8− i)!
+

8∑

i=1

7!

(i− 1)!(7− (i− 1))!

)

162

0 392 1,000 2,000 3,000

−20

0

20

40

60

80

100

Time sample

t−
va
lu
e

Figure 4.18: t-values (Equation 4.18) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. T1 contains M1 = 634 traces and T2 contains M2 = 10000 traces. The signal is given
by the 0th Sbox output and the fixed versus random setting is chosen. Blue dashed lines correspond
to the threshold 4.5 and −4.5.

0 392 1,000 2,000 3,000

−10

0

10

Time sample

t−
va
lu
e

Figure 4.19: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with traces from
Random dataset. Both T1 and T2 contain 50 traces (i.e. M1 = M2 = 50). The signal is given by the
0th Sbox output and the fixed versus random setting is chosen. Blue dashed lines correspond to the
threshold 4.5 and −4.5.

=
1

25


7

8∑

i=2

6!

(i− 2)!(6− (i− 2))!
+

7∑

j=0

(
7

j

)
 =

1

25


27 + 7

6∑

j=0

(
6

j

)


=
1

25
(27 + 7× 26) = 22 + 7× 2 = 18.

By Equation 1.35,
Var(wt (v)) = E

[
wt (v)2

]
− E [wt (v)]2 = 18− 42 = 2.

Let σ2
t denote the variance of the noise Nt. We have

SNR =
Var(Xt)

Var(Nt)
=

Var(wt (v))
σ2
t

=
2

σ2
t

.

Example 4.2.16. In this example, let Lt denote the random variable corresponding to the leakage of
one round of PRESENT encryption at time t. We take the Random dataset (see Section 4.1) as a sample
for Lt. Suppose we are interested in the exact value of the 0th Sbox output in the first round of
PRESENT. Let us denote this intermediate value by v.

163

Fix a time sample t. Xt is given by the part of the leakage related to the value of v. To compute
Var(Xt), we first divide the traces in Random dataset into 16 sets according to the value of v. Let us
denote those 16 sets of traces by A1, A2, . . . , A16, where As contains traces corresponding to v = s−1.

As discussed in Section 4.2.1, for a fixed value of v, Xt is a constant, the leakage and the noise can
be modeled by normal random variables. Let Lt,s and Nt,s denote the random variables correspond-
ing to leakage and noise at time sample t for v = s − 1. Let Xt,s denote the constant leakage in this
case.

Similar to Example 4.2.1, we can approximate the mean of Lt,s using sample mean computed with
set As. For example, take t = 600, we have

l600,1 ≈ 0.08212, l600,2 ≈ 0.08221, l600,3 ≈ 0.08209, . . .

By Equation 4.3, for any s,
Xt,s = E [Lt,s]− E [Nt,s] . (4.20)

Variance of Xt is given by variance of Xt,s values, we have

Var(Xt) = Var(E [Lt,s]− E [Nt,s]).

Since any information related to v is contained in Xt, which is independent of Nt, E [Nt,s] is a constant
for all s. We have (see Equation 1.36)

Var(Xt) = Var(E [Lt,s]),

which can be estimated with the sample variance of E [Lt,s]. For t = 600, we have

s2X600
≈ 1.0088× 10−8.

By Equation 4.2,
Var(Nt) = Var(Lt −Xt).

On the other hand, since E [Nt,s] is a constant for different values of s, by Equations 1.36 and 4.20,

Var(Lt − E [Lt,s]) = Var(Lt −Xt,s − E [Nt,s]) = Var(Lt −Xt,s) = Var(Lt −Xt).

Thus Var(Nt) can be approximated by the sample variance of Lt − E [Lt,s]. For t = 600, we have

s2N600
≈ 6.4184× 10−6.

And the SNR at time sample 600 is given by

SNR600 =
Var(X600)

Var(N600)
≈

s2X600

s2N600

=
1.0088× 10−8

6.4184× 10−6
≈ 0.00157.

Example 4.2.17. For now, we have discussed the definition of SNR for one point in time. With the
same method as in Example 4.2.16, we can compute the sample variance for Var(Xt) and Var(Nt), as
well as SNR values for all time samples. They are shown in Figures 4.20, 4.22, and 4.21, respectively.

We can see that the shape of variance of noise has similarities to one round of PRESENT compu-
tations (e.g. Figure 4.3). This is reasonable since most of the leakage is not related to v.

Furthermore, the peaks for the variance of signal and SNR correspond to each other. The first two
peaks are likely related to AddRoundKey and sBoxLayer. The peaks after 1000 are probably caused
by the permutation of the 4 bits of v (the 0th Sbox output). These observations can be confirmed by
comparing them to Figure 4.3. In particular, we can deduce that the peak at t = 392 is related to the
0th Sbox computation – as observed in Figure 4.3, sBoxLayer starts from around time sample 382.

Example 4.2.18. We again look at the Random dataset. Instead of the exact values of v as in Exam-
ple 4.2.16, we focus on the Hamming weight of the 0th Sbox output, i.e. wt (v). Then, in this case, for
a fixed time sample t, we divide the traces into five sets according to the value of wt (v). Let us denote
those five sets of traces by A1, A2, . . . , A5, where As contains traces corresponding to wt (v) = s − 1.
Following similar computations as in Example 4.2.16, for t = 600, we have

l600,1 ≈ 0.08212, l600,2 ≈ 0.08206, l600,3 ≈ 0.08214, l600,4 ≈ 0.08211, l600,5 ≈ 0.08206.

164

0 392 1,000 2,000 3,000

0

0.5

1

·10−5

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
si
gn

a
l

Figure 4.20: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the exact value of the 0th Sbox output.

0 392 1,000 2,000 3,000

0

1

2

3

4

Time sample

S
N
R

Figure 4.21: SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 0th Sbox output.

And
s2X600

≈ 1.1043× 10−9, s2N600
≈ 6.4271× 10−5, SNR600 ≈ 0.0001718.

The results for all time samples are shown in Figures 4.23, 4.24, and 4.25.
The sample variance of the noise is very similar to Figure 4.22 and also resembles the leakage of

PRESENT computation since most of the leakage is not related to wt (v). The peaks in the variance
of signal and SNR also correspond to each other. Compared to Figure 4.21, the locations of the peaks
are similar. It is worth noting that the highest peak in both Figures 4.21 and 4.24 are at time sample
392. As mentioned in Example 4.2.17, this time sample corresponds to the computation of the 0th
Sbox in sBoxLayer. We also note that Figure 4.24 has a higher SNR value than Figure 4.21 at this
point. This suggests that the Hamming weight leakage model is closer to our DUT leakage than the
identity leakage model.

Normally in DPA attacks, we would like to focus on time samples where the corresponding SNRs
are high. We refer to those time samples as points of interest (POIs).

Example 4.2.19. Continuing Example 4.2.17, the time sample with the highest SNR is given by t =
392. We can then take this point as our POI. Or, we can also take a few time samples that achieve the
higher SNRs. For example, the top three SNRs are obtained at t = 392, 218, 1328.

Similarly, suppose we focus on the Hamming weight of the 0th Sbox output. Following the results
from Example 4.2.18, in case we take just one POI, we have t = 392. And for three POIs, we have
t = 392, 1309, 1304.

Those POIs will be further used for our attacks in Section 4.3.2.

165

0 392 1,000 2,000 3,000

0

0.5

1

1.5

2

·10−5

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
n
o
is
e

Figure 4.22: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the exact value of the 0th Sbox output.

0 392 1,000 2,000 3,000

0

0.5

1

1.5

·10−5

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
si
gn

a
l

Figure 4.23: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the Hamming weight of the 0th Sbox output.

Example 4.2.20. As another example, suppose instead of the exact value or Hamming weight of the
0th Sbox output v, we are interested in the 0th bit of v. With the same dataset Random dataset, we
divide the traces into two sets A1, A2, corresponding to the 0th bit of v equal to 0 and 1 respectively.
Following similar computations as in Example 4.2.16, for t = 600, we have

l600,1 ≈ 0.08206, l600,2 ≈ 0.08216.

And
s2X600

≈ 2.6879× 10−9, s2N600
≈ 6.4256× 10−6, SNR600 ≈ 0.0004183.

The results for all time samples are shown in Figures 4.26, 4.27, and 4.28.
We can see that Figure 4.28 is similar to Figures 4.22 and 4.25. Compared to Figures 4.21 and 4.24,

there are fewer peaks in Figure 4.27. Furthermore, the highest peak is not around the sBoxLayer, but
during pLayer computation. This is expected since now we only consider one bit instead of four bits
of v.

4.3 Side-Channel Analysis Attacks on Symmetric Block Ciphers

In this section, we will discuss two types of attacks on symmetric block cipher implementations: dif-
ferential power analysis (DPA) in Sections 4.3.1, and 4.3.2, as well as side-channel assisted differential
plaintext attack (SCADPA) in Section 4.3.3.

166

0 392 1,000 2,000 3,000

0

2

4

6

Time sample

S
N
R

Figure 4.24: SNR for each time sample, computed using Random dataset. The signal is given by the
Hamming weight of the 0th Sbox output.

0 392 1,000 2,000 3,000

0

0.5

1

1.5

2

·10−5

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
n
o
is
e

Figure 4.25: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the Hamming weight of the 0th Sbox output.

4.3.1 Non-profiled Differential Power Analysis Attacks

As mentioned in Section 4.2, DPA exploits the relationship between leakages at specific time samples
and the data being processed in the DUT. In this subsection, we will focus on the non-profiled setting,
where we assume the attacker only has access to the target device (or measurements from the target
device) and they aim to analyze the side-channel leakages to recover the master key of a symmetric
block cipher.

Attacker assumption. In more detail, we assume the attacker has the knowledge of the plaintext and
the goal is to recover the very first round key used at the beginning of a symmetric block cipher –
for some ciphers, e.g. PRESENT, this is the first round key; for some ciphers, e.g. AES-128, this is
the whitening key, which is equal to the master key. We note that after getting this round key, for
some ciphers, e.g. AES-128 (see Remark 3.1.4), the master key can be found. For some ciphers, e.g.
DES and PRESENT-80 (see Remarks 3.1.1 and 3.1.5), part of the master key can be found, and the
remaining bits can be recovered by brute force. Otherwise, with the knowledge of this round key, the
same attack method can be used to recover the next round key. In most cases, two round keys are
enough to reveal the full master key using the reverse key schedule.

Similar attack strategies apply if we assume the attacker has the knowledge of the ciphertext and
aims to recover the last round key. Furthermore, we also assume that the attacker has certain knowl-
edge of the implementation. For example, how to interface with the encryption routine, whether
the implementation is round-based or bit-sliced, whether the computation is executed serially or in

167

0 392 1,000 2,000 3,000

0

2

4

6

·10−6

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
si
gn

a
l

Figure 4.26: Sample variance of the signal for each time sample, computed using Random dataset. The
signal is given by the 0th bit of the 0th Sbox output.

0 392 1,000 2,000 3,000

0

0.5

1

Time sample

S
N
R

Figure 4.27: SNR for each time sample, computed using Random dataset. The signal is given by the
0th bit of the 0th Sbox output.

parallel, or whether some types of countermeasures are present.

4.3.1.1 Non-profiled DPA Attack Steps

A non-profiled DPA attack on symmetric block cipher implementations consists of the following
steps:

DPA Step 1 Identify the target cryptographic implementation. DPA attacks can be applied to unprotected
implementations of any symmetric block ciphers that have been proposed so far. As a running
example, we will look at the computation of PRESENT.

DPA Step 2 Experimental setup and measure leakages. The efficiency and success of the attack are highly
dependent on the measurement devices the attacker has access to. For our illustrations, we
follow the experimental settings as described in Section 4.1.

Suppose we have taken measurements of the target implementation with Mp plaintexts. For
j = 1, . . . ,Mp, let ℓj = (lj1, l

j
2, . . . , l

j
q) denote the power trace corresponding to the jth plaintext,

where q is the total number of time samples in one trace. For our attacks, we will use the
Random plaintext dataset (see Section 4.1). In particular, we have q = 3600 and Mp = 5000.

DPA Step 3 Choose the part of the key to recover. DPA attack is normally carried out in a divide-and-
conquer manner. In particular, we focus on a small part (e.g. a nibble, a byte) of a round key in
each attack and each part of the round key can be recovered independently. With the inverse

168

0 392 1,000 2,000 3,000

0

0.5

1

1.5

2

·10−5

Time sample

S
am

p
le

va
ri
a
n
ce

of
th
e
n
o
is
e

Figure 4.28: Sample variance of the noise for each time sample, computed using Random dataset. The
signal is given by the 0th bit of the 0th Sbox output.

key schedule, one (e.g. for AES) or two (e.g. for PRESENT, DES) round keys will reveal the
master key (see Remarks 3.1.1, 3.1.4, and 3.1.5). Let k denote the target part of the key and let
Mk denote the number of possible values of k. For our attacks, we will focus on the 0th nibble
of the first round key for PRESENT and Mk = 16.

DPA Step 4 Choose the target intermediate value. To recover the part of the key chosen in the last step, we
exploit relationships between leakages and a certain intermediate value being processed in the
DUT. The goal is to gain information about this intermediate value, which reveals information
about our chosen part of the key. Let v denote the target intermediate value. We require that
there is a function φ, such that

v = φ(k, p),

where p denotes (part of) the plaintext. For our attack, to recover the 0th nibble of the first
round key of PRESENT, we will target the 0th Sbox output of the first round. Then we have

v = SBPRESENT(k ⊕ p),

where k and p denote the 0th nibble of the first round key and that of the plaintext.

DPA Step 5 Compute hypothetical target intermediate values. By our choice of the target intermediate
value, a small part of the key is related to it. Thus, when we make a guess of this part of
the key, with the knowledge of the plaintext we can obtain a hypothetical value for our target
intermediate value. In particular, for each key hypothesis k̂i of k, and each (part of the) plaintext
pj , we can compute a hypothesis for v, denoted v̂ij , as follows:

v̂ij = φ(k̂i, pj), i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

For our illustration, with each key hypothesis of the 0th nibble of the first round key, and each
plaintext, we have a hypothetical value for the 0th Sbox output:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000,

where pj is the 0th nibble of the plaintext corresponding to the attack trace ℓj . Furthermore, we
set

k̂i = i− 1, i = 1, 2, . . . , 16.

DPA Step 6 Choose the leakage model. For each hypothetical target intermediate value, we can compute
the hypothetical signal depending on our leakage model

Hij := L(v̂ij)− noise, i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp,

169

where we subtract the noise component from the leakage model. For example, if we choose the
Hamming weight leakage model, according to Equation 4.4, we have

Hij = wt (v̂ij) , i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

In our analysis, we will consider the identity leakage model and the Hamming weight leak-
age model. In Section 4.3.2.2 we will discuss another leakage model obtained by profiling the
device.

DPA Step 7 Statistical analysis. In this step, we aim to use a statistical distinguisher to distinguish the
correct key hypotheses from the rest. In this book, we will focus on correlation coefficient (see
Definition 1.7.11). For other methodologies, we refer the readers to, e.g. [MOP08, Chapter 6].

For a fixed key hypothesis k̂i, we view the modeled signal as a random variable Hi that varies
when the plaintext changes. If we fix a time sample t, we also consider the leakage at this time
sample as a random variable Lt. Then a sample for this pair of random variable (Hi, Lt) is
given by {

(Hij , l
j
t)
∣∣∣ j = 1, 2, . . . ,Mp

}
.

We would like to know how good the modeled signals are compared to the actual leakages
for each key hypothesis. For the correct key hypothesis and the time samples corresponding to
POIs, we expect the modeled signals to be “most” correlated to the actual leakages as compared
to other key hypotheses and time samples. To measure how correlated are the leakages and
modeled signals, we adopt the notion of correlation coefficient for further analysis. For each
key hypothesis k̂i (i = 1, 2, . . . ,Mk) and each time sample t (t = 1, 2, . . . , q), we compute the
sample correlation coefficient (see Example 1.8.1), denoted by ri,t, of Hi and Lt:

ri,t :=

∑Mp

j=1(Hij −Hi)(l
j
t − lt)√∑Mp

j=1(Hij −Hi)2
√∑Mp

j=1(l
j
t − lt)2

, i = 1, 2, . . . ,Mk, t = 1, 2, . . . , q.

In our case,

ri,t =

∑5000
j=1 (Hij −Hi)(l

j
t − lt)√∑5000

j=1 (Hij −Hi)2
√∑5000

j=1 (l
j
t − lt)2

, i = 1, 2, . . . , 16, t = 1, 2, . . . , 3600. (4.21)

Since the target intermediate value v we have chosen will be processed in our DUT at certain
points in time, we expect the leakages at those corresponding time samples to be correlated to v.
Those time samples are our POIs. If a good leakage model (i.e. a model that is close to the actual
leakage of the DUT) is chosen, we expect Hi and Lt to be correlated for the correct key hypothesis k̂i
and POIs t. Thus, the key hypothesis that achieves the highest absolute value of ri,t is expected to be
the correct key. Furthermore, the time samples that achieve higher absolute values of ri,t will be our
POIs in the attack.

In practice, if all rits are low, we will need more traces for the attack.

Note

According to Equation 4.1, the correct value of the 0th nibble of the first round key
is given by 9.

Example 4.3.1. As a simple example to illustrate how the sample correlation coefficient can be com-
puted, suppose we obtained a sample

{(1, 11), (0, 9), (1, 12), (1, 14), (0, 9)}

for a pair of random variables (U,W). Then the sample mean for U is given by

u =
1 + 0 + 1 + 1 + 0

5
=

3

5
.

170

And the sample mean for W is given by

w =
11 + 9 + 12 + 14 + 9

5
=

55

5
= 11.

The sample correlation coefficient for U and W is given by

r =

∑5
i=1(ui − u)(wi − w)√∑5

i=1(ui − u)2
√∑5

i=1(wi − w)2

=
0.4× 0 + (−0.6)× (−2) + 0.4× 1 + 0.4× 3 + (−0.6)× (−2)√

0.42 × 3 + 0.62 × 2
√
22 + 1 + 32 + 22

≈ 0.861.

4.3.1.2 Identity Leakage Model

Let us first consider the identity leakage model. Then in DPA Step 6, we have

Hij = v̂ij , i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

Example 4.3.2. For the Random plaintext dataset, we have

p1 = 9, p2 = C.

As mentioned in DPA Step 5, k̂1 = 0, k̂2 = 1. Then according to Table 3.11,

H11 = v̂11 = SBPRESENT(k̂1 ⊕ p1) = SBPRESENT(0⊕ 9) = SBPRESENT(9) = E = 14,

H12 = v̂12 = SBPRESENT(k̂1 ⊕ p2) = SBPRESENT(0⊕ C) = SBPRESENT(C) = 4 = 4,

H21 = v̂21 = SBPRESENT(k̂2 ⊕ p1) = SBPRESENT(1⊕ 9) = SBPRESENT(8) = 3 = 3,

H22 = v̂22 = SBPRESENT(k̂2 ⊕ p2) = SBPRESENT(1⊕ C) = SBPRESENT(D) = 7 = 7.

The sample correlation coefficients ri,t (t = 1, 2, . . . , 3600) for i = 1, 2, . . . , 16 are shown in Fig-
ure 4.29. We can see that the blue plot has much bigger peaks than the rest, which correspond to
k̂10 = 9. This is the correct 0th nibble of the round key as given in Equation 4.1. The plot of r10,t (cor-
responding to the correct key hypothesis 9) is shown in Figure 4.30. We can also deduce that time
samples that achieve those peaks in Figure 4.30 correspond to the time when v (the 0th Sbox output)
is being processed. The first cluster of peaks is most likely caused by sBoxLayer computation and
the other peak clusters are related to permutations of bits of v in pLayer. Those observations agree
with the duration of each PRESENT round operation in Figure 4.3. We also notice that the biggest
peak in Figure 4.30 is obtained at t = 392, which corresponds to the point with the highest SNR from
Figure 4.21 (Example 4.2.17).

For further illustration, the plots of ri,t (t = 1, 2, . . . , 3600) for i = 1, 5, 14 (corresponding to key
hypotheses 0, 4, D) are shown in Figures 4.31, 4.32, and 4.33 respectively. Comparing those figures
with Figure 4.30, we can see some peaks appear at similar time samples in all figures. This is due
to the fact that His are not independent random variables and for those time samples t, His are also
correlated with lt for i ̸= 10.

Remark 4.3.1. The correlation between His also influences the magnitude of the correlation coeffi-
cients for the wrong key hypotheses. If the correlation between His is higher, we would also see
higher peaks in some wrong key hypotheses. For AES, the correlations between the first AddRound-
Key outputs are higher than correlations between the first SubBytes operation outputs, that is why
in DPA Step 4, we chose the target intermediate value to an Sbox output.

4.3.1.3 Hamming Weight Leakage Model

In this part, let us consider the Hamming weight leakage model. In DPA Step 6, we have

Hij = wt (v̂ij) , i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

171

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.29: Sample correlation coefficients ri,t (i = 1, 2, . . . , 16) for all time samples t = 1, 2, . . . , 3600.
Computed following Equation 4.21 with the identity leakage model and the Random plaintext dataset.
The blue line corresponds to the correct key hypothesis k̂10 = 9.

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.30: Sample correlation coefficients r10,t (corresponds to the correct key hypothesis 9) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity leakage model
and the Random plaintext dataset.

Example 4.3.3. Continuing Example 4.3.2, in this case, we have

H11 = wt (v̂11) = wt (E) = 3

H12 = wt (v̂11) = wt (4) = 1

H21 = wt (v̂11) = wt (3) = 2

H22 = wt (v̂11) = wt (7) = 3

The sample correlation coefficients ri,t (t = 1, 2, . . . , 3600) for i = 1, 2, . . . , 16 are shown in Fig-
ure 4.34. The same as in Figure 4.29, the blue plot has much bigger peaks than the rest, which corre-
sponds to k̂10 = 9. The plot of r10,t is shown in Figure 4.35. The time samples that achieve peaks in
this plot are similar to those in Figure 4.30. Plots of ri,t for i = 1, 5, 14 are shown in Figures 4.36, 4.37,
and 4.38.

Remark 4.3.2. We note that the attacks we have seen recover one nibble of the first-round key. The
other nibbles can be recovered independently with a similar method using the same traces.

4.3.2 Profiled Differential Power Analysis

In this subsection, we will consider a profiled setting. In particular, we assume the attacker has ac-
cess to a clone device and can characterize the leakages of the clone device in the profiling phase before

172

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.31: Sample correlation coefficients r1,t (corresponds to a wrong key hypothesis 0) for all time
samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity leakage model and
the Random plaintext dataset.

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.32: Sample correlation coefficients r5,t (corresponds to a wrong key hypothesis 4) for all time
samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity leakage model and
the Random plaintext dataset.

attacking the target device in the attack phase.

Attacker assumption. We assume the attacker has knowledge of the plaintext and the goal is to
recover the very first round key used in the encryption of a symmetric block cipher – for some ciphers,
e.g. PRESENT, this is the first round key; for some ciphers, e.g. AES, this is the whitening key, which
is equal to the master key. Similar attack strategies apply if we assume the attacker has knowledge
of the ciphertext and aims to recover the last round key. We also assume the attacker has knowledge
of the detailed implementation so that the same program can be implemented by the attacker on the
clone device. This is different from the non-profiled setting where only certain basic knowledge of
the implementation is required.

For our illustrations, we suppose the Random dataset is obtained from a clone device and the
Random plaintext dataset is from the target device. Then before the attack, we can analyze the Random
dataset to obtain more information about the leakage behavior of the DUT in the profiling phase.

The first major step in the profiling phase is to find the POIs, namely, time samples that will give
us more information or with better signal. After identifying the POIs, in the attack phase, instead of
computing the sample correlation coefficients for all time samples, we can just focus on the POIs.

173

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.33: Sample correlation coefficients r14,t (corresponds to a wrong key hypothesis D) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the identity leakage model
and the Random plaintext dataset.

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.34: Sample correlation coefficients ri,t (i = 1, 2, . . . , 16) for all time samples t = 1, 2, . . . , 3600.
Computed following Equation 4.21 with the Hamming leakage model and the Random plaintext
dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9.

4.3.2.1 Profiled DPA Attack Steps

The detailed steps for a profiled DPA attack are as follows:

P-DPA Step 1 Identify the target cryptographic implementation. This step is the same as DPA Step 1 in
Section 4.3.1.1. As a running example, we will look at the computation of PRESENT.

P-DPA Step 2 Measurement of profiling traces. We first collect a set of traces for profiling using the clone
device with random plaintexts and random keys. Those traces are called the profiling traces.
Note that we assume the attacker has knowledge of the plaintexts and the keys. Suppose
there are in total Mpf profiling traces and each trace contains q time samples. For our illus-
trations, we will use the Random dataset as profiling traces, then Mpf = 10000, and q = 3600.

P-DPA Step 3 Choose the part of the key to recover. This step is the same as DPA Step 3 in Section 4.3.1.1.
Let k denote the target part of the key and let Mk denote the number of possible values of k.
For our attacks, same as in Section 4.3.1.1, we will focus on the 0th nibble of the first round
key for PRESENT and Mk = 16.

P-DPA Step 4 Choose the target intermediate value. This step is the same as DPA Step 4 in Section 4.3.1.1.
Let v denote the target intermediate value. We require that there is a function φ, such that

v = φ(k, p),

174

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.35: Sample correlation coefficients r10,t (corresponds to the correct key hypothesis 9) for
all time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming leakage
model and the Random plaintext dataset.

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.36: Sample correlation coefficients r1,t (corresponds to a wrong key hypothesis 0) for all time
samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming leakage model and
the Random plaintext dataset.

where p denotes (part of) the plaintext. For our attack, to recover the 0th nibble of the first
round key of PRESENT, we will target the 0th Sbox output of the first round. Then we have

v = SBPRESENT(k ⊕ p),

where k and p denote the 0th nibble of the first round key and that of the plaintext.

P-DPA Step 5 Decide on the target signal. Before we do further analysis of the profiling traces, we need
to choose what information related to the target intermediate value v we are looking for.
For example, the Hamming weight of v; or the 0th bit of v. In our illustrations, we will look
at two types of target signals, one given by the exact value of v and the other one given by
wt (v), the Hamming weight of v.

P-DPA Step 6 Group the profiling traces. We take our set of profiling traces and divide them into Msignal

sets according to the target signal from P-DPA Step 5. Let us denote those sets by A1, A2,
. . . , AMsignal

.

For our illustrations, when the target signal is given by v, the exact value of the output of
the 0th Sbox in PRESENT, we will divide our profiling traces Random dataset into 16 sets,
A1, A2, . . . , A16, where As contains traces corresponding to v = s−1. When the target signal
is given by wt (v), the Hamming weight of v, we will divide the profiling traces into five
sets, A1, A2, . . . , A5, where As contains traces corresponding to wt (v) = s− 1.

175

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.37: Sample correlation coefficients r5,t (corresponds to a wrong key hypothesis 4) for all time
samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming leakage model and
the Random plaintext dataset.

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.38: Sample correlation coefficients r14,t (corresponds to a wrong key hypothesis D) for all
time samples t = 1, 2, . . . , 3600. Computed following Equation 4.21 with the Hamming leakage
model and the Random plaintext dataset.

P-DPA Step 7 Modelling leakage, signal and noise. Let us fix a time sample t (1 ≤ t ≤ q), and let Lt, Xt,
Nt denote the random variables corresponding to leakage, signal, and noise at t respectively.
When we fix the signal, as discussed in Section 4.2.1, the leakage Lt and the noise Nt can
be modeled by normal random variables. When we focus on one particular target signal,
i.e. when we only consider computations that result in the traces belonging to a particular
set As, let Lt,s and Nt,s denote the random variables corresponding to leakage and noise
at t respectively. We further denote the constant signal as Xt,s. Then Lt,s and Nt,s can be
modeled by normal random variables and traces from As give us a sample to analyze Lt,s

and Nt,s.

For example, in our attack, if we only look at computations that result in v = 1, we denote
the leakage and noise at a given time sample t as Lt,2 and Nt,2.

P-DPA Step 8 Compute SNR. The SNR values for each time sample t = 1, 2, . . . , q can be computed in a
similar manner as in Example 4.2.16. In more detail, by Equation 4.3, for any s,

Xt,s = E [Lt,s]− E [Nt,s] . (4.22)

Hence
Var(Xt) = Var(Xt,s) = Var(E [Lt,s]− E [Nt,s]).

176

Since any information related to the target signal is contained in Xt, which is independent
of Nt, E [Nt,s] is a constant for all s. Consequently, we have (see Equation 1.36)

Var(Xt) = Var(E [Lt,s]).

Together with Equations 1.36, 4.22 and 4.2, we also have

Var(Lt − E [Lt,s]) = Var(Lt −Xt,s − E [Nt,s]) = Var(Lt −Xt,s) = Var(Lt −Xt) = Var(Nt).

Using our profiling traces, Var(Xt) and Var(Nt) can be approximated by the sample vari-
ances of E [Lt,s] and Lt − E [Lt,s] respectively. We can then approximate the SNR at time
sample t using

SNRt =
Var(Xt)

Var(Nt)
≈ sample variance of E [Lt,s]

sample variance of Lt − E [Lt,s]
.

The same computations can be done for all time samples t.

For our attacks, SNR values following the above steps have been computed in Example 4.2.17
when the target signal is the exact value of v and in Example 4.2.18 when the target signal
wt (v).

P-DPA Step 9 Identify the point of interest. The point of interest is given by the time sample that achieves
the highest SNR value. For our attacks, in Example 4.2.19, we have analyzed the Random
dataset and identified one POI for the target signal given by the exact value of v: t = 392.
The same POI is also for the case when the target signal is given by wt (v).

P-DPA Step 10 Measurement of attack traces. After getting our POI, we are ready to carry out the attack.
This step is the same as in DPA Step 2 from Section 4.3.1.1. Suppose we have taken mea-
surements of our target device with Mp plaintexts. For j = 1, . . . ,Mp, let ℓj = (lj1, l

j
2, . . . , l

j
q)

denote the corresponding power trace, where q is the total number of time samples in one
attack trace. Note that the measurements should be done in such a way that attack traces
and profiling traces (see P-DPA Step 2) are aligned in the time domain so that the POI we
have identified is the actual POI. In particular, one attack trace contains the same number
of time samples as one profiling trace. We argue that this is achievable since we assume the
attacker has the knowledge of the implementation and is in procession of a clone device.
For our illustrations, we will use the Random plaintext dataset as our attack traces. We have
Mp = 5000.

P-DPA Step 11 Compute hypothetical target intermediate values. This step is the same as DPA Step 5
from Section 4.3.1.1. For each key hypothesis k̂i of k, and each (part of the) plaintext pj , we
compute a hypothesis for v, which is given by

v̂ij = φ(k̂i, pj), i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

For our attacks, with each key hypothesis of the 0th nibble of the first round key and each
known plaintext, we have a hypothetical value for the 0th Sbox output:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000,

where pj is the 0th nibble of the plaintext corresponding to the attack trace ℓj . Furthermore,
we set

k̂i = i− 1, i = 1, 2, . . . , 16.

P-DPA Step 12 Identify the leakage model and compute the hypothetical signals. By our choice of the
target signal from P-DPA Step 5, we have a corresponding leakage model. For example, if
the target signal is the exact value of v, a natural choice of leakage model will be the identity
leakage model.

For each hypothetical target intermediate value, we can compute the hypothetical signal
depending on our leakage model

Hij := L(v̂ij)− noise, i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

177

The main difference in this step as compared to DPA Step 6 in Section 4.3.1.1 is that our
leakage model cannot be randomly chosen. We should choose a leakage model based on
our target signal chosen in P-DPA Step 5. In our illustrations, we will consider the identity
leakage model and the Hamming weight leakage model corresponding to the signal given
by v and wt (v) respectively.

P-DPA Step 13 Statistical analysis. For a fixed key hypothesis k̂i, we view the modeled signal as a random
variable Hi that varies when the plaintext changes. Take the time sample t = POI as iden-
tified in P-DPA Step 9. We consider the leakage at this time sample as a random variable
LPOI.

Then a sample for this pair of random variables (Hi, LPOI) is given by
{
(Hij , l

j
POI)

∣∣∣ j = 1, 2, . . . , M̂p

}
,

where ljPOI is the POI-th entry of the attack trace ℓj obtained in P-DPA Step 10 (j = 1, 2, . . . ,Mp)
and 2 ≤ M̂p ≤ Mp.4 With this sample, we can compute the sample correlation coefficient
between Hi and LPOI for each key hypothesis k̂i (i = 1, 2, . . . ,Mk):

r
M̂p

i,POI :=

∑M̂p

j=1(Hij −Hi)(l
j
POI − lPOI)√∑M̂p

j=1(Hij −Hi)2
√∑M̂p

j=1(l
j
POI − lPOI)2

. (4.23)

Figure 4.39 presents the values of rM̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392 computed with the identity
leakage model. The x-axis indicates the number of traces M̂p used. The figure shows that with just
roughly 20 traces, we can clearly distinguish the correct key hypothesis from the wrong ones.

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.39: Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed follow-
ing Equation 4.23 with the identity leakage model and the Random plaintext dataset. The blue line
corresponds to the correct key hypothesis k̂10 = 9.

Similarly, the results for the Hamming weight model are shown in Figure 4.40. In this case, we
need less than 5 traces to identify the correct key. This indicates that the Hamming weight leakage
model is closer to our DUT leakage compared to the identity leakage model.

Note

A good leakage model is beneficial to our attack.

Remark 4.3.3. Except for computing SNR in P-DPA Step 8 to identify the POIs, other methods, e.g.
t−test (subsection 4.2.3) with a properly chosen intermediate value, can also be used for this purpose.

4When M̂p = 1, the denominator in Equation 4.23 is equal to 0

178

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.40: Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed follow-
ing Equation 4.23 with the Hamming weight leakage model and the Random plaintext dataset. The
blue line corresponds to the correct key hypothesis k̂10 = 9.

4.3.2.2 Stochastic Leakage Model

To fully utilize the cloned device in the profiled setting, we can further characterize the leakages
instead of just identifying the POI. In this part, we will study a leakage model that assumes each bit
of the target intermediate value (P-DPA Step 4 from Section 4.3.2.1) results in a different signal. In
particular, suppose the target intermediate value v = vmv−1vmv−2 . . . v1v0 has bit length at most mv,5

the stochastic leakage model assumes that

L(v) =

mv−1∑

s=0

αsvs + noise, (4.24)

where noise ∼ N(0, σ2) denotes the noise with mean 0 and variance σ2. αs (s = 0, 1, . . . ,mv − 1) are
real numbers. We refer to αs as the coefficients of the stochastic leakage model.

The attack with stochastic leakage model follows the same steps as described in Section 4.3.2.1.
The only difference is in P-DPA Step 12, where we need extra effort to find our leakage model by
profiling. We note that since the stochastic leakage model assumes each value of v has different
signals, to identify the POI, we will choose the target signal to be the exact value of v in P-DPA Step
5. Then using the leakages at the POI we will find estimations for αs values. Those estimated values
together with Equation 4.24 provide us with hypothetical signals in P-DPA Step 12.

To estimate αs, we adopt the ordinary least square method from linear regression [DPRS11]. Let

ℓpfj = (lj,pf1 , lj,pf2 , . . . , lj,pfq)

denote the jth profiling trace, where j = 1, 2, . . . ,Mpf . The steps for computing estimations of coef-
ficients αs for the stochastic leakage model are as follows:

SLM Step a Compute the vector of leakages. We only focus on the leakage at the POI from each profiling
trace. Let

ℓpf := (l1,pfPOI , l
2,pf
POI , . . . , l

Mpf ,pf

POI)

be the vector of leakages at time sample t = POI from all Mpf profiling traces.

For our illustrations, we aim to recover the same part of the key and take the same target
intermediate value as in Section 4.3.2.1. We also use the Random dataset as our profiling traces,
hence Mpf = 10000. As discussed in P-DPA Step 9, our POI = 392, which corresponds to the
target signal being the exact value of v.

SLM Step b Construct matrix Mv for the target intermediate values. For the jth profiling trace ℓpfj , let

vpf
j = vpfj(mv−1) . . . v

pf
j1 v

pf
j0 , j = 1, 2, . . . ,Mpf

5When the bit length of v is less than mv , some bits vmv−1, . . . , are zero

179

be the corresponding target intermediate value. Then the matrix Mv is given by

Mv :=




vpf10 vpf11 . . . vpf1(mv−1)

vpf20 vpf21 . . . vpf2(mv−1)
...

...
. . .

...
vpfMpf0

vpfMpf1
. . . vpfMpf (mv−1)




(4.25)

Since the stochastic leakage essentially assumes each value of v has a different leakage, we
require that all possible values of v appear in Mv. Furthermore, in this case, we can guarantee
that the matrix M⊤

v Mv is invertible (see Appendix A.2). In particular, we should take enough
random plaintexts so that all values of v appear. For our illustrations, v is the 0th Sbox output.
Hence mv = 4 and we need all 16 values of v to appear.

SLM Step c Compute estimated values of coefficients αs. The estimated values α̂s for αs are given by

(
α̂0 α̂1 . . . α̂mv−1

)⊤
=
(
M⊤

v Mv

)−1
M⊤

v ℓ⊤pf . (4.26)

For each actual leakage lj,pft , define

l̂j,pft =

mv−1∑

s=0

α̂sv
pf
js .

And let
ℓ̂pf := (l̂1,pft , l̂2,pft , . . . , l̂

Mpf ,pf
t).

Then by the ordinary least square method from linear regression, α̂s values computed with Equa-
tion 4.26 minimize the Euclidean distance (Definition A.2.1) between ℓ̂pf and ℓpf (see e.g. [Ros20,
Section 9.8]).

Example 4.3.4. The first trace in Random dataset corresponds to the plaintext with the 0th nibble= 4
and the key with the 0th nibble= 7. Then in SLM Step b we have (see Table 3.11 for PRESENT Sbox)

vpf
1 = SBPRESENT(4⊕ 7) = SBPRESENT(3) = B = 10112.

And the first row of our matrix Mv is given by
(
1 1 0 1

)
.

With POI = 392 and the Random dataset, we got the following estimated values for the coefficients
αs:

α̂0 ≈ −0.02019, α̂1 ≈ −0.02027, α̂2 ≈ −0.01920, α̂3 ≈ −0.02039.
According to the stochastic leakage model in Equation 4.24, the estimated leakage of v = v3v2v1v0 is
given by

L(v) = α̂0v0 + α̂1v1 + α̂2v2 + α̂3v3 + noise.

For example,
L(E) = L(1110) = α̂1 + α̂2 + α̂3 + noise = −0.05986 + noise.

And the estimated signal of E = 1110 according to the stochastic leakage model is given by −0.052.
Similarly, we can compute the estimated signals for all 16 possible values of the target intermediate
value 0,1, . . . ,F:

0 −0.02020 −0.02027 −0.04046 −0.01920 −0.03940 −0.03947 −0.05966
−0.02039 −0.04059 −0.04066 −0.06086 −0.03959 −0.05979 −0.05986 −0.08006 (4.27)

We take the Random plaintext dataset as our attack traces.

180

Example 4.3.5. As mentioned in Example 4.3.2, k̂1 = 0, k̂2 = 1, and for the Random plaintext dataset,

p1 = 9, p2 = C.

Then following computations from Example 4.3.2 and the estimated signals given in Equation 4.27,
with the profiled stochastic leakage model, in P-DPA Step 12 we have

H11 = L(E)− noise = −0.05986,
H12 = L(C)− noise = −0.03959,
H21 = L(8)− noise = −0.02039,
H22 = L(D)− noise = −0.05979.

Following P-DPA Step 13 from Section 4.3.2.1, the attack results are shown in Figure 4.41. Com-
pared to Figures 4.39 and 4.40, the attack results based on the stochastic leakage model are similar
to that based on the Hamming weight leakage model, better than the results based on the identity
leakage model. This shows that both the stochastic and the Hamming weight leakage models are
better approximations of the DUT leakage than the identity leakage model.

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.41: Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed follow-
ing Equation 4.23 with the stochastic leakage model and the Random plaintext dataset. The blue line
corresponds to the correct key hypothesis k̂10 = 9.

4.3.2.3 Template-based DPA

We have seen how to characterize the leakage assuming each bit of the target intermediate value leaks
differently focusing on one POI. We can also characterize/profile the leakages of each possible value
of the target intermediate value (P-DPA Step 4 from Section 4.3.2.1) at several POIs. The result of this
profiling process is a set of templates. Then during the attack phase, instead of computing correlation
coefficients, we use those templates to see which of them fits better to the measured power trace and
deduce a probability for each key hypothesis.

As discussed in Section 4.2, for a computation with constant signal, the distribution of leakages at
a single time sample can be modeled with a normal distribution. And leakages at a few time samples
can be considered as a Gaussian random vector. The goal of profiling in template-based DPA is to
estimate the mean and variance (resp. mean vector and covariance matrix) of the normal random
variable (resp. Gaussian random vector). The resulting estimations are our templates.

The steps for template-based DPA are similar to those in Section 4.3.2.1, except for P-DPA Step
9, P-DPA Step 12 and P-DPA Step 13. P-DPA Step 9 will be replaced by two steps (Template Step a
and Template Step b below), P-DPA Step 12 will be removed and P-DPA Step 13 will be replaced by
the following Template Step c:

Template Step a Identify point(s) of interest. Same as in P-DPA Step 9, POIs are given by time samples that
achieve the highest SNR values. The difference is that we can choose more than one POI.

181

With more POIs, the effort for building the templates will increase, but the attack results will
be better. Normally the attacker decides on the number of POIs based on experience.

Let qPOI denote the total number of chosen POIs and let t1, t2, . . . , tqPOI denote the time sam-
ples that have been identified as POIs. For our illustrations, we will discuss the results of
using just one POI and using three POIs. It follows from Example 4.2.19 that when the target
signal is the exact value of v, the three POIs are given by

t1 = 392, t2 = 218, t3 = 1328.

And when the target signal is wt (v), we have

t1 = 392, t2 = 1309, t3 = 1304.

Template Step b Build the templates. Let us fix a particular target signal value and only consider inputs
to the cryptographic algorithm that result in traces belonging to the corresponding set As

(see P-DPA Step 6 from Section 4.3.2.1). Let Lt,s denote the random variable representing
the leakage for such encryption computations at time sample t. Then the random vector

Ls := (Lt1,s, Lt2,s, . . . LtqPOI ,s
) (4.28)

can be modeled by a Gaussian random vector. By Definition 1.7.10, to find the PDF of a
Gaussian random vector, we need to identify its mean vector and covariance matrix. Using
our profiling traces from set As, we can compute an approximation for the mean vector,
denoted µs, using sample means of Ltu,s:

µs := (lt1,s, lt2,s, . . . , ltqPOI ,s
).

Similarly, an approximation for the covariance matrix is then given by Qs, where the (u1, u2)−entry
of Qs is the sample covariance between Ltu1 ,s

and Ltu2 ,s
(1 ≤ u1, u2,≤ tqPOI). The pair

(µs, Qs) is called a template. With our profiling traces, we can compute Msignal templates.

For our illustrations, when the target signal is v, we will have 16 templates. And when the
target signal is wt (v), we will have 5 templates.

Template Step c Statistical analysis. In this step, we would like to compute a probability for each key hy-
pothesis given the attack traces. For a fixed key hypothesis k̂i, we divide the Mp attack
traces from P-DPA Step 10 into Msignal sets, A1, A2, . . . , AMsignal

, depending on the hypo-
thetical target intermediate value v̂ij obtained in P-DPA Step 11. In particular, for an attack
trace ℓj , let sij denote the index of the set that it belongs to. Namely

ℓj ∈ Asij given key hypothesis k̂i.

We are only interested in the leakages at the POIs for each attack trace ℓj = (lj1, l
j
2, . . . , l

j
q).

Define
ℓj,POI := (ljt1 , l

j
t2
, . . . , ljtqPOI

). (4.29)

With the mean vector µsij and the covariance matrix Qsij obtained in Template Step b, we
can compute the probability of ℓj given k̂i using the PDF of the Gaussian random vector (see
Definition 1.7.10) Lsij :

P (ℓj |k̂i) = P (Lsij = ℓj,POI) =
1

(2π)
qPOI
2
√
detQsij

exp

(
−1

2
(ℓj,POI − µsij)

⊤Q−1
sij (ℓj,POI − µsij)

)
.

(4.30)
Furthermore, we can assume the measurements are independent and compute the probabil-
ity of a set of M̂p (1 ≤ M̂p ≤Mp) traces given the key hypothesis k̂i:

P

(
{ℓj}M̂p

j=1

∣∣∣∣ k̂i
)

=

M̂p∏

j=1

P (ℓj |k̂i). (4.31)

182

By the generalized Bayes’ theorem (Theorem1.7.2), the probability of the key hypothesis k̂i
given a set of M̂p (M̂p ≤Mp) traces is given by:

P

(
k̂i

∣∣∣∣ {ℓj}
M̂p

j=1

)
=

P

(
{ℓj}M̂p

j=1

∣∣∣∣ k̂i
)
P (k̂i)

Mk∑

m=1

P

(
{ℓj}M̂p

j=1

∣∣∣∣ k̂m
)
P (k̂m)

.

Typically, the key hypothesis follows a uniform distribution in the key space, and we have

P (k̂m) = P (k̂i)

in the above equation, which gives

P

(
k̂i

∣∣∣∣ {ℓj}
M̂p

j=1

)
=

P

(
{ℓj}M̂p

j=1

∣∣∣∣ k̂i
)

Mk∑

m=1

P

(
{ℓj}M̂p

j=1

∣∣∣∣ k̂m
) . (4.32)

For the attack, we expect the correct key hypothesis to have the highest probability. In other

words, we are mainly interested in the ordering of the values P

(
k̂i

∣∣∣∣ {ℓj}
M̂p

j=1

)
. Since the

denominators are the same for all key hypotheses in Equation 4.32, we can ignore them.
Then Equation 4.32 is reduced to Equation 4.31, which can be further simplified by leaving
out the common term (see Equation 4.30)

1

(2π)
qPOI
2

.

And we get
M̂p∏

j=1

1√
detQsij

exp

(
−1

2
(ℓj,POI − µsij)

⊤Q−1
sij (ℓj,POI − µsij)

)
.

By taking the natural logarithm, the ordering does not change, and we have

−1

2

M̂p∑

j=1

ln
(
detQsij

)
+ (ℓj,POI − µsij)

⊤Q−1
sij (ℓj,POI − µsij).

Finally, we define the probability score of k̂i, denoted Pk̂i , to be

Pk̂i = −
M̂p∑

j=1

ln
(
detQsij

)
+ (ℓj,POI − µsij)

⊤Q−1
sij (ℓj,POI − µsij). (4.33)

The higher the score, the more likely the hypothesis is equal to the correct key.

Remark 4.3.4. Since the computation of covariances grows quadratically with the number of chosen
POIs, in practice, it is also common to assume leakages at different time samples are independent. In
this case, the covariance matrix Qs in Template Step b becomes a diagonal matrix.

First, let us choose the target signal to be the exact value of v. We have built 16 templates. Three
POIs (time samples 392, 218, 1328) were chosen as described in Template Step a. Thus for each tem-
plate, the mean vector has length 3, and the covariance matrix has dimension 3× 3. For example, the
template for L1, corresponding to the intermediate value v = 0, is given by

µ1 = (−0.04924,−0.04246,−0.07146), Q1 =




1.6110× 10−6 −6.2968× 10−9 −1.0592× 10−7

−6.2968× 10−9 2.2925× 10−6 3.7191× 10−7

−1.0592× 10−7 3.7191× 10−7 2.2567× 10−6


 .

183

As another example, the template for L12, corresponding to the intermediate value v = B, is given
by

µ12 = (−0.04996,−0.05241,−0.07221), Q12 =



1.6390× 10−6 1.6328× 10−7 6.3454× 10−8

1.6328× 10−7 2.0256× 10−6 1.7985× 10−7

6.3454× 10−8 1.7985× 10−7 2.1778× 10−6


 .

The probability scores for each key hypothesis are shown in Figure 4.42, where the blue line corre-
sponds to the correct key hypothesis k̂10 = 9. We can see that with just a few traces, the correct key
hypothesis can be distinguished from the other key hypotheses.

1 5 10 15

0

200

400

600

Number of traces

P
ro
b
a
b
il
it
y
sc
o
re

Figure 4.42: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of v, the 0th
Sbox output. Three POIs (time samples 392, 218, 1328) were chosen. The blue line corresponds to the
correct key hypothesis k̂10 = 9.

Next, we take the target signal to be the Hamming weight of v, wt (v). Then we have 5 tem-
plates. The POIs were chosen as described in Template Step a: 392, 1309, 1304. The template for L1,
corresponding to wt (v) = 0, is given by

µ1 = (−0.04245, 0.08036,−0.03465) Q1 =

(
2.2925× 10−6 −8.7422× 10−8 1.9156× 10−7

−8.7422× 10−8 1.4864× 10−6 −4.9987× 10−8

)
.

The probability scores for each key hypothesis are shown in Figure 4.43. Similar to Figure 4.42, with
just 2, 3 traces we can distinguish the correct key hypothesis from the rest.

Attack results on other nibbles. For now, we have seen practical demonstrations of how the 0th
nibble of the PRESENT first round key can be recovered. As we have mentioned, DPA attacks work in
a divide-and-conquer manner, recovering parts of the key in parallel using the same set of traces. As
an example, we will detail the attack that recovers the 1st nibble of the first round key for PRESENT.

In P-DPA Step 1, our target cryptographic implementation is the same as before. The profiling
traces from P-DPA Step 2 will still be the Random dataset. The chosen part of the key, k, in P-DPA
Step 3 is now the 1st nibble of the first round key. Consequently, the target intermediate value, v, in
P-DPA Step 4 will be the 1st Sbox output. We have the same relation between k, p and v:

v = SBPRESENT(k ⊕ p),

where k and p denote the 1st nibble of the first round key and that of the plaintext. For the target
signal in P-DPA Step 5, let us choose the exact value of v. Following P-DPA Step 6 – P-DPA Step 8,
the SNR values are shown in Figure 4.44. We will choose one POI in Template Step a, which is given
by the time sample corresponding to the highest point in the figure – 404.

Following Template Step b, 16 templates were computed. For example, the template correspond-
ing to the 1st Sbox output v = 0, is given by

µ1 = −0.039027, σ2
1 = 2.1679112× 10−6.

184

1 5 10 15

0

200

400

600

Number of traces

P
ro
b
a
b
il
it
y
sc
o
re

Figure 4.43: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by wt (v), the Hamming weight
of the 0th Sbox output. Three POIs (time samples 392, 1309, 1304) were chosen. The blue line corre-
sponds to the correct key hypothesis k̂10 = 9.

0 404 1,000 2,000 3,000

0

1

2

3

4

5

Time sample

S
N
R

Figure 4.44: SNR for each time sample, computed using Random dataset. The signal is given by the
exact value of the 1st Sbox output.

As for attack traces in P-DPA Step 10, we use the same traces – Random plaintext dataset. Then accord-
ing to P-DPA Step 11 and Template Step c, the probability scores for each key hypothesis are shown
in Figure 4.45. By Equation 4.1, the correct value of the 1st nibble of the first round key is given by
8. We can see that similar to the template-based DPA attacks on the 0th key nibble (see Figures 4.42
and 4.43), with just a few traces, we can recover the correct key nibble value.

As another example, the attack results for attacking the 6th nibble of the first round key are shown
in Figure 4.46, where by profiling, we have identified POI = 464. By Equation 4.1, the correct value
of the 6th nibble of the first round key is given by 3.

4.3.2.4 Success Rate and Guessing Entropy

Comparing Figures 4.42 and 4.43 to Figures 4.39 and 4.40, we cannot draw a clear conclusion about
which attack method is better. In fact, a different ordering of the traces in Random plaintext dataset may
affect our attack results. For example, by arranging the traces in reverse order, we get Figures 4.47
and 4.48 instead of Figures 4.39 and 4.40.

To have a fair comparison between different attack methods (e.g. different choices of leakage
models, POIs, etc.), we introduce the notion of success rate and guessing entropy [SMY09].

185

1 5 10 15
−100

0

100

200

Number of traces

P
ro
b
a
b
il
it
y
sc
o
re

Figure 4.45: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of the 1st
Sbox output. One POI (time samples 404) was chosen. The blue line corresponds to the correct key
hypothesis 8.

1 5 10 15

−100

0

100

200

Number of traces

P
ro
b
ab

il
it
y
sc
or
e

Figure 4.46: Probability scores (Equation 4.33) for each key hypothesis computed with different num-
bers of traces from Random plaintext dataset. The target signal is given by the exact value of the 1st
Sbox output. One POI (time samples 464) was chosen. The blue line corresponds to the correct key
hypothesis 3.

Note

In this part, our aim is to evaluate the DUT and our implementation against DPA

186

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.47: Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed fol-
lowing Equation 4.23 with the identity leakage model and the Random plaintext dataset arranged in
reverse order. The blue line corresponds to the correct key hypothesis k̂10 = 9.

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.48: Sample correlation coefficients r
M̂p

i,POI (i = 1, 2, . . . , 16) for POI = 392. Computed follow-
ing Equation 4.23 with the Hamming weight leakage model and the Random plaintext dataset arranged
in reverse order. The blue line corresponds to the correct key hypothesis k̂10 = 9.

attacks with different settings. Thus, we assume we have the knowledge of the key
for the evaluation after the attack.

Fix a number of attack traces M̂p, for each profiled DPA attack that we have discussed, we can
assign a score to each key hypothesis after the attack: for leakage model based DPA attacks, the
score of a key hypothesis k̂i is given by the absolute value of the corresponding sample correlation
coefficient (Equation 4.23); for template-based DPA attacks, the score of a key hypothesis is given by

its corresponding probability score (Equation 4.33). Let scM̂p

i denote the score for the key hypothesis
k̂i. We have

sc
M̂p

i =





∣∣∣rM̂p

i,POI

∣∣∣ leakage model based DPA attack, where r
M̂p

i,POI is computed following Equation 4.23

Pk̂i template-based DPA attack, where Pk̂i is computed following Equation 4.33
(4.34)

We further define scoreM̂p to be a vector consisting of the scores obtained for each key hypothesis
with our DPA attack, sorted in descending order:

scoreM̂p =
(
sc

M̂p

i1
,sc

M̂p

i2
, . . . ,sc

M̂p

iMk

)
, where scM̂p

ij
≥ sc

M̂p

ij+1
for j = 1, 2, . . . ,Mk − 1.

The key rank of a key hypothesis k̂i, denoted rank
M̂p

k̂i
, is given by the index of scM̂p

i in scoreM̂p . In

187

particular, let k̂c denote the correct key hypothesis. We have

rank
M̂p

k̂c
= index of sc

M̂p
c in scoreM̂p . (4.35)

With the same number of traces, we may also get different key ranks for the correct key hypothesis

due to the different plaintexts/measurements. We consider rankM̂p

k̂c
as a random variable whose

randomness comes from the different plaintexts and measurements.

The ultimate goal of the attack is to achieve rank
M̂p

k̂c
= 16 so that we can retrieve the correct

key hypothesis. Thus, we say that an attack is successful with M̂p traces if rankM̂p

k̂c
= 1. Then the

success rate of an attack method with M̂p traces, denoted SRM̂p
, is defined to be the probability that

rank
M̂p

k̂c
= 1:

SRM̂p
= P

(
rank

M̂p

k̂c
= 1
)
. (4.36)

Empirically, we can estimate the value of SRM̂p
by computing the frequency of rankM̂p

k̂c
= 1 among a

certain number of attacks.
For another metric, the guessing entropy for an attack method with M̂p traces, denoted GEM̂p

, is

given by the expectation of the random variable rankM̂p

k̂c
:

GEM̂p
= E

[
rank

M̂p

k̂c

]
. (4.37)

With the terminologies from Section 1.8.2, we can approximate GEM̂p
with a point estimator (see

Remark 1.8.4) given by the sample mean of rankM̂p

k̂c
.

Furthermore, when we vary the number of traces M̂p used for computing rank
M̂p

k̂c
, we will get

different key ranks for the correct key hypothesis. Thus the probability for the random variable

rank
M̂p

k̂c
= 1 as well as its expectation will also vary. To analyze how SRM̂p

and GEM̂p
change with

increasing values of M̂p, we compute estimations for SRM̂p
and GEM̂p

according to Algorithm 4.1.
The input of Algorithm 4.1 takes two user-specified values max trace and no of attack. max trace

is the maximum number of traces (or the biggest value of M̂p) we would like to use for estimat-
ing SRM̂p

and GEM̂p
. In line 3, sizes of Ssr and Sge are set to be max trace+1 so that the M̂pth

entry of each array corresponds to the estimation for SRM̂p
and GEM̂p

respectively. For a fixed

value of M̂p, no of attack is the number of attacks to simulate, or equivalently, the number of

elements in the sample of rankM̂p

k̂c
for computing the sample mean (i.e. estimation of GEM̂p

) and

frequency of rankM̂p

k̂c
= 1 (i.e. estimation of SRM̂p

). The set of attack traces from P-DPA Step 10 is

denoted by dataset (line 2). For each value of M̂p between 2 and max trace (line 4), we simulate
no of attack attacks (line 6). Thus we randomly select M̂p×no of attack traces from dataset.
Those traces are stored in an array A (line 5). Each simulated attack takes M̂p traces from the array A
without repetition (line 7). The key rank of the correct key hypothesis is computed following Equa-
tion 4.35 and the attack steps described in the earlier parts of the section. Sge[M̂p] stores the sum
of the key ranks of the correct key hypothesis for each attack (line 10), then the averaged value is
computed as an estimate for the guessing entropy GEM̂p

(line 14). When the key rank of the correct

key hypothesis is 1, Ssr[M̂p] is increased by 1 (line 12). At the end Ssr[M̂p] divided by the number of
total simulated attacks gives the frequency of successful attacks (line 13).

As discussed in Section 4.2.3, by comparing Figures 4.12 and 4.13 (or Figures 4.14 and 4.15), we
notice that with more traces, it is more likely for us to capture information about the inputs (or
intermediate values) from the side-channel leakages. Naturally, we expect the value of SRM̂p

to be

6We note that if the key rank is low enough, it is possible to use key enumeration algorithms [VCGRS13] that enable the

key recovery even in the case when rank
M̂p

k̂c
> 1.

188

Algorithm 4.1: Computation of estimations for guessing entropy and success rate.
Input: max trace, no of attack // ‘‘max trace’’ is the maximum number of traces we

would like to use for estimating SRM̂p
and GEM̂p

; for a fixed value of M̂p,

‘‘no of attack’’ is the number of attacks, or equivalently, the number of

elements in one sample of rank
M̂p

k̂c
.

Output: Estimations of success rate SRM̂p
and estimations of guessing entropy GEM̂p

for

M̂p = 2, 3, . . . ,max trace
1 Follow P-DPA Step 1 – P-DPA Step 11 from Section 4.3.2.1 to do the profiling and set up the

attacks (Template Step a and Template Step b from Section 4.3.2.3 apply if we focus on a
template-based DPA)

2 Let dataset denote the set of attack traces obtained in P-DPA Step 10
3 zero array of size max trace+1 Ssr, Sge// variables to store estimations of success

rate and guessing entropy, initialized to zero

4 for M̂p = 2, M̂p ≤ max trace, M̂p ++ do

5 array of size M̂p×no of attack A
randomly choose←−−−−−−−−−− dataset// randomly choose

‘‘M̂p×no of attack’’ traces from ‘‘dataset’’ and store in A

6 for i = 0, i < no of attack, i++ do
7 array of size M̂p B = A[i× M̂p : (i+ 1)× M̂p]// take M̂p traces from set A

without repetition for each ith attack

8 Using the dataset B as attack traces, follow P-DPA Step 12 – P-DPA Step 13 from
Section 4.3.2.1 (Template Step c from Section 4.3.2.3 applies if we focus on a
template-based DPA) to get the score of each key hypothesis given by Equation 4.34

9 rk = rank
M̂p

k̂c
// Key rank of the correct key hypothesis as given in

Equation 4.35

10 Sge[M̂p] + = rk
11 if rk == 1 then
12 Ssr[M̂p] + = 1

13 Ssr[M̂p] = Ssr[M̂p]/no of attack// compute the frequency of successful attacks

14 Sge[M̂p] = Sge[M̂p]/no of attack// compute the sample mean

15 return Ssr, Sge// Ssr[Mp] (resp. Sge[Mp]) contains the estimation for SRM̂p
(resp.

GEM̂p
).

higher and the value of GEM̂p
to be lower when M̂p is bigger. And the attack method that achieves

SRM̂p
= 1 or GEM̂p

= 1 with smaller M̂p is considered to be a better attack.
Now we are ready to compare our attack methods with attack traces from the Random plaintext

dataset. We have discussed in Example 4.2.19 that by analyzing the Random dataset, we identified
one POI for the identity leakage model as well as for the Hamming weight leakage model: 392. For
comparison, we also consider the attack with a different POI 1328 for the identity leakage model and
1304 for the Hamming weight leakage model.

As for template-based DPA, we consider two target signals: v and wt (v). For each target signal,
we look at two choices of POIs: one POI (392), and three POIs (392, 218, 1328 for v and 392, 1309, 1304
for wt (v)). When three POIs are chosen, we also analyze the case when leakages at those POIs are
assumed to be independent (see Remark 4.3.4).

We note that when just one POI is considered, Ls from Equation 4.28 becomes a normal random
variable Ls. ℓj,POI (Equation 4.29) becomes one single point ljPOI. According to the PDF of a normal
random variable (Equation 1.37), Equation 4.30 becomes

P (ℓj |k̂i) = P (Lsij = ljPOI) =
1√

2σ2
sijπ

exp

(
−(ljPOI − µsij)

2

2σ2
sij

)
,

where µsij and σ2
sij are estimations (template) for the mean and variance of Lsij . Consequently, the

189

score of k̂i in Equation 4.33 is given by

Pk̂i = −
M̂p∑

j=1

ln(σ2
sij) +

(ljPOI − µsij)
2

σ2
sij

.

Following Algorithm 4.1, we can compute estimations of SRM̂p
and GEM̂p

for our profiled DPA
attacks with different settings. We have chosen

no of attack = 100, max trace = 50.

For a fair comparison, for a given value of M̂p, the same traces are used for all attacks.
The results for leakage model based profiled DPA are shown in Figures 4.49 and 4.50. We have

seen in Figures 4.39, 4.40 and 4.41 that with the Hamming weight or the stochastic leakage models, we
can distinguish the correct key using fewer traces as compared to using the identity leakage model.
As expected, we can see from Figure 4.49 that fewer traces are needed for SR to reach 1 with the
Hamming weight or the stochastic leakage models. Furthermore, we can also see that attack results
for the Hamming weight or the stochastic leakage models are similar, with the stochastic leakage
model giving slightly better performance. Similarly, Figure 4.50 shows that fewer traces are needed
for GE to reach 1 using the Hamming weight or the stochastic leakage models as compared to the
identity leakage model. Moreover, the results also demonstrate that the choice of POI is important
for the attack. When the chosen POI has a lower SNR, the attack will need many more traces.

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Identity leakage model, POI= 1328

Hamming weight leakage model, POI= 392

Hamming weight leakage model, POI= 1304

Figure 4.49: Estimations of success rate computed following Algorithm 4.1 for profiled DPA attacks
based on the stochastic leakage model, the identity leakage model, and the Hamming weight leakage
model using the Random plaintext dataset as attack traces.

5 10 15 20 25 30 35 40 45 50
0

5

10

Number of traces

G
u
es
si
n
g
en
tr
op

y

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Identity leakage model, POI= 1328

Hamming weight leakage model, POI= 392

Hamming weight leakage model, POI= 1304

Figure 4.50: Estimations of guessing entropy computed following Algorithm 4.1 for profiled DPA
attacks based on the stochastic leakage model, the identity leakage model and the Hamming weight
leakage model using the Random plaintext dataset as attack traces.

The results for template-based DPA are shown in Figures 4.51 and 4.52. Note that in this case the
results are shown for up to 20 traces instead of 50 for leakage model based DPA attacks, since much
fewer traces are needed for a successful attack. We have the following observations:

190

• When the target signal is given by v, the attack requires fewer traces as compared to the case
when the target signal is given by wt (v). This is expected as for the former case we have
16 templates while for the latter we have 5. Of course, the attack results demonstrated that
we had enough traces for profiling to get good templates. Without enough profiling traces,
different attack results might appear.

• Assuming independence between the leakages at different POIs does not affect the attack re-
sults significantly. Especially for the case when the target signal is given by v with three POIs,
those two lines are overlapping.

• Using three POIs gives better results than just one POI.

• Compared to Figures 4.49 and 4.50, template-based DPA, in general, performs better than leak-
age model based DPA. This is not surprising as more information is retrieved from the profiling
traces using template-based attacks.

2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

Number of traces

S
u
cc
es
s
ra
te

signal = v, 3 POIs

signal = v, 3 POIs, assume independence

signal = v, 1 POI

signal = wt(v), 3 POIs

signal = wt(v), 3 POIs, assume independence

signal = wt(v), 1 POI

Figure 4.51: Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attacks using the Random plaintext dataset as attack traces and the Random dataset as profiling traces.

2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

Number of traces

G
u
es
si
n
g
en
tr
op

y

signal = v, 3 POIs

signal = v, 3 POIs, assume independence

signal = v, 1 POI

signal = wt(v), 3 POIs

signal = wt(v), 3 POIs, assume independence

signal = wt(v), 1 POI

Figure 4.52: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks using the Random plaintext dataset as attack traces and the Random dataset as profiling
traces.

For easy comparison, we have also plotted the results for template-based DPA with one POI and
leakage model based DPA in Figures 4.53 and 4.54

4.3.3 Side-Channel Assisted Differential Plaintext Attack

Side-channel assisted differential plaintext attack (SCADPA) [BJB18] aims to recover a middle round
key of an SPN cipher (see Figure 3.2) with chosen plaintext and leakages from power traces. The mo-

191

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Hamming weight leakage model, POI= 392

signal = v, 1 POI

signal = wt(v), 1 POI

Figure 4.53: Estimations of success rate computed following Algorithm 4.1 for leakage model based
and template-based DPA attacks with the Random plaintext dataset as attack traces.

2 4 6 8 10 12 14 16 18 20
0

5

10

Number of traces

G
u
es
si
n
g
en
tr
o
p
y

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Hamming weight leakage model, POI= 392

signal = v, 1 POI

signal = wt(v), 1 POI

Figure 4.54: Estimations of guessing entropy computed following Algorithm 4.1 for leakage model
based template-based DPA attacks with the Random plaintext dataset as attack traces.

tivation for such an attack is that the developer might choose to protect only the first two/three and
the last two/three rounds of a cipher implementation in order to increase the speed (see e.g. [THM07,
SP06]).

Before we continue our discussion on SCADPA, we introduce the notion of difference distribution
table of an Sbox.

Definition 4.3.1. For an Sbox SB: Fω1
2 → Fω2

2 , the (extended) difference distribution table (DDT)7 of SB is
a 2−dimensional table T of size (2ω1 − 1) × 2ω2 such that for any 0 < δ < 2ω1 and 0 ≤ ∆ < 2ω2 , the
entry of T at the ∆th row and δth column is given by

T [∆, δ] = { a | a ∈ Fω1
2 , SB(a⊕ δ)⊕ SB(a) = ∆ } .

We refer to δ as the input difference, and ∆ as the output difference.

Example 4.3.6. The difference distribution table for PRESENT Sbox SBPRESENT (Table 3.11) is detailed
in Table 4.1. The row corresponding to output difference ∆ = 0 is omitted since it is empty. For
example

SBPRESENT(9⊕ 3)⊕ SBPRESENT(9) = SBPRESENT(A)⊕ E = 1111⊕ 1110 = 0001 = 1.

Hence, 9 is in the entry corresponding to δ = 3 and ∆ = 1.

Remark 4.3.5. Suppose we know the input difference and output difference for a particular Sbox
input. Then with the DDT we can deduce the possible values of the input. For example, if we know
one PRESENT Sbox input a with input difference A gives output difference 2. Then by Table 4.1,
a = 5 or F. We will utilize such observations for SCADPA attacks as well as for certain fault attacks
in Section 5.1.

7In the original definition of DDT [BS12], the entries are |T [∆, δ]|, i.e. the cardinalities of T [∆, δ].

192

H
HHH

HH∆
δ

1 2 3 4 5 6 7 8 9 A B C D E F

1 9A 36 078F 5E 1C 24BD
2 8E 34 09 5F 1D 67AB 2C
3 CDEF 46 12 3B 0A 58 79
4 47 8D 35AC 0B 2F 169E
5 CDEF 0145 2389 67AB
6 9B CDEF 37 06 25 18 4A
7 67AB 03 8C 5D 2E 49 1F
8 17 AD 6F 4E 2389 0C 5B
9 0145 9D BE 2A 7C 3F 68
A 02 56 BF 9C 7D 1A 48 3E
B 8B 27 35AC 169E 4F 0D
C 8a 26 0145 9F BC 7E 3D
D 2389 57 AF 4C 1B 6D 0E
E 13 AE 24BD 6C 59 078F
F 24BD 169E 078F 35AC

Table 4.1: Difference distribution table for PRESENT Sbox (Table 3.11). The columns correspond to
input difference δ and the rows correspond to output difference ∆. The row for ∆ = 0 is omitted
since it is empty.

Attack assumption of SCADPA. For SCADPA, we have the following assumptions for the attacker’s
knowledge and ability:

• The attacker does not have the knowledge of the exact details of the implementation. However,
the attacker knows certain basic parameters of the implemented algorithm, e.g. whether the
implementation is round-based or bit-sliced. Such information may also be deduced by the
attacker with visual inspection of the traces.

• The attacker can query encryptions with chosen plaintext and a fixed unknown master key.

• We consider observable leakages in our analysis. Specifically, the adversary can deduce from
the side-channel information if a particular intermediate value is different between two dis-
tinct encryption operations. Optionally, the attacker may enhance the clarity of side-channel
measurements by employing techniques such as averaging, denoising, filtering, etc.

The goal of the attacker is to recover a middle-round key. SCADPA can be applied to any SPN cipher
that has been proposed up to now.

We first give the definition of several basic notations. Suppose our target SPN cipher has in
total Nr rounds. We consider the encryption of two plaintext blocks, denoted by S0 and S′

0. The
corresponding cipher states at the end of round i are represented by Si and S′

i respectively. A small
part (e.g. a bit, a nibble, a byte) of the XOR difference between intermediate values of those two
encryptions is said to be active if it is nonzero. The exact value of this small part is called a differential
value.

Example 4.3.7. Let us consider AES-128. Figure 4.55 shows a possible sequence of XOR differences
between the cipher states of two encryptions, where colored squares correspond to active bytes. The
two plaintexts S0 and S′

0 differ in the four main diagonal bytes. After AddRoundKey and SubBytes
operations those four active bytes remain active. Then ShiftRows will move the positions of those
four active bytes. In this particular case, MixColumns operation changes four active bytes to just one
active byte. Finally, after AddRoundKey, this active byte remains.

Example 4.3.8. In this example, we consider PRESENT. Figure 4.56 shows an example of how the XOR
differences between the cipher states can change in the first three rounds. We adopt terminologies
from DDT (Definition 4.3.1) and refer to the value of the active nibble corresponding to the input
(resp. output) of an active Sbox as the input difference (resp. output difference) of this Sbox.

The plaintext pair S0 and S′
0 differ in the 0th− − 15th bits, corresponding to the rightmost four

Sbox inputs. In this particular case, the output differences of those four Sboxes are all equal to 1. In
other words, the differential value of the 0th−−15th bit of sBoxLayer output is 1111. Thus, after the
first round, S1 ⊕ S′

1 has four active bits which correspond to the 0th Sbox input of round 2. Then we

193

AK
SB

SR MC AK

S0 ⊕ S′
0 S1 ⊕ S′

1

Figure 4.55: A possible sequence of XOR differences between the cipher states of two encryptions,
where colored squares correspond to active bytes. AK, SB, SR, and MC stand for AddRoundKey,
SubBytes, ShiftRows and MxiColumns respectively.

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.56: An example of how the XOR differences between the cipher states can change after each
round operation of PRESENT. The output differences of the four active Sboxes in round 1 are 1. The
output difference of the single active Sbox in round 2 is also 1.

again get an output difference 1 for this Sbox, giving us just one active bit in S2 ⊕ S′
2. Consequently,

we have one active nibble after the sBoxLayer operation in round 3.

A cipher state can be written as the concatenation of several small parts of the same bit length ω.
In particular, let ℓ = n/ω, where n is the block length of the SPN cipher. We have

Si = si0||si1|| . . . ||siℓ−1, S′
i = s′i0||s′i1|| . . . ||s′iℓ−1, (4.38)

where each sij and s′ij is a binary string of length ω. A differential characteristic for round i, denoted
∆Si, is a binary string of length ℓ:

∆Si = (∆si0,∆si1, . . . ,∆siℓ−1) ∈ Fℓ
2.

We say that the intermediate values of two encryptions Si and S′
i achieve the differential characteristic

∆Si if

sij ⊕ s′ij

{
= 0 if ∆sij = 0

̸= 0 if ∆sij = 1
∀j = 0, 1, . . . , ℓ− 1.

A sequence of ∆Sis
∆S0,∆S1, . . . ,∆Sr, where r ≤ Nr

is called a differential pattern. If wt (∆Sr) = 1, we say that the differential pattern converges in round
r. A plaintext pair is said to achieve a differential pattern if the corresponding intermediate values
achieve each of the differential characteristics in this differential pattern.

Example 4.3.9. [Differential pattern – AES] Continuing Example 4.3.7, we choose ω = 8, then ℓ =
128/8 = 16. Figure 4.55 corresponds to the following differential pattern:

∆S0, ∆S1 = 1000010000100001, 1000000000000000. (4.39)

194

Since wt (∆S1) = 1, this differential pattern converges in round 1.
For example, let us take the following pair of plaintexts:

S0 = 4C3C3F54C7AAD34E607110C753C5E990, S′
0 = 033C3F54C725D34E607131C753C5E90F,

with the master key
34463146344638383341464542413731. (4.40)

Then
S0 ⊕ S′

0 = 4F000000008F0000000021000000009F

and achieves the differential characteristic ∆S0 from Equation 4.39. After one round of AES, we have

S1 = 1F1DABAE4071BDD502563FBF63841BAE, S′
1 = C81DABAE4071BDD502563FBF63841BAE,

and
S1 ⊕ S′

1 = D7000000000000000000000000000000.

Hence S1 and S′
1 archives the differential characteristic ∆S1 from Equation 4.39. The differential

value for the two active bytes in S1 ⊕ S′
1 is D7. We can conclude that the pair of plaintexts S0 and S′

0

achieve the differential pattern given in Equation 4.39.

Remark 4.3.6. • Following the convention for AES intermediate value representations (see [NIS01]),
the string of hexadecimal values is transferred to the four-by-four matrix of bytes (see Equa-
tion 3.2) column by column. For example, S0 = 4C3C3F54C7AAD34E607110C753C5E990 in
the matrix format is as follows: 



4C C7 60 53
3C AA 71 C5
3F D3 10 E9
54 4E C7 90


 .

• When PRESENT is considered, we write the indices j = 0, 1, . . . , ℓ−1 in reverse order following
the notations for PRESENT cipher (see Section 3.1.3).

Example 4.3.10. [Differential pattern – PRESENT] Continuing Example 4.3.8, let ω = 1, then ℓ =
64/1 = 64. Figure 4.56 corresponds to the differential pattern:

∆S0 = 000000000000FFFF, ∆S1 = 000000000000000F, ∆S2 = 0000000000000001.
(4.41)

Since wt (∆S2) = 1, this differential pattern converges in round 2.
For example, let us take the following pair of plaintexts

S0 = DCFC2D56F32EC070, S′
0 = DCFC2D56F32E3F8F,

with the master key
1234567812345678. (4.42)

Then
S0 ⊕ S′

0 = 000000000000FFFF

and achieves the differential characteristic ∆S0 as given in Equation 4.41. After the first round, we
get

S1 = 0A93D18CAF9C888B, S′
1 = 0A93D18CAF9C8884,

which achieves the differential characteristic ∆S1 from Equation 4.41 since 4⊕B = F. In other words,
the differential value for the active nibble in S1 ⊕ S′

1 is F. Finally, after the second round, we get

S1 = C09B5DFC8AF48EF3, S′
2 = C09B5DFC8AF48EF2,

which achieves the differential characteristic ∆S2 from Equation 4.41.

195

Now, let us fix a differential characteristic ∆S0. With 2Mp chosen plaintexts, we can construct
22Mp−1 plaintext pairs that achieve the differential characteristic ∆S0. Suppose the probability for
∆S0 to result in a differential pattern that converges in round r is 2−pr. Then if we would like to get
at least one pair of plaintext that achieves a differential pattern starting with ∆S0 and converging in
round r, we should choose Mp plaintexts such that

Mp =
pr+ 1

2
. (4.43)

Example 4.3.11. [Probability of convergence – AES] Let us consider AES and the differential charac-
teristic ∆S0 given by

∆S0 = 1000010000100001. (4.44)

We would like to compute the probability that ∆S0 results in a differential pattern that converges in
round 1, namely

P (wt (∆S1) = 1|∆S0 = 1000010000100001) .

If we take any plaintext pair that achieves differential characteristic ∆S0, after AddRoundKey and
SubBytes operations, those four active bytes in the main diagonal will remain active. ShiftRows
changes their positions to be all in the first column. Then after MixColumns and AddRoundKey, any
byte in the first column can be active. Thus, all the possible differential characteristics ∆S1 following
the differential characteristic ∆S0 are of the form

∆S1 = x0000x1000x2000x3, (4.45)

where x = (x0, x1, x2, x3) ∈ F4
2 and x ̸= 0. There are in total four possible differential characteristics

∆S1 satisfying wt (∆S1) = 1, given by four values of x that satisfy wt (x) = 1. Those four differential
patterns are shown in Figure 4.57. We have seen one of them in Figure 4.55 (see Example 4.3.7).

AK
SB

SR MC AK

AK
SB

SR MC AK

AK
SB

SR MC AK

AK
SB

SR MC AK

S0 ⊕ S′
0 S1 ⊕ S′

1

Figure 4.57: Illustration of how active bytes change for all four differential patterns that start with
∆S0 = 1000010000100001 and converge in round 1. Blue squares correspond to active bytes. AK, SB,
SR, and MC stand for AddRoundKey, SubBytes, ShiftRows and MxiColumns respectively.

Furthermore, intermediate values S1 and S′
1 that can achieve ∆S1 in Equation 4.45 satisfy

S1 ⊕ S′
1 = a0000a1000a2000a3000,

where ai ∈ F8
2 for i = 0, 1, 2, 3 and ai0 ̸= 0 for some i0 ∈ {0, 1, 2, 3}. Then there are in total

(28)4 − 1 = 232 − 1

possible values for S1 ⊕ S′
1. Out of which,

4× (28 − 1) ≈ 210 satisfy wt (∆S1) = 1.

196

There are in total 232 − 1 possible differential values for the four active bytes before MixColumns
operation. According to Remark 3.1.3, any value of S1⊕S′

1 comes from exactly one differential value
for those four active bytes. Suppose differential values of those four active bytes follow a uniform
distribution on F32

2 . Then the probability of any value of S1 ⊕ S′
1 to occur is ≈ 2−32. Consequently,

we have

P (wt (∆S1) = 1|∆S0 = 1000010000100001) ≈ 210

232
= 2−22.

In this case, pr = 22. By Equation 4.43,

Mp =
22 + 1

2
= 11.5.

Thus, we need 211.5 chosen plaintexts to get a differential pattern that starts with ∆S0 as given in
Equation 4.44, and converges in round 1.

Example 4.3.12. [Probability of convergence – PRESENT] In this example, we consider PRESENT
and the following differential characteristic:

∆S0 = 000000000000FFFF. (4.46)

Let SB denote the PRESENT Sbox. We would like to compute the probability of a differential pattern
starting with ∆S0 and converges in round 2, namely

P (wt (∆S2) = 1|∆S0 = 000000000000FFFF).

Let SBi
j denote the jth Sbox in round i. Recall that the 0th Sbox is the right-most Sbox (see Figure 3.9).

Let δSBi
j

and ∆SBi
j

denote the input and output differences of Sbox SBi
j respectively.

For ∆S2 to have Hamming weight 1, we need to have just one active Sbox in round 2 with output
difference having Hamming weight 1. Let SB2

j0 be the single active Sbox in round 2.
By the design of pLayer (see Table 3.12), the four active Sboxes in round 1

SB1
0, SB1

1, SB1
2, SB1

3

influence the following four Sboxes in round 2

SB2
0, SB2

4, SB2
8, SB2

12.

We also notice that the jth bit of all the four Sboxes in round 1 goes to the (4 ∗ j)th Sbox in round
2. Since none of the output differences of those four Sboxes in round 1 is equal to 0, to have just one
active Sbox in round 2, the output differences of those four active Sboxes in round 1 should all be
the same with Hamming weight 1. This implies that the input difference of the single active Sbox in
round 2, SB2

j0 , is F. Furthermore, by Equation 4.46, those four active Sboxes in round 1 all have input
difference F.

According to Table 4.1, for input difference F, the possible output differences with Hamming
weight 1 are 1 and 4. By counting the number of elements in each entry of column F in Table 4.1, we
can get that the probability for the output difference to be 1, given that the input difference is F, is
4/16 = 1/4. The same result holds for output difference 4. The probability that all output differences
of the four active Sboxes in round 1 are equal to 1 is then given by

P
(
∆SB1

0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 1

∣∣∣δSB1
0
= δSB1

1
= δSB1

2
= δSB1

3
= F

)
=

(
1

4

)4

= 2−8.

Similarly, we have

P
(
∆SB1

0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 4

∣∣∣δSB1
0
= δSB1

1
= δSB1

2
= δSB1

3
= F

)
=

(
1

4

)4

= 2−8.

The probability for the single active Sbox in round 2 to have output difference with Hamming weight
1 is given by

P
(

wt
(
∆SB2

j0

)
= 1
∣∣∣δSB2

j0
= F

)
= P

(
∆SB2

j0
= 1

∣∣∣δSB2
j0

= F
)
+P

(
∆SB2

j0
= 4

∣∣∣δSB2
j0

= F
)
=

1

4
+

1

4
= 2−1.

197

When the output differences of
SB1

0, SB1
1, SB1

2, SB1
3

are all equal to 1 (resp. 4), the single active Sbox in round 2 is given by SB2
0 (resp. SB2

8). We have

P (wt (∆S2) = 1|∆S0 = 000000000000FFFF)

= 2−8P
(

wt
(
∆SB2

0

)
= 1
∣∣∣δSB2

0
= F

)
+ 2−8P

(
wt
(
∆SB2

8

)
= 1
∣∣∣δSB2

8
= F

)

= 28 × 2−1 + 2−8 × 2−1 = 2−9 + 2−9 = 2−8.

In this case, we have pr=8. By Equation 4.43,

Mp =
8 + 1

2
= 4.5.

Thus we need 24.5 chosen plaintexts to get a differential pattern that starts with ∆S0 as given in
Equation 4.46 and converges in round 2.

From the discussions above, we can see that there are in total four such differential patterns,
corresponding to

∆SB1
0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 1, ∆SB2

0
= 1,

∆SB1
0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 1, ∆SB2

0
= 4,

∆SB1
0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 4, ∆SB2

8
= 1,

∆SB1
0
= ∆SB1

1
= ∆SB1

2
= ∆SB1

3
= 4, ∆SB2

8
= 4.

We have seen the first one in Figure 4.56 (see Example 4.3.8). The remaining three are shown in
Figures 4.58, 4.59, and 4.60 respectively.

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.58: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with ∆S0 given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 1. The output difference of the single active Sbox in round 2 is 4.

In SCADPA, the attacker queries the encryption with pairs of plaintexts that achieve a target dif-
ferential characteristic ∆S0 and potentially result in a differential pattern that converges in round r.
∆S0 and the round number r are chosen so that the probability of convergence is not too small. Then
by comparing side-channel leakages of a middle round from both encryptions for a pair of plaintexts,
the attacker tries to confirm if the convergence is achieved and identify the differential characteristic
∆Sr when convergence happens. Thus, we need to choose ∆S0 and r in a way that we can find
a point for side-channel observation so that the leakages can tell us whether the convergence has
happened, and if yes, what is the value of ∆Sr.

198

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.59: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with ∆S0 given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 4. The output difference of the single active Sbox in round 2 is 1.

Example 4.3.13. [Point for side-channel observation – AES] Let us consider AES with ω = 8. As an
attacker, we choose the target differential characteristic ∆S0 = 1000010000100001. Then we query
the encryption with plaintext pairs that achieve this ∆S0. For each plaintext, we take, say, Np traces
and use the averaged trace as the leakages for this plaintext. By averaging, the noise can be reduced.
Then the difference between averaged traces of each pair of plaintext is computed.

As discussed in Example 4.3.11, there are four differential patterns that start with ∆S0 and con-
verge in round 1. They are given by the following four values of ∆S1:

1000000000000, 0000100000000, 0000000010000, 0000000000001,

corresponding to the single active byte at the end of round 1 being the first, second, third, and fourth
bytes in the first column. Figure 4.61 shows how the active bytes change from round 1 to round
3 for all four differential patterns. In the second round, SubBytes does not change the position of
this single active byte. ShiftRows changes its position to a different column unless this active byte
is the first byte. Due to the property of MixColumns operation (see Remark 3.1.3), this single active
byte will influence four bytes, leading to four active bytes in one single column of the cipher state.
Finally, AddRoundKeys in round 2 and SubBytes operation in round 3 will not change the position
or number of active bytes.

As discussed in Example 4.3.11, all possible differential characteristics ∆S1 are of the form as
given in Equation 4.45. In case wt (∆S1) ̸= 1, we will have more than one active byte at the end
of round 1, which will be in more than one column after the SubBytes and ShiftRows operations in
round 2. Consequently, there will be at least two active columns at the end of round 2. We can then
conclude that

∆S1 = 1000000000000 ⇐⇒ ∆S2 = 1111000000000000,

∆S1 = 0000100000000 ⇐⇒ ∆S2 = 0000111100000000,

∆S1 = 0000000010000 ⇐⇒ ∆S2 = 0000000011110000,

∆S1 = 0000000000001 ⇐⇒ ∆S2 = 0000000000001111.

Suppose the SubBytes operation is implemented column-wise from the first column to the fourth
column. Then when we take the trace difference for a pair of plaintexts, we would expect to see
peaks around time samples corresponding to active columns and relatively small differences around
time samples corresponding to columns that are not active during the SubBytes operation in round

199

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.60: An illustration of how the XOR differences between the cipher states can change after
each round operation for PRESENT such that the pair of plaintexts achieves a differential pattern
starting with ∆S0 given in Equation 4.46 and converges in round 2. The output differences of the
four active Sboxes in round 1 are 4. The output difference of the single active Sbox in round 2 is 4.

3. By identifying the active columns, we can deduce the value of ∆S1. In particular, the point of
side-channel observation should be SubBytes operation in round 3. Note that we assume using SPA
or other methods, the attacker can infer the timing for each operation.

As an example, with the master key from Equation 4.40 and the experimental setup as described
in Section 4.1. We adopted the TinyAES8 implementation for AES, which is widely used for academic
purposes. Measurements for the following four pairs of plaintexts were taken:

4C3C3F54C7AAD34E607110C753C5E990, 033C3F54C725D34E607131C753C5E90F; (4.47)

3B06201F5EAA0BD6794C249610FBE927, 5F06201F5E750BD6794CB79610FBE995; (4.48)

2D2A49F26A79655214056A7B5F35A9E9, D12A49F26ACC655214052D7B5F35A9C6; (4.49)

0EDB19A25C7EF1FDDED31178EE6E7478, FADB19A25C06F1FDDED30E78EE6E7415. (4.50)

Np = 100 traces were collected for each plaintext. All pairs of plaintexts achieve the same differential
characteristic ∆S0 = 1000010000100001. The ∆S1 values are given by

1000000000000, 0000100000000, 0000000010000, 0000000000001,

respectively. Illustrations of the active bytes change for each pair correspond to the four rows of
Figure 4.61.

In Figure 4.62, the difference between the averaged traces of each pair of the plaintexts are in red,
blue, green, and yellow respectively. We have also plotted the averaged traces for the first plaintext
in Equation 4.47 (in gray), for the purpose of identifying the round operations. Similar to Figure 4.3,
we can find the rough time interval for the SubBytes operation in round 3, which is colored in pink.
This is the point for our side-channel observation. After zooming in, we get Figure 4.63. Recall that
the SubBytes operation was implemented column-wise starting from the first column. By the choice
of the plaintext pairs, the red, blue, green, and yellow traces correspond to a single active column
(see Figure 4.61) at the first, second, third, and fourth positions respectively. This agrees with what
we see in Figure 4.63 – the four colored peaks are in sequential order.

Example 4.3.14. [Point for side-channel observation – PRESENT] In this example, we look at PRESENT
encryption and let SB denote the PRESENT Sbox. We take ω = 1 and we choose

∆S0 = 000000000000FFFF.

8https://github.com/kokke/tiny-AES-c

https://github.com/kokke/tiny-AES-c

200

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

S0 ⊕ S′
0 S1 ⊕ S′

1 S2 ⊕ S′
2 Leakages

Figure 4.61: Illustration of how active bytes change from round 1 to round 3 of AES computation, for
differential patterns that start with ∆S0 = 1000010000100001.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

−0.2

0

0.2

Time sample

L
ea
ka
ge

Figure 4.62: The difference between the averaged traces of plaintext pairs from Equa-
tions 4.47, 4.48, 4.49, and 4.50, in red, blue, green and yellow respectively. The averaged trace for
the first plaintext in Equation 4.47 is in gray. With this gray plot, similar to Figure 4.3 we can find the
rough time interval for the SubBytes operation in round 3, which is colored in pink.

We aim to find a pair of plaintexts S0 and S1 that achieves a differential pattern starting with ∆S0

and converging in round 2. For each plaintext, we take Np traces and use the averaged trace as the
leakages for this plaintext. Then the difference between averaged traces of each pair of plaintext is
computed. We assume that the sBoxLayer operation is implemented nibble-wise, starting from the
0th nibble (right-most) to the 15th nibble (left-most).

Convergence in round 2 means that there is just one active bit at the end of round 2. Consequently,
we will have just one active Sbox before pLayer in round 3.

On the other hand, suppose there is just one active Sbox in round 3. As discussed in Exam-
ple 4.3.12, with ∆S0, the four active Sboxes in round 1 are

SB1
0, SB1

1, SB1
2, SB1

3.

And they will influence four Sboxes in round 2:

SB2
0, SB2

4, SB2
8, SB2

12.

By the design of pLayer we know each of those four Sboxes from round 2 will affect 4 Sboxes in

201

6,600 6,700 6,800 6,900 7,000 7,100

−1

0

1

·10−2

Time sample

L
ea
ka
ge

first column is active

second column is active

third column is active

fourth column is active

Figure 4.63: Zoom in to the SubBytes computation (pink area) in Figure 4.62. The difference between
the averaged traces of plaintext pair from Equations 4.47, 4.48, 4.49, and 4.50 are in red, blue, green
and yellow respectively. They correspond to a single active column at the first, second, third, and
fourth positions respectively during the SubBytes operation in round 3.

round 3 as shown below:

SB2
0 : influences SB3

0, SB3
4, SB3

8, SB3
12,

SB2
4 : influences SB3

1, SB3
5, SB3

9, SB3
13,

SB2
8 : influences SB3

2, SB3
6, SB3

10, SB3
14,

SB2
12 : influences SB3

3, SB3
7, SB3

11, SB3
15.

In particular, they all influence different Sboxes in round 3. Since there is just one active Sbox in
round 3, there is just one active Sbox in round 2. We also note that different bits of the output of an
Sbox in round 2 go to different Sboxes in round 3, we can then conclude that there is just one active
bit at the end of round 2. Moreover, with the position of the active Sbox in round 3, we can further
identify the position of the active bit in round 2 with our knowledge of pLayer.

Thus, by observing the leakages around sBoxLayer in round 3 we will be able to see if the con-
vergence has happened and identify the value of ∆S2.

As an example, let us take the master key to be the one given by Equation 4.42. We also take the
plaintext pair from Example 4.3.10, namely

S0 = DCFC2D56F32EC070, S′
0 = DCFC2D56F32E3F8F. (4.51)

The experimental setup is as described in Section 4.1, measurements were done for three rounds of
PRESENT computations. Np = 2000 traces were collected for each plaintext. Recall that this pair of
plaintext achieves the following differential pattern:

∆S0 = 000000000000FFFF, ∆S1 = 000000000000000F, ∆S2 = 0000000000000001.

In particular, there is one single active Sbox SB3
0 before the pLayer operation of round 3.

For comparison, we also collected 2000 traces for each of the following four plaintexts:

8F5F8BD2E7CF5989, 8F5F8BD2E7CFA676; (4.52)

and
F2DCDC8341D45F79, F2DCDC8341D4A086. (4.53)

Where the first pair of plaintext (Equation 4.52) achieves the same differential characteristics ∆S0 and
∆S1, but at the end of round 2, the differential characteristic is given by

0000000100000000.

202

In this case, we have one single active Sbox SB3
8 before the pLayer operation of round 3.

The second pair of plaintext (Equation 4.53) also achieves the same ∆S0 and ∆S1, while the dif-
ferential characteristic at the end of round 2 is given by

0001000100010000.

Then for this pair of plaintext, there are three active Sboxes (SB3
4, SB3

8, SB3
12) before the pLayer opera-

tion of round 3.
In Figure 4.64, the difference between the averaged traces of S0 and S′

0 (Equation 4.51), plaintext
pair from Equation 4.52, as well as plaintext pair from Equation 4.53 are in red, blue, and green
respectively. We have also plotted the averaged traces for S0 (in gray) for the purpose of identifying
the round operations. Similar to Figure 4.3, we can find the rough time interval for the sBoxLayer
operation in round 3, which is colored in pink. This time interval corresponds to our point of side-
channel observation. After zooming in, we get Figure 4.65.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−0.2

−0.1

0

0.1

0.2

·104Time sample

L
ea
ka
ge

Figure 4.64: The difference between the averaged traces of S0 and S′
0 from Equation 4.51 (in red),

plaintext pair from Equation 4.52 (in blue), as well as plaintext pair from Equation 4.53 (in green).
The averaged trace for S0 is in gray. With this gray plot, similar to Figure 4.3 we can find the rough
time interval for the sBoxLayer operation in round 3, which is colored in pink.

Recall that the sBoxLayer is implemented nibble-wise. From the above discussions, we know that
the red, blue, and green traces correspond to active Sboxes

SB3
0; SB3

8; SB3
4, SB3

8, SB3
12

before round 3 pLayer operation respectively. This agrees with what we see in Figure 4.65. There is a
single peak in the red line and the blue line, while the green line has three peaks. The peak in the red
line (SB3

0) is at the beginning of the sBoxLayer. The first peak of the green line (SB3
4) is between the

peaks of the red (SB3
0) and blue (SB3

8) lines. The peak of the blue line coincides with the second peak
of the green line (SB3

8). The last peak of the green line (SB3
12) is in the last quarter of the whole time

interval.

Our ultimate goal is to recover information about the secret keys. Thus, another criterion for
choosing ∆S0 and r is that the possible key hypotheses can be reduced once we find a pair of plain-
texts that achieves a converging differential pattern and we know the value of ∆Sr.

Example 4.3.15. [Reduce key hypotheses – AES] Let us consider AES with ω = 8. As an attacker, we
choose the target differential characteristic ∆S0 = 1000010000100001. Then we query the encryption
with plaintext pairs that achieve this ∆S0. Suppose with the help of side-channel leakages, we have
identified a pair of plaintexts S0 and S1 that gives a differential pattern converging in round 1 with
∆S1 = 1000000000000000. Let α be the differential value of the single active byte at the end of round
1. Then, using InvMixColumns (see Equation 3.7), the differential value of the four active bytes right
after the SubBytes operation in round 1 is given by

0E · α, 09 · α, 0D · α, 0B · α.

203

6,800 6,820 6,840 6,860 6,880 6,900 6,920 6,940 6,960

−0.5

0

0.5

1

·10−2

Time sample

L
ea
ka
ge

active Sbox SB3
0

active Sbox SB3
8

active Sboxes SB3
4, SB

3
8,SB

3
12

Figure 4.65: Zoom in to the sBoxLayer computation (pink area) in Figure 4.64. The difference between
the averaged traces of S0 and S′

0 from Equation 4.51 (in red), plaintext pair from Equation 4.52 (in
blue), as well as plaintext pair from Equation 4.53 (in green). They correspond to active Sboxes SB3

0;
SB3

8; SB3
4, SB3

8, SB3
12 before pLayer of round 3.

AK
SB

SR MC AK

S0 ⊕ S′
0 S1 ⊕ S′

1

β0

β1

β2

β3

Eα

9α

Dα

Bα

Eα

9α

Dα

Bα

α α

Figure 4.66: An illustration of differential values for the differential pattern ∆S0 = 1000010000100001
and ∆S1 = 1000000000000000.

Let β0, β1, β2, and β0 be the differential values of the four active bytes in the main diagonal of the
plaintexts. An illustration is shown in Figure 4.66.

We represent the master key of AES (which is also the whitening key used at the beginning of the
encryption) as a matrix:

K =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

We represent the plaintext S0 as the following matrix (note that this representation follows the same
notation as in Equation 3.2, which is different from the notations in Equation 4.38):

S0 =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 .

Then we have

SBAES(s00 ⊕ k00 ⊕ β1)⊕ SBAES(s00 ⊕ k00) = 0E · α
SBAES(s11 ⊕ k11 ⊕ β2)⊕ SBAES(s11 ⊕ k11) = 09 · α
SBAES(s22 ⊕ k22 ⊕ β3)⊕ SBAES(s22 ⊕ k22) = 0D · α
SBAES(s33 ⊕ k33 ⊕ β4)⊕ SBAES(s33 ⊕ k33) = 0B · α.

Thus,
s00 ⊕ k00, s11 ⊕ k11, s22 ⊕ k22, s33 ⊕ k33

are AES Sbox inputs that give output differences

0E · α, 09 · α, 0D · α, 0B · α

204

with input differences
β1, β2, β3, β4

respectively. Then, by using the difference distribution table for AES Sbox and with the knowledge
of the plaintexts, we can reduce the key hypotheses (see Remark 4.3.5).

As an example, let us take the master key to be the one given by Equation 4.40. Continuing
Example 4.3.13, with side-channel leakages, we have identified the following pair of plaintexts that
achieves the differential pattern mentioned above, namely,

S0 = 4C3C3F54C7AAD34E607110C753C5E990, S′
0 = 033C3F54C725D34E607131C753C5E90F.

In this case, we have

β1 = 4C⊕ 03 = 4F

β2 = AA⊕ 25 = 8F

β3 = 10⊕ 31 = 21

β4 = 90⊕ 0F = 9F.

And
s00 = 4C, s11 = AA, s22 = 10, s33 = 90.

Thus,
4C⊕ k00, AA⊕ k11, 10⊕ k22, 90⊕ k33

are the AES Sbox inputs that give output differences

0E · α, 09 · α, 0D · α, 0B · α

with input differences
4F, 8F, 21, 9F

respectively. To find the possible values of k00, k11, k22, k33, we first find values of α such that the
following entries of the AES Sbox DDT are nonempty:

(0E · α,4F), (09 · α,8F), (0D · α,21), (0B · α,9F).

There are in total 13 of them, as shown in Table 4.2. Each of those values gives a few hypotheses for
k00 ⊕ 4C, k11 ⊕ AA, k22 ⊕ 10, k33 ⊕ 90.

α k00 ⊕ 4C k11 ⊕ AA k22 ⊕ 10 k33 ⊕ 90
1A 16,59 65,EA CF,EE 62,FD
29 96,D9 3E,B1 85,A4 78,E7
42 28,67 58,D7 59,78 16,89
5D AB,E4 40,CF 81,A0 45,DA
66 3,4C 2C,A3 D8,F9 1D,82
71 AF,E0 78,F7 DE,FF 39,A6
74 82,CD 5D,D2 7,26 4E,D1
95 7,48 43,CC 87,A6 65,FA
9C 97,D8 0,3D,8F,B2 44,65 7F,E0
CC 1D,52 37,B8 93,B2 5F,C0
D7 37,78 63,EC 56,77 3E,A1
E7 3A,75 7B,F4 1B,3A 63,FC
EB BB,F4 34,BB CD,EC 54,CB

Table 4.2: In the first column, we list the possible values of α such that the following entries of AES
Sbox DDT are nonempty (0E · α,4F), (09 · α,8F), (0D · α,21), (0B · α,9F). The corresponding
hypotheses for k00⊕4C, k11⊕AA, k22⊕10, k33⊕90 are listed in the second, third and fourth column
respectively. The correct value of α is marked in blue. Detailed analysis are shown in Example 4.3.15.

205

Consequently, we can find all the possible values for the four key bytes, as shown in Table 4.3.
The correct master key in Equation 4.40 and the corresponding correct value of α are marked in blue.
We note that the remaining number of key hypotheses is given by

24 × 12 + 23 × 4 = 224,

while the number of all possible key hypotheses for those four bytes is

(28)4 = 232.

We can see that the attack can significantly reduce the key hypotheses.

α k00 k11 k22 k33
1A 5A,15 CF,40 DF,FE F2,6D
29 DA,95 94,1B 95,B4 E8,77
42 64,2B F2,7D 49,68 86,19
5D E7,A8 EA,65 91,B0 D5,4A
66 4F,00 86,9 C8,E9 8D,12
71 E3,AC D2,5D CE,EF A9,36
74 CE,81 F7,78 17,36 DE,41
95 4B,04 E9,66 97,B6 F5,6A
9C DB,94 AA,97,25,18 54,75 EF,70
CC 51,1E 9D,12 83,A2 CF,50
D7 7B,34 C9,46 46,67 AE,31
E7 76,39 D1,5E B,2A F3,6C
EB F7,B8 9E,11 DD,FC C4,5B

Table 4.3: Possible values of α and the corresponding key hypotheses for k00, k11, k22, k33, the main
diagonal of the AES master key. The correct key bytes are marked in blue. Detailed analysis are
shown in Example 4.3.15.

Example 4.3.16. [Reduce key hypotheses – PRESENT] Now we look at PRESENT encryption. Take
ω = 1 and let

∆S0 = 000000000000FFFF. (4.54)

We aim to find a pair of plaintexts S0 and S1 that achieve a differential pattern starting with ∆S0 and
converging in round 2. Suppose by analyzing the side-channel leakages, we have identified such a
pair of plaintexts S0 and S1 that gives a differential pattern converging in round 2 with

∆S2 = 0000000000000001. (4.55)

Since there is only one active bit (bit 0) at the end of round 2, we know by the design of PRESENT
that this means there is only one active Sbox in round 2 – Sbox SB2

0 (see Figure 4.56). By analyzing
the pLayer operation, we know that the output differences of Sboxes SB1

0, SB1
1, SB1

2, SB1
3 are all equal

to 1. By our choice of plaintexts, we also know that the input differences of those Sboxes are all equal
to F. According to PRESENT Sbox DDT in Table 4.1, the inputs of those four Sboxes are among 2, 4,
B, and D. In other words, let

S0 = b63b62 . . . b1b0.

And let
K1 = κ163κ

1
62 . . . κ

1
0

denote the first round key. Then

bj+3bj+2bj+1bj ⊕ κ1j+3κ
1
j+2κ

1
j+1κ

1
j ∈ { 2,4,B,D } , for j = 0, 4, 8, 12. (4.56)

With the knowledge of the plaintexts, we can reduce the key hypotheses. In particular, the remaining
number of key hypotheses for the 0th−− 15th bit of K1 is

44 = 28 = 256,

206

while the total number of all possible key hypotheses for those 16 bits is 216.
As an example, let us take the master key to be the one given by Equation 4.42. We can compute

that the first round key is given by

K1 = 0000123456781234. (4.57)

Continuing Example 4.3.14, suppose with side-channel leakages, we have identified the following
pair of plaintexts that achieves the differential pattern starting with ∆S0 in Equation 4.54 and con-
verging in round 2 with ∆S2 from Equation 4.55:

S0 = DCFC2D56F32EC070, S′
0 = DCFC2D56F32E3F8F.

In this case, Equation 4.56 gives:

0⊕ κ13κ
1
2κ

1
1κ

1
0 ∈ { 2,4,B,D } , 7⊕ κ17κ

1
6κ

1
5κ

1
4 ∈ { 2,4,B,D } ,

0⊕ κ111κ
1
10κ

1
9κ

1
8 ∈ { 2,4,B,D } , C⊕ κ115κ

1
14κ

1
13κ

1
12 ∈ { 2,4,B,D } .

We can then reduce all the possible key hypotheses for the 0th – 15th bits of K1:

κ13κ
1
2κ

1
1κ

1
0 ∈ { 2,4,B,D } , κ17κ

1
6κ

1
5κ

1
4 ∈ { 5,3,C,A } ,

κ111κ
1
10κ

1
9κ

1
8 ∈ { 2,4,B,D } , κ115κ

1
14κ

1
13κ

1
12 ∈ { E,8,7,1 } ,

where the correct key nibbles given by Equation 4.57 are marked in blue.

Up to now, we have seen how SCADPA can reduce the key hypotheses on 4 bytes of AES master
key and 4 nibbles of the first round key for PRESENT. In general, the steps for SCADPA are as follows:

SCADPA Step 1 Choose the target cryptographic implementation. SCADPA applies to all SPN ciphers that
have been proposed so far. As running examples, we will continue to discuss the attacks on
AES-128 and PRESENT.

SCADPA Step 2 Choose the value ω. Based on our chosen cipher, we need to decide the value of ω for our
attack. This value is highly dependent on the cipher design. In general, for AES-like ciphers,
we would choose ω to be the same as the size of the Sbox. And for bit permutation based
ciphers (e.g. PRESENT), we choose ω to be 1.

SCADPA Step 3 Identify a target differential characteristic ∆S0, a round number r for convergence, and a
point for side-channel observation. We would like to look for plaintext pairs that achieve a
differential pattern starting with ∆S0 and converging in round r. We also need to decide on
a point for side-channel leakage analysis during the computation after round r. The choice
of ∆S0, r, and the point for side-channel observation should satisfy the following conditions:

• The probability of convergence is not too small. In particular, if the probability is 2−pr,
we will need 2Mp chosen plaintexts for the attack, where Mp = 0.5pr+ 0.5.

• Using side-channel leakages at the chosen point of measurement, we should be able to
confirm if the convergence has appeared for the differential pattern between a pair of
plaintexts. Furthermore, it is possible to identify the value of ∆Sr in case the conver-
gence appears.

• The possible key hypotheses can be reduced once we find a pair of plaintexts that
achieves a converging differential pattern and obtain the value of ∆Sr.

SCADPA Step 4 Choose plaintexts. We choose 2Mp distinct plaintexts so that each pair of them achieves the
target differential characteristic ∆S0.

SCADPA Step 5 Side-channel measurement and observation. With each plaintext, we measure Np traces.
The average trace of those Np traces is computed for each plaintext. For each pair of plain-
texts, we take the difference of the corresponding average traces and analyze the difference
trace at the chosen point of observation. Once we find one difference trace that indicates the
convergence has occurred, we deduce the value of ∆Sr from the measurements and carry
on to the next step.

207

SCADPA Step 6 Reduce key hypotheses. Once we identify a pair of plaintexts that archives a converging
differential pattern, we can reduce the key hypotheses using the knowledge of ∆Sr and the
plaintexts.

Example 4.3.17. In summary, a SCADPA attack on AES-128 starts with choosing

ω = 8, ∆S0 = 1000010000100001, r = 1,

and the point for side-channel observation being the SubBytes operation in round 3. Then we query
AES encryption with 211.5 (see Example 4.3.11) chosen plaintexts such that each pair of them achieves
the differential characteristic ∆S0. With side-channel leakages, we can deduce if convergence has
happened, and if yes, we record the value of ∆S1 (see Example 4.3.13). Finally with a similar com-
putation as in Example 4.3.15, we reduce the key hypotheses for the four bytes in the main diagonal
of the master key.

Similar attacks can be carried out on the other “diagonals” of the master key to reduce the key
hypotheses of the whole master key. In particular, the other values of ∆S0 can be

0100001000011000, 0010000110000100, 0001100001000010.

The possible differential patterns for each ∆S0 are shown in Figure 4.67, where each figure represents
4 different differential patterns starting with the same ∆S0. The blue colored squares represent active
bytes and only one of those four colored bytes is active in the last two cipher states (so that the
differential pattern converges in round 1).

AK
SB

SR MC AK

AK
SB

SR MC AK

AK
SB

SR MC AK

AK
SB

SR MC AK

S0 ⊕ S′
0 S1 ⊕ S′

1

Figure 4.67: The possible differential patterns for AES encryption with ∆S0 equal to
1000010000100001, 0100001000011000, 0010000110000100, 0001100001000010 respectively. Each fig-
ure represents four different differential patterns starting with the same ∆S0. The blue colored
squares represent active bytes and only one of those four colored bytes is active in the last two cipher
states.

Example 4.3.18. As for SCADPA attack on PRESENT, we start by choosing

ω = 1, ∆S0 = 000000000000FFFF, r = 2,

and point for side-channel observation being the sBoxLayer operation in round 3. Then we query
PRESENT encryption with 24.5 (see Example 4.3.12) chosen plaintexts such that each pair of them
achieves the differential characteristic ∆S0. With side-channel leakages, we can deduce if conver-
gence has happened, and if yes, we record the value of ∆S2 (see Example 4.3.14). Finally with a
similar computation as in Example 4.3.16, we reduce the key hypotheses for the 0th – 15th bit of the
first round key. We have also computed that the remaining number of key hypotheses will be 28

instead of the original 216.

208

Similar attacks can be carried out on the other bits of the first round key to reduce the key hy-
potheses of the whole round key. In particular, the other values of ∆S0 can be

00000000FFFF0000, 0000FFFF00000000, FFFF000000000000.

The possible differential patterns for each of the three values of ∆S0 are shown in Figures 4.68, 4.69
and 4.70. Each figure shows four differential patterns that converge in round 2. Each differential
pattern has one active nibble at the end of round 1 and a single active bit at the end of round 2.

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.68: The possible differential patterns for PRESENT encryption that start with ∆S0 =
00000000FFFF0000 and converge in round 2. There are in total four patterns – the single active
bit at the end of round 2 can be the 4th, 6th, 32nd, or 34th bit.

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.69: The possible differential patterns for PRESENT encryption that start with ∆S0 =
0000FFFF00000000 and converge in round 2. There are in total four patterns – the single active
bit at the end of round 2 can be the 8th, 10th, 36th, or 38th bit.

Remark 4.3.7. As mentioned in Example 4.3.13, for the attack on AES, we assume the SubBytes
operation is implemented column-wise from the first column to the fourth column. We note that a
different ordering of the columns in the implementation is also vulnerable to the attack, provided

209

SB1
15

SB2
15

SB3
15

SB1
14

SB2
14

SB3
14

SB1
13

SB2
13

SB3
13

SB1
12

SB2
12

SB3
12

SB1
11

SB2
11

SB3
11

SB1
10

SB2
10

SB3
10

SB1
9

SB2
9

SB3
9

SB1
8

SB2
8

SB3
8

SB1
7

SB2
7

SB3
7

SB1
6

SB2
6

SB3
6

SB1
5

SB2
5

SB3
5

SB1
4

SB2
4

SB3
4

SB1
3

SB2
3

SB3
3

SB1
2

SB2
2

SB3
2

SB1
1

SB2
1

SB3
1

SB1
0

SB2
0

SB3
0

K1

K2

K3

Figure 4.70: The possible differential patterns for PRESENT encryption that start with ∆S0 =
FFFF000000000000 and converge in round 2. There are in total four patterns – the single active
bit at the end of round 2 can be the 12th, 14th, 40th, or 42nd bit.

the attacker knows the ordering of the columns. Similarly, for our attack on PRESENT, we have
mentioned in Example 4.3.14 that the sBoxLayer operation is implemented nibble-wise from the 0th
nibble to the 15th nibble. A different ordering of the nibbles still can be attacked as long as the
attacker has the knowledge of the specific ordering.

210

4.4 Side-Channel Analysis Attacks on RSA and RSA Signatures

In this section, we will discuss one SPA and one DPA attack on implementations of RSA and RSA
signatures.

Following the same notations from Section 3.3, let p, q be two distinct odd primes. n = pq and
e ∈ Z∗

φ(n) are the public keys. d = e−1 mod φ(n) is the private key. Furthermore, let

dℓd−1dℓd−2 . . . d1d0

be the binary representation of d.
We will show how SPA and DPA can be used to recover the value of d during the computation of

ad mod n (4.58)

for some a ∈ Zn. For both attacks, we focus on one particular method for implementing the modu-
lar exponentiation – the left-to-right square and multiply algorithm (Algorithm 3.8). A similar SPA
attack can also be applied to the right-to-left square and multiply algorithm (Algorithm 3.7). We
note that the attacks can be carried out during either the decryption of RSA or the signature signing
procedure of RSA signatures.

For the experiments, we have set the values of the parameters as given in Examples 3.3.29:

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747. (4.59)

Then our implementation of Algorithm 3.8 can be described by Algorithm 4.2.

Algorithm 4.2: Left-to-right square and multiply algorithm for computing modular expo-
nentiation (see Algorithm 3.8) with parameters from Equation 4.59.

Input: a// a ∈ Z1189

Output: a747 mod 1189
1 n = 1189
2 dbin = [1, 1, 0, 1, 0, 1, 1, 1, 0, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 t = 1
5 for i = ℓd − 1, i ≥ 0, i−− do
6 t = t ∗ t mod n

// ith bit of d is 1

7 if di = 1 then
8 t = a ∗ t mod n

9 return t

Remark 4.4.1. We note that since φ(n) = (p − 1)(q − 1) is even and gcd(d, φ(n)) = 1, d is odd. In
particular d0 = 1.

4.4.1 Simple Power Analysis

We have seen that DPA exploits the relationship between leakages at specific time samples and the
data being processed in the DUT. SPA, on the other hand, analyzes leakages along the time axis,
exploiting relationships between leakages and operations. Similar to profiled DPA, SPA requires
knowledge of the exact implementation.

We have seen in the analysis of Figure 4.3 that different operations can be deduced from observing
the power traces. An SPA attack on the square and multiply algorithm works with a similar method
– we examine the traces to figure out if both square and multiplication are executed in one loop from
line 5 (the corresponding bit of d is 1) or not (the corresponding bit of d is 0). Following Kerckhoffs’
principle (see Definition 2.1.3), we assume the attacker has knowledge of Algorithm 4.2 except for
the values of bits of d in line 2.

9Note that for easy illustration, the values we choose for p and q are much smaller than practical values.

211

With the experimental setting as described in Section 4.1, we measured one power trace for the
computation of Algorithm 4.2 on our DUT. The trace is shown in Figure 4.71. We can see ten similar
patterns. By examining Algorithm 4.2, we have two guesses:

Guess a Each pattern corresponds to one modular operation (modular square from line 6 or modular
multiplication from line 8);

Guess b Each pattern corresponds to one loop from line 5.

Let S denote the modular square operation from line 6 and M the modular multiplication from line 8.
We observe that the loop in line 5 contains either one square operation (S) or one square followed by
one multiplication operation (SM). We also have the following correspondence between operations
in loop i and the ith bit of the secret key d:

loop i contains only S⇐⇒ di = 0, loop i consists of SM⇐⇒ di = 1.

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.71: One trace corresponding to the computation of Algorithm 4.2. We can see ten similar
patterns.

We further notice that there are mainly two types of patterns in Figure 4.71, one with a single
cluster of peaks and one with more than one cluster of peaks. They are colored in green and blue in
Figure 4.72 respectively.

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.72: Highlighted two types of patterns from Figure 4.71. One pattern with a single cluster of
peaks (colored in green) and one with more than one cluster of peaks (colored in blue).

Let us first assume that Guess a is correct. Based on the above observations, we have two possi-
bilities to consider:

• The (green-colored) single peaked patterns correspond to modular square operation (S) and the
(blue-colored) multiple peaked patterns correspond to modular multiplication operation (M).

212

• The (green-colored) single peaked patterns correspond to modular multiplication operation
(M) and the (blue-colored) multiple peaked patterns correspond to modular square operation
(S).

We know that d0 = 1 (see Remark 4.4.1). Then we can deduce that the last blue-colored pattern in
Figure 4.72 does not represent a single modular square operation (S). On the other hand, the start
of the computation will always be a modular square operation, which then indicates that the first
blue-colored pattern corresponds to S. We have reached a contradiction and we conclude that Guess
a is not correct.

Next, we assume Guess b is correct. Similarly, we have two possibilities to consider:

• The (green-colored) single peaked patterns represent a single modular square operation (S), i.e.
the corresponding bit of d is 0; and the (blue-colored) multiple peaked patterns represent SM
and the corresponding bit of d is 1.

• The green-colored patterns correspond to SM and the blue-colored patterns correspond to S.

As discussed above, the end of the computation does not stop with d0 = 0, thus the blue-colored
patterns represent SM, i.e. the corresponding bit of d is 1. Consequently, the green-colored patterns
correspond to loops with the bit of d being 0. We can then read out the value of bits di (i = ℓd −
1, . . . , 0, 1) from Figure 4.72:

1 0 1 1 1 0 1 0 1 1.

Finally, we recover the secret key
d = 10111010112 = 747.

One might argue that the first green pattern in Figure 4.72 may also be a multiple peaked blue pattern.
We note that this pattern is shorter than the other blue patterns. Hence it is more likely to correspond
to one operation instead of two. Nevertheless, in a realistic attack, one could use brute force to
recover this bit.

Remark 4.4.2. By the design of the Montgomery powering ladder (Algorithm 3.9), there is always
a multiplication followed by a square operation, making it safe against our SPA attack presented
above.

4.4.2 Differential Power Analysis

For DPA attacks on RSA implementations, we focus on Montgomery’s method for implementing
modular multiplication MonPro (see Algorithm 3.17). Following Equation 4.59 and Example 3.5.17,
we have:

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3,
d = 747, r = 2048, r−1 = 717, n̂ = 1235.

(4.60)

Then our implementation of Montgomery left-to-right square and multiply algorithm (Algorithm 3.20)
can be described by Algorithm 4.4. Also, our implementation of MonPro (Algorithm 3.17) becomes
Algorithm 4.3.

We have implemented Algorithm 4.4 in our DUT. With experimental settings as described in
Section 4.1, one trace is shown in Figure 4.73. This trace is different from Figure 4.72 - we cannot see
two distinct types of patterns. If we take a closer look at the computation of MonPro in Algorithm 4.3,
we can see that the main difference between a square and a multiply is in line 3, which does not
involve modular n as compared to lines 6 and 8 in Algorithm 4.2. This missing modular n operation
might be the main reason for the missing pattern structure in Figure 4.73.

Nevertheless, we can still gain important information from the trace. First, we note that there are
18 similar patterns in Figure 4.73. By examining Algorithm 4.4, similar to Guess a and Guess b from
Section 4.4.1, we can assume each of those 18 patterns corresponds to either one execution of MonPro
or one loop from line 6. Since there is one extra MonPro operation in line 10, we know that the last
pattern will not represent a loop. If each of the other patterns corresponds to one loop, we will have
a secret key of bit length 17, which is longer than the bit length of n (bit length of 1189 is 10) and
hence impossible. We conclude that there is a high possibility that each pattern corresponds to one

213

Algorithm 4.3: MonPro, Montgomery product algorithm with parameters from Equa-
tion 4.59.

Input: a, b// a, b ∈ Z1189

Output: 717ab mod 1189
1 n̂ = 1235
2 n = 1189
3 t = ab
4 m = tn̂ AND 2047
5 u = (t+mn) >> 11
6 if u ≥ n then
7 u = u− n

8 return u

Algorithm 4.4: Montgomery left-to-right square and multiply algorithm with parameters
from Equation 4.59. MonPro is given by Algorithm 4.3.

Input: a// a ∈ Z1189;

Output: a747 mod 1189
1 n = 1189, r = 2048
2 dbin = [1, 0, 1, 1, 1, 0, 1, 0, 1, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 tr = r mod n
5 ar = ar mod n
6 for i = ℓd − 1, i ≥ 0, i−− do
7 tr = MonPro(tr, tr)// tr = tr ×Mon tr.

8 if dbin[i] = 1 then
9 tr = MonPro(tr, ar)// tr = tr ×Mon ar.

10 t = MonPro(tr, 1)// t = tr ×Mon 1 = tr ∗ r−1 mod n.

11 return t

execution of MonPro. Since when di = 1 there are two executions of MonPro and when di = 0 there
is one execution of MonPro, our observations reveal that

ℓd + wt (d) = 17.

We follow similar attack steps as DPA attacks on symmetric block ciphers presented in Sec-
tion 4.3.1.1. However, we will only describe one particular attack on RSA (originally proposed
in [AFV07]), while Section 4.3.1.1 outlines attack steps for a generic DPA attack on any symmetric
block ciphers.

DPA-RSA Step 1 Identify the target cryptographic implementation. As mentioned above, we focus on
the left-to-right square and multiply algorithm with Montgomery’s method for modular
multiplication. In particular, our attack will be on an implementation of Algorithm 4.4.
We remark that to have a better signal, most part of Algorithm 4.3 was implemented in
ARM assembly.

DPA-RSA Step 2 Experimental setup and measure leakages. With the same experimental setting as in Sec-
tion 4.1, we have measured M = 10000 traces, each for a random input a ∈ Z1189. Let aj
(j = 1, 2, . . . ,M) denote the jth input with corresponding power trace ℓj = (lj1, l

j
2, . . . , l

j
q),

where the total number of times samples in one trace is q = 9500.

DPA-RSA Step 3 Choose the part of the key to recover. In this attack, we aim to recover the full secret key
d.

DPA-RSA Step 4 Choose the target intermediate value. Our target intermediate value is the 0th byte of
the value ar, defined in line 5 of Algorithm 4.4. We note that ar is only used in the

214

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

−0.4

−0.2

0

0.2

Time sample

L
ea
ka
ge

Figure 4.73: One trace corresponding to the computation of Algorithm 4.4. We can see 18 similar
patterns.

algorithm when di = 1 (line 9), and thus we expect the correlation between the leakages
and information related to ar to be higher when line 9 is executed. Consequently, we will
know that di = 1 for the corresponding loop. Since in practice, ar is a big integer, it is
more reasonable to focus on just part of ar. For our experiments, ar ∈ Z1189 has bit length
at most 11. We will focus on the 0th byte (bits 0, 1, 2 . . . , 7) of ar.

DPA-RSA Step 5 Compute the hypothetical signal for each target intermediate value. Our attack does
not rely on finding the best key hypothesis that achieves the highest absolute correlation
coefficient as in DPA attacks on symmetric block ciphers. The information we exploit is
that when the absolute correlation coefficient between leakages and the target intermedi-
ate value is high, the corresponding loop has secret key bit = 1. For each of the M inputs
aj , we compute the target intermediate value, denoted vj , as follows:

vj = bits 0, 1, 2, . . . , 7 of ajr mod n, j = 1, 2, . . . , 10000. (4.61)

As we have seen in Section 4.3.2.1, the Hamming weight leakage model (Equation 4.4)
is a good estimate for leakages of our DUT. We compute the hypothetical signal corre-
sponding to aj , denoted Hj , as follows:

Hj = wt (vj) , j = 1, 2, . . . , 10000. (4.62)

DPA-RSA Step 6 Statistical analysis. We view the hypothetical signal as a random variable H that varies
when the input a changes. For a fixed time sample t, we also consider the leakage at t as
a random variable Lt. Then our computations from DPA-RSA Step 5 and our traces from
DPA-RSA Step 2 give us a sample for this pair of random variables (H, Lt):

{
(Hj , l

j
t)
∣∣∣ j = 1, 2, . . . , 10000

}
.

To see at what time samples the leakages are correlated to H, same as in DPA Step 7, we
adopt the notion of correlation coefficient (Definition 1.7.11). And for each time sample
t, we compute the sample correlation coefficient (Example 1.8.1), denoted by rt, of H and
Lt:

rt :=

∑M
j=1(Hj −H)(ljt − lt)√∑M

j=1(Hj −H)2
√∑M

j=1(l
j
t − lt)2

, M = 10000, t = 1, 2, . . . , 9500. (4.63)

Example 4.4.1. For our experiments, we have

a1 = 900, a2 = 1083, a3 = 881, a4 = 852.

215

Then

a1r mod n = 900× 2048 mod 1189 = 250 = FA,

a2r mod n = 1083× 2048 mod 1189 = 499 = 1F3,

a3r mod n = 881× 2048 mod 1189 = 575 = 23F,

a4r mod n = 852× 2048 mod 1189 = 633 = 279

According to Equation 4.61, we have

v1 = FA, v2 = F3, v3 = 3F, v4 = 79.

Then the hypothetical signals from DPA-RSA Step 5 are given by (Equation 4.62)

H1 = wt (FA) = wt (11111010) = 6,

H2 = wt (F3) = wt (11110011) = 6,

H3 = wt (3F) = wt (00111111) = 6,

H3 = wt (79) = wt (01111001) = 5.

The sample correlation coefficients for all time samples are shown in Figure 4.74. We can see a
sequence of 18 patterns. To recover the secret key, we need the help of SPA. We have discussed before
that there are 18 patterns in Figure 4.73 and each of them most likely corresponds to one execution of
MonPro.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

−0.6

−0.4

−0.2

0

0.2

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.74: Sample correlation coefficients rt (Equation 4.63) for time samples t = 1, 2, . . . , 9500. We
can see a sequence of 18 patterns.

If we put Figures 4.73 and 4.74 together, we get Figure 4.75. We can see that the 18 patterns
corresponding to sample correlation coefficients and those corresponding to leakages coincide. Thus,
we can assume each pattern in Figure 4.74 represents one execution of MonPro.

Let us then take a closer look at Figure 4.74. We can see there are mainly two types of patterns:
one with a lower peak; and one with a higher peak as well as a small high peak at the end of the
pattern. They are highlighted in green and blue respectively in Figure 4.76.

We know that the last pattern in Figure 4.76 corresponds to line 10 in Algorithm 4.4. Then each
of the remaining 17 patterns represents the computation of either line 9 or line 7. Let S and M denote
the modular square and modular multiplication computations in lines 7 and 9 respectively. Since
ar is only used in M, we can assume that a higher peaked (blue-colored) pattern corresponds to M.
Consequently, a lower peaked (green-colored) pattern corresponds to S. Using Figure 4.76, we can
deduce the sequence of square and multiply operations in one execution of Algorithm 4.4:

SMSSMSMSMSSMSSMSM.

216

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

−0.6

−0.4

−0.2

0

0.2

Time sample

S
am

p
le

co
rr
el
a
ti
o
n
co
effi

ci
en
t

Figure 4.75: Sample correlation coefficients from Figure 4.73 (in red) with one power trace from
Figure 4.74 in gray. We can see that the 18 patterns corresponding to sample correlation coefficients
and those corresponding to leakages coincide.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

−0.6

−0.4

−0.2

0

0.2

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.76: There are mainly two types of patterns in Figure 4.74: one with a lower peak; and one
with a higher peak as well as a small high peak at the end of the pattern. In this figure, they are
highlighted in green and blue respectively.

A loop in Algorithm 4.4 contains either a single S or SM. We can then map this sequence of operations
into different loops (separated by spaces)

SM S SM SM SM S SM S SM SM.

Furthermore, a loop containing a single S corresponds to the secret bit = 0 while a loop containing
SM corresponds to the secret bit = 1. We can then read out the bits of the secret key d:

1 0 1 1 1 0 1 0 1 1,

and we can reconstruct the key
d = 1011101011 = 747.

4.5 Countermeasures Against Side-channel Analysis Attacks

In this section, we will discuss a few implementation-level SCA countermeasures for both symmetric
block cipher and RSA implementations. We have seen how the dependency of a device’s leakages
(power consumption) on data and operations can be exploited to recover the secret keys of a cryp-
tographic implementation. The goal of the countermeasures that we will see is to make the leakage
of the DUT independent of the operations or the intermediate values of the executed cryptographic
implementation. We will detail two types of countermeasures - hiding and masking/blinding.

217

The goal of a hiding-based countermeasure is to remove the operation or data dependency of
leakages. This can be done by changing the leakage of the DUT in a way that every operation requires
a similar (balance the leakages) or a random (randomize the leakages) amount of energy. On the other
hand, the goal of a masking/blinding-based countermeasure is to remove the data dependency of the
leakages by randomizing the intermediate values that the DUT is processing. The rationale is that
since the value being processed in the DUT is randomized and independent of the intermediate value
of the cryptographic computation, we cannot capture information on the actual intermediate value
from the leakages. In practice, both types of countermeasures are used.

4.5.1 Hiding

As mentioned above, hiding-based countermeasure aims to either randomize or balance the leakages
of the DUT for different operations or data. In this section, we will discuss two countermeasures that
aim to balance the leakages - one for symmetric block ciphers and one for RSA implementations.

4.5.1.1 Encoding-based Countermeasure for Symmetric Block Ciphers

In Section 4.3.2.2, we have discussed the stochastic leakage model. In this part, we will show a
countermeasure that is based on analyzing the stochastic leakage of the DUT [MSB16].

Recall that with the stochastic leakage model, we can characterize the leakage at a single time
sample. For the countermeasure, we also focus on one time sample. The coefficients (see Equa-
tion 4.24) of the stochastic leakage model will be estimated using the measured traces. Based on the
estimated leakage model, we choose a binary code (Definition 1.6.1) that results in a lower SNR at
this particular time sample and makes the attacks require more effort.

In Sections 4.3.1 and 4.3.2 we have seen attacks based on the Hamming weight leakage model on
PRESENT implementations. Thus, to provide more protection, we further require the codewords in
our code to have the same Hamming weight, as shown in [HBK23]. In this way, attacks based on the
Hamming weight of the intermediate values will not be possible.

The steps for the countermeasure are as follows:

Code-SCA Step 1 Identify the target instruction and target intermediate value. As the stochastic leakage
model is specific to one time sample, we need to first decide what is the most vulner-
able instruction and which intermediate value needs to be protected the most. Let v =
vmv−1vmv−2 . . . v1v0 denote the target intermediate value of bit length at most mv. In gen-
eral, it is recommended that the implementation is done in assembly to identify the most
vulnerable instruction.

For our illustrations, we will choose the instruction MOV for our microcontroller and we
focus on the PRESENT Sbox output. Hence mv = 4. The operation we implemented is then

MOV r0 a, (4.64)

where r0 represents a register and a is the input of the target instruction.

Code-SCA Step 2 Choose the code length nC and the Hamming weight wH of each codeword. We would like
to choose a code to represent our secret intermediate value v such that instead of processing
v with our DUT, the corresponding codewords will be used. Clearly, the size of the binary
code will be 2mv in order to represent all values of v. The length of the binary code should
be at least mv+1 so that it allows us to choose which word to use as our codewords. Longer
length in general not only gives us more freedom, but also causes more overhead. Let nC

denote our chosen code length.

As mentioned before, we would also like the codewords in our binary code to have the same
Hamming weight, making attacks based on the Hamming weight leakage model impossible.
Note that there are in total

(
nC
wH

)
words in F2nC

2 that have Hamming weight wH . One criterion
for the choice of nC and wH is then

(
nC

wH

)
> 2mv , (4.65)

218

so that we will have enough codewords to represent all values of v.

In summary, we are looking for a (nC , 2
mv)−binary code such that each codeword has Ham-

ming weight wH . And nC and wH should satisfy Equation 4.65.

For our experiments, we choose nC = 8 and wH = 6. We are interested in (8, 16)−binary
codes such that each codeword has Hamming weight 6.

Code-SCA Step 3 Experimental setup and trace measurement. In this step, we will collect two datasets, de-
noted T1 and T2. Using our DUT, we repeatedly run the target instruction with random
inputs. One trace is measured for each input. We first take M1 inputs with random values
from Fmv

2 , which give us the dataset T1. Then using M2 inputs with values from FnC
2 we get

T2. Suppose each trace contains q time samples. Note that we assume the traces in those
two datasets are well-aligned.

T1 represents how leakages behave when random values of v are being processed by the
DUT. It will be used to identify the POI in Code-SCA Step 4, which is the time of the com-
putation that is supposed to be the most vulnerable.

To choose a good binary code, we would like to profile leakages when the input is a code-
word. Let x = xnC−1xnC−2 . . . x1x0 be a word from F2nC

2 of bit length at most nC . Recall
from Section 4.3.2.2 (Equation 4.24) that the stochastic leakage model specifies the leakage
is related to the value x being processed in the device as follows:

L(x) =

nC−1∑

s=0

αsxs + noise, (4.66)

where noise ∼ N(0, σ2) denotes the noise with mean 0 and variance σ2. Estimations for the
coefficients αs (s = 0, 1, . . . , nC − 1) will be computed with profiling traces from T2. We
can see that it is important for traces in T1 and T2 to be aligned so that the profiling of T2 is
carried out with the correct POI.

For our experiment, we measured M1 = 10000 traces for the MOV instruction with inputs
between 0 and F; and M2 = 10000 traces with inputs between 00 and FF. Each trace con-
tains q = 600 time samples. The MOV instruction was surrounded with NOP operations.
Figure 4.77 shows what one trace from T1 looks like. We can see that the operation MOV
happens between time samples 400 and 450. Traces from T2 look very similar.

0 50 100 150 200 250 300 350 400 450 500 550 600
−0.2

−0.1

0

0.1

Time sample

L
ea
ka
ge

Figure 4.77: An example of a trace from dataset T1, obtained in Code-SCA Step 3, which corresponds
to MOV instruction surrounded by NOPs.

Code-SCA Step 4 Identity the POI. With the traces from T1 obtained in Code-SCA Step 3, we compute the
SNR for each time sample following similar methods as in P-DPA Step 6 – P-DPA Step 8
from Section 4.3.2.1. Our target signal is the exact value of v, thus Msignal = 2mv (P-DPA
Step 6). The number of time samples qpf = q (P-DPA Step 7). The POI is taken to be the time
sample with the highest SNR.

219

With our 10000 traces from T1, the SNR values for each time sample are shown in Figure 4.78.
And our POI is 430.

0 50 100 150 200 250 300 350 400 450 500 550 600

0

0.2

0.4

0.6

0.8

1

1.2

Time sample

L
ea
ka
ge

Figure 4.78: SNR values for each time sample computed with dataset T1 obtained in Code-SCA Step
3. The highest point is our POI = 430.

Code-SCA Step 5 Estimate coefficients for the stochastic leakage model. Following SLM Step a – SLM Step c
in Section 4.3.2.2, we compute the estimations for αs in Equation 4.66 using dataset T2. With
the notations from Section 4.3.2.2, we have Mpf = M2. The POI was identified in Code-SCA
Step 4. Note that the target intermediate value is not the value v from Code-SCA Step 1, but
words from F2nC

2 . Let α̂s denote the estimated value for αs (s = 0, 1, . . . , nC − 1).

Using our dataset T2 for MOV instruction, POI = 430, and nC = 8, we got the following
estimations α̂s for αs

α̂0 ≈ −0.00245761, α̂1 ≈ −0.00130026, α̂2 ≈ −0.00135884, α̂3 ≈ −0.00122801,
α̂4 ≈ −0.00131569, α̂5 ≈ −0.00213467, α̂6 ≈ −0.00209748, α̂7 ≈ −0.00221288. (4.67)

Code-SCA Step 6 Compute the estimated signal for each word with Hamming weight wH . Using the es-
timated values, α̂s, for the coefficients, according to the stochastic leakage model (Equa-
tion 4.66), we can compute the estimated signal of each word x = xnC−1xnC−2 . . . x1x0 from
F2nC

2 , denoted SG(x),

SG(x) =

nc−1∑

s=0

α̂sxs. (4.68)

We can identify each integer between 0 and 2nC−1 with a unique binary string from F2nC

2 us-
ing the integer’s binary representation and compute its estimated signal with Equation 4.68.
Let Words be the table of integers between 0 and 2nC − 1 whose binary representation has
Hamming weight wH . Then the table TSG of estimated signals is constructed such that

TSG[a] = SG(Words[a]), a = 0, 1, . . . , 2nC − 1. (4.69)

For our experiments,

Words = [3F, 5F, 6F, 77, 7B, 7D, 7E, 9F, AF, B7, BB, BD, BE, CF,

D7, DB, DD, DE, E7, EB, ED, EE, F3, F5, F6, F9, FA, FC]. (4.70)

For example, with α̂s from Equation 4.67, we have

TSG[0] = SG(3F) = SG(00111111) =
5∑

i=0

α̂i ≈ −0.009795.

The table TSG can be found in Table E.1 (Appendix E).

220

Code-SCA Step 7 Find the optimal code. Finally, we search for an optimal (nC , 2
mv)−binary code whose

codewords all have Hamming weight wH using Algorithm 4.5 (see [MSB16, Algorithm 1]).
The input of the algorithm consists of mv, the maximum bit length of the target intermediate
value from Code-SCA Step 1; nC and wH , the code length and the Hamming weight for each
codeword chosen in Code-SCA Step 2; Words, the table of integers between 0 and 2nC − 1
with Hamming weight wH obtained in Code-SCA Step 6; and TSG, the table of estimated
signals for each integer from Words as specified in Equation 4.69. As discussed in Code-
SCA Step 2, the total number of codewords is 2mV (line 1) and the total number of binary
strings of length nC and Hamming weight wH is

(
nC
wH

)
(line 2). Firstly, we sort the values

in TSG in ascending order and save the sorted values in Tsorted, where Tsorted[0] contains the
lowest value from TSG (line 6). The array I records the corresponding integer in Words
for each estimated signal in Tsorted (lines 7 and 8). Next, the difference between the values
in Tsorted[j + code size − 1] and Tsorted[j] is stored in the jth entry of the array D, for
j = 0, 1, . . . ,total word-code size (lines 9 and 10). The index of the smallest value in D is
denoted by ind (line 11). Finally, the binary code consists of codewords that correspond to
estimated signals in the range D[ind] and D[ind + code size− 1] (lines 12 and 13).

With mv = 4, nC = 8, wH = 6, Words from Equation 4.70, and TSG in Table E.1, we got the
following (8, 16)−binary code

C(8,16) := [B7, D7, BD, AF, DD, 77, CF, BB,

DB, 7D, 6F, 7B, F6, FC, EE, FA] (4.71)

The sorted table Tsorted (line 6 of Algorithm 4.5) can be found in Table E.2 (Appendix E),
where the codewords are highlighted in blue.

We will argue that Algorithm 4.5 indeed outputs an optimal (nC , 2
mv)−binary code that achieves

a lower SNR, according to the stochastic leakage model with coefficients α̂s obtained in Code-SCA
Step 5. First, let A = {a1, a2, . . . , aβ} be a set of β (β ≥ 2) real numbers. Define

d(A) := max { | ai − aj | | ai, aj ∈ A }

to be the largest absolute difference between elements in A. We also define the variance of values in
A, denoted Var(A), by (see Equation 1.35)

Var(A) :=
1

β

β∑

i=1

(ai − a)2,

where a is the average of ai given by

a =
1

β

β∑

i=1

ai.

It is easy to see that
(ai − a)2 ≤ d(A)2,

and hence
Var(A) ≤ d(A)2.

Now, let C be an (nC , 2
mv)−binary code and define

A(C) := { SG(c) | c ∈ C }

to be the set of estimated signals for codewords in C. When C is used for encoding the target inter-
mediate value, the variance of the signal at POI is then given by

Var(XPOI) = Var(A(C)).

The goal of Algorithm 4.5 is to find a C such that d(A(C)) is the minimum among all (nC , 2
mv)−binary

codes whose codewords have Hamming weight wH . According to the above discussions, we can con-
clude that the SNR of the code found by the algorithm is also relatively small. Even though this code

221

Algorithm 4.5: Finding the optimal code for encoding countermeasure against SCA.
Input: mv, nC , wH , Words, TSG // mv is the maximum bit length of the target

intermediate value identified in Code-SCA Step 1; nC is the code length and wH

is the Hamming weight for each codeword chosen in Code-SCA Step 2; Words is the

table of integers between 0 and 2nC − 1 with Hamming weight wH as discussed in

Code-SCA Step 6; TSG is the table of estimated signals for each integer from

Words as specified in Equation 4.69.

Output: An (nC , 2
mv)−binary code with each codeword having Hamming weight wH

1 code size = 2mv// number of codewords in our code

2 total word =
(
nC
wH

)
// total number of words of length nC and Hamming weight wH

3 array of size total word−code size+1 D
4 array of size total word I
// C will store the codewords

5 array of size code size C
// Tsorted[0] contains the lowest value from TSG

6 Tsorted = TSG sorted in ascending order
7 for j = 0, j < total word, j ++ do

// I records the corresponding word in Words for each estimated signal in Tsorted

8 I[j] = Words [index of Tsorted[j] in TSG]

9 for j = 0, j ≤ total word− code size, j ++ do
// the jth entry of D is given by the difference between the value in

Tsorted[j + code size− 1] and Tsorted[j]

10 D[j] = Tsorted[j + code size− 1]− Tsorted[j]

// ind is the index of the smallest value in D

11 ind = argminj D[j]
// the code consists of codewords that correspond to estimated signals in the range

D[ind] and D[ind+ code size− 1]

12 for j = 0, j < code size, j ++ do
13 C[j] = I[ind + j]

14 return C

may not be the one that achieves the lowest SNR, another code with a lower SNR will have a bigger
d(A(C)), which might be exploited to improve the attack results.

To see how effective is the countermeasure, we have simulated template-based DPA attacks (see
Section 4.3.2.3) on the 0th Sbox output of PRESENT. The dataset T1 obtained in Code-SCA Step 3 is
used as the profiling traces to build templates for unprotected implementation. 10, 000 traces were
collected with random inputs from C(8,16) (Equation 4.71) as profiling traces to build templates for
attacks on protected implementations.

To get the attack traces for the unprotected implementation, for each plaintext nibble p and a fixed
key nibble 9 (the same as the 0th nibble of the key in Equation 4.1), we precomputed the Sbox output
(see Table 3.11)

v = SBPRESENT(p⊕ 9).
Then we carried out the measurement for the operation described in Equation 4.64 with v as the in-
put a. 100, 000 traces were collected for random plaintext nibbles p. Attack traces for the protected
implementation were obtained in a similar manner. Instead of v, we pass the corresponding code-
word from C(8,16), C(8,16)[v], as input a in Equation 4.64. We have also measured 100, 000 traces with
random plaintext nibbles.

The attacks follow steps from Section 4.3.2.3, where we have set the target signal to be the exact
value of v (or the corresponding codeword). Since we only focus on one POI, according to Template
Step b, we have computed a mean leakage for each value of v for unprotected implementation and
for each value of codeword in C(8,16) for the protected implementation. The mean leakage values for

222

different v are given by

{−0.01055,−0.00943,−0.00680,−0.00772,−0.00698,−0.00778,−0.00656,−0.00748,−0.00677,
−0.00764,−0.00641,−0.00732,−0.00649,−0.00732,−0.00619,−0.00716}

The mean leakage values for different codewords are

{−0.01064,−0.01054,−0.01036,−0.01037,−0.01032,−0.01058,−0.01038,−0.01031,
−0.01023,−0.01027,−0.01036,−0.01034,−0.01021,−0.01008,−0.01014,−0.00998}

It is easy to see that the differences between mean leakages in the first set are bigger compared to
those in the second set. If we compute the variance between mean leakages in those two sets we get

1.2067× 10−6 and 2.8459× 10−8.

This shows that it is more difficult to distinguish between the leakages of codewords in C(8,16) than
that of different values of v. Since DPA attacks rely on exploiting the difference between leakages for
different data, we expect the protected implementation to be more challenging to attack with DPA.

The attack results are shown in Figures 4.79 and 4.80. Computations of estimations for success
rates and guessing entropy followed Algorithm 4.1, where we have set

max trace = 1000, no of attack = 100.

We can see that the unprotected implementation can be broken with about 150 traces while the pro-
tected implementation can not be broken with even 1000 traces.

We note that the number of traces required for a successful attack on unprotected implementation
is more than what we have obtained in Section 4.3.2.3 (see Figures 4.51 and 4.52). This is expected
as the highest SNR we have for MOV instruction (Figure 4.78) is much less than that for one round of
PRESENT (Figure 4.20).

100 200 300 400 500 600 700 800 900 1,000

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Unprotected

wH = 6

Figure 4.79: Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black line cor-
responds to unprotected intermediate values. The blue line corresponds to encoded intermediate
values with the binary code C(8,16) (Equation 4.71), where all codewords have Hamming weight 6.

For comparison, we have also repeated the same steps for the proposed countermeasure with
different values of wH = 2, 3, 4, 5. The template-based DPA attack results are shown in Figures 4.81
and 4.82. We can see that all the codes increase the number of traces needed for a successful attack.
And the code with wH = 4 behaves the best.

We note that the presented countermeasure focuses on one instruction, therefore the chosen bi-
nary code is only optimal for the target instruction and target intermediate value. Nevertheless, the
whole cipher state can be encoded, giving a certain level of protection to all the other instructions. A
method of encoding the whole encryption computation will be discussed in Section 5.2.1. Different
codes might work for different devices, but as implementers, we would have access to the device we
want to protect and can choose the best code that is suitable for the device.10

10Naturally, creating a different code for every device would be impractical for serial production.

223

100 200 300 400 500 600 700 800 900 1,000

2

4

6

8

10

Number of traces

G
u
es
si
n
g
en
tr
op

y

Unprotected

wH = 6

Figure 4.80: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The black line
corresponds to unprotected intermediate values. The blue line corresponds to encoded intermediate
values with the binary code C(8,16) (Equation 4.71), where all codewords have Hamming weight 6.

100 200 300 400 500 600 700 800 900 1,000

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Unprotected

wH = 2

wH = 3

wH = 4

wH = 5

wH = 6

Figure 4.81: Estimations of success rate computed following Algorithm 4.1 for template-based DPA
attack on the MOV instruction taking the PRESENT Sbox output as an input. The black line cor-
responds to unprotected intermediate values. The other lines correspond to encoded intermediate
values with (8, 16)−binary codes obtained following Code-SCA Step 1 – Code-SCA Step 7, where we
have set wH = 2, 3, 4, 5, 6.

4.5.1.2 Square and Multiply Always

In Section 4.4.1 we have seen one SPA attack on RSA implementations that exploits the part of the
square and multiply algorithm where multiplication is carried out only when the secret key bit is 1.
A natural countermeasure is that we always compute multiplication no matter what the value of the
secret key bit is. Such an algorithm is called the square and multiply-always algorithm [Cor99].

We keep the notations from Section 3.3. Let n = pq be the product of two distinct odd primes. Let
d ∈ Z∗

φ(n) be the secret key of RSA/RSA signatures. We would like to compute

ad mod n

for some a ∈ Zn.
Recall that we have presented the right-to-left (Algorithm 3.7) and left-to-right (Algorithm 3.8)

square and multiply algorithms. Correspondingly, we have the right-to-left and left-to-right square
and multiply-always algorithms, detailed in Algorithms 4.6 and 4.7 respectively. In both algorithms,
the modular multiplication computation is always carried out. And when the secret bit is 0, the result
is discarded (line 6 in Algorithm 4.6 and line 7 in Algorithm 4.7).

224

100 200 300 400 500 600 700 800 900 1,000

2

4

6

8

10

Number of traces

G
u
es
si
n
g
en
tr
op

y

Unprotected

wH = 2

wH = 3

wH = 4

wH = 5

wH = 6

Figure 4.82: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attack on the MOV instruction taking the PRESENT Sbox output as an input. The black line
corresponds to unprotected intermediate values. The other lines correspond to encoded intermediate
values with (8, 16)−binary codes obtained following Code-SCA Step 1 – Code-SCA Step 7, where we
have set wH = 2, 3, 4, 5, 6.

Algorithm 4.6: Right-to-left square and multiply-always algorithm for computing modular
exponentiation. A hiding-based countermeasure against SCA attacks.

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result ∗ t mod n

5 else
// ith bit of d is 0, compute multiplication and discard the result

6 tmp = result ∗ t mod n

// t = a2i+1

7 t = t ∗ t mod n

8 return result

As an illustration, let us consider our attack presented in Section 4.4.1. With the square and mul-
tiply always countermeasure, Algorithm 4.2 becomes Algorithm 4.8. With the same experimental
setting as described in Section 4.1, we have measured one trace for the computation of Algorithm 4.8
with our DUT. To make sure the line 10 will be executed, we have turned off the compiler optimiza-
tion. The trace is shown in Figure 4.83. We can see that we still observe ten patterns, the same as
in Section 4.4.1. But in this case, all of them have more than one peak cluster. We know from the
discussions in Section 4.4.1 that this is because each of the patterns corresponds to one loop from
line 5 and each loop contains one modular square (line 6) and one modular multiplication operation
(line 8 or line 10). Thus, we cannot repeat the same attack as presented in Section 4.4.1. However,
we can deduce that the secret key has bit length 10. In practical settings, the bit length will be much
bigger. To the best of our knowledge, this information alone cannot reveal the secret key.

On the other hand, we will show that the square and multiply-always algorithm is still vulnerable
to the DPA attack presented in Section 4.4.2. With square and multiply-always countermeasure,
Algorithm 4.4 becomes Algorithm 4.9.

With the same experimental setting as in Section 4.1 and 4.4.2, one trace for computation of Al-
gorithm 4.9 is shown in Figure 4.84. We note that there are 21 similar patterns in the figure. By
examining Algorithm 4.9, we can guess that each of them might correspond to one loop from line 6

225

Algorithm 4.7: Left-to-right square and multiply-always algorithm for computing modular
exponentiation. A hiding-based countermeasure against SCA attacks.

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n)

Output: ad mod n
1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 else
// ith bit of d is 0, compute multiplication and discard the result

7 tmp = a ∗ t mod n

8 return t

Algorithm 4.8: Protected implementation of Algorithm 4.2. Left-to-right square and
multiply-always algorithm for computing modular exponentiation (see Algorithm 3.8) with
parameters from Equation 4.59.

Input: a// a ∈ Z1189

Output: a747 mod 1189
1 n = 1189
2 dbin = [1, 1, 0, 1, 0, 1, 1, 1, 0, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 t = 1
5 for i = ℓd − 1, i ≥ 0, i−− do
6 t = t ∗ t mod n

// ith bit of d is 1

7 if di = 1 then
8 t = a ∗ t mod n

9 else
// ith bit of d is 0, compute multiplication and discard the result

10 tmp = a ∗ t mod n

11 return t

or one execution of MonPro. If the former is true, we will have a private key d with a bit length
bigger than the bit length of n. Thus, we can conclude that most likely each of them corresponds to
one execution of MonPro. Then the last one corresponds to line 12 and the remaining 20 tells us that
ℓd = 10.

Following the attack steps as in Section 4.4.2, we have collected M = 10, 000 traces, each with
q = 10, 800 time samples (DPA-RSA Step 2). The sample correlation coefficients (see DPA-RSA Step
6) are shown in Figure 4.85, where the trace from Figure 4.84 is in gray in the background. We can see
that there are 21 patterns in the sample correlation coefficient plot which coincide with those from
the trace plot in Figure 4.84 – each corresponds to one execution of MonPro.

We also see mainly two different patterns, one with a higher positive peak cluster and one with a
lower positive peak cluster. They are colored in blue and green respectively in Figure 4.86. Clearly,
the one with a higher positive peak cluster corresponds to the computation of line 9 or line 11 since
it results in bigger correlation coefficient with ar. The green-colored patterns correspond to line 7,
except for the last one, which corresponds to line 12. Our attack will work if we can distinguish
between line 9 and line 11. We take a closer look at those blue-colored patterns. We can see that
some of them have a high peak at the end – they are colored in lighter blue. The others do not have
this high peak – they are colored in darker blue. We know that the first secret bit dℓ−1 = 1, thus we
deduce that those lighter blue-colored patterns correspond to line 9 and the darker blue-colored ones

226

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800
−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure 4.83: One trace corresponding to the computation of Algorithm 4.8. We can see ten similar
patterns.

Algorithm 4.9: Montgomery left-to-right square and multiply-always algorithm with pa-
rameters from Equation 4.59. MonPro is given by Algorithm 4.3.

Input: a// a ∈ Zn;

Output: a747 mod 1189
1 n = 1189, r = 2048
2 dbin = [1, 0, 1, 1, 1, 0, 1, 0, 1, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 tr = r mod n
5 ar = ar mod n
6 for i = ℓd − 1, i ≥ 0, i−− do
7 tr = MonPro(tr, tr)// tr = tr ×Mon tr.

8 if dbin[i] = 1 then
9 tr = MonPro(tr, ar)// tr = tr ×Mon ar.

10 else
// ith bit of d is 0, compute multiplication and discard the result

11 tmp = MonPro(tr, ar)

12 t = MonPro(tr, 1)// t = tr ×Mon 1 = tr ∗ r−1 mod n.

13 return t

correspond to line 11. Consequently, each lighter blue-colored pattern indicates a secret bit = 1 and
each darker blue-colored pattern indicates a secret bit = 0. We can write down the bits of the secret
key as follows

1 0 1 1 1 0 1 0 1 1,

and the secret key d is given by
d = 1011101011 = 747.

227

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.4

−0.2

0

0.2

Time sample

L
ea
ka
ge

Figure 4.84: One trace corresponding to the computation of Algorithm 4.9. We can see 21 similar
patterns. Each of them corresponds to one execution of MonPro.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.5

0

0.5

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.85: Sample correlation coefficients computed following attack steps from Section 4.4.2 with
10, 000 traces for the computation of Algorithm 4.9. The trace from Figure 4.84 is gray in the back-
ground. We can see that there are 21 patterns in the sample correlation coefficient plot that coincide
with those from Figure 4.84 – each corresponds to one execution of MonPro.

4.5.2 Masking and Blinding

As mentioned before, the goal of masking/blinding is to randomize the intermediate values being
processed in the DUT. When such a countermeasure is applied to symmetric block ciphers, we refer
to it as masking. And when it is applied to public key cryptosystem implementations, following the
convention, it is called blinding instead.

Let v be the secret intermediate value that we would like to mask. The masked value, denoted
vm, is concealed by a random value m, called a mask, with a binary operation · such that

vm = v ·m.

When the binary operation · is given by bitwise XOR, we have a Boolean masking. When · is a
modular addition or modular multiplication, we have an arithmetic masking. We will discuss Boolean
masking for symmetric block ciphers in Sections 4.5.2.1 – 4.5.2.3 and arithmetic masking for RSA
implementations in Section 4.5.2.4.

4.5.2.1 Introduction to Boolean Masking

As one can imagine, the cryptographic algorithm needs to be changed a bit for us to carry out com-
putations with the masked intermediate values and keep track of all the masks. So that at the end
of the encryption, we can remove the masks to output the original ciphertext. In general, a masking

228

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.5

0

0.5

Time sample

S
am

p
le

co
rr
el
at
io
n
co
effi

ci
en
t

Figure 4.86: There are mainly two types of patterns in the sample correlation coefficient plot from
Figure 4.85 – one with a higher peak cluster (colored in blue) and one with a lower peak cluster
(colored in green). Among the blue-colored patterns, we further divide them into two types – one
with a high peak at the end (in lighter blue) and one without this peak (in darker blue).

scheme specifies how masks are applied to the plaintext and intermediate values, as well as how they
are removed from the ciphertext. There are a few principles we follow for a masking scheme design:

• All intermediate values should be masked during the computation. In particular, we would
apply masks to the plaintext (and the key).

• We assume the attacker does not have the knowledge of the masks – otherwise, the attacker can
carry out similar DPA attacks by making hypotheses about the key values as in Sections 4.3.1
and 4.3.2.

• When some intermediate values are to be XOR-ed with each other (e.g., in AES MixClomns
operation), different masks should be applied to each of them. Otherwise, the same valued
masks will cancel out.

• Each encryption has a different set of randomly generated masks.

For any function f , the mask that is applied to an input of f is called the input mask of f . The
corresponding mask for the output is called the output mask of f .

Definition 4.5.1. Let f : Fm1
2 → Fm2

2 be a function, where m1 and m2 are positive integers. f is said
to be linear (w.r.t. ⊕) if for any x,y ∈ Fm1

2 , we have

f(x⊕ y) = f(x)⊕ f(y).

f is non-linear if it is not linear.

Example 4.5.1. • AddRoundKey operation in AES (Section 3.1.2) round function is a linear func-
tion. In fact, bitwise XOR with a round key is a linear function in general.

• DES (Section 3.1.1) Sboxes are non-linear functions. Any Sbox proposed so far for symmetric
block ciphers is non-linear.

• pLayer in PRESENT (Section 3.1.3) round function is linear.

• MixColumns operation in AES is linear (see Remark 3.1.3).

With Boolean masking, it is easy to keep track of the masks with linear operations. Let f be a
linear function and take any input of f , v, with a corresponding mask m, we have

f(v ⊕m) = f(v)⊕ f(m).

Thus, when the input mask is m, the output mask is given by f(m). One of the main challenges in
designing a masking scheme is to find ways to keep track of masks for non-linear operations.

229

4.5.2.2 Boolean Masking for AES-128

In this part, we will discuss a masking scheme for AES-128. The scheme was first proposed in [HOM06],
see also [MOP08, Section 9.2.1].

The only non-linear operation in AES encryption is SubBytes. Let SB denote AES Sbox. We will
consider a table-lookup implementation (see Section 3.2.1) for the SubBytes operation. We choose an
input mask min, SB and an output mask mout, SB for SB. Then we generate a table that implements the
masked Sbox, denoted SBm, such that

SBm(v⊕min, SB) = SB(v)⊕mout, SB. (4.72)

The masking scheme works as follows. Firstly, at the beginning of each encryption:

• We randomly generate six independent masks with values from F8
2, denoted by:

min, SB, mout, SB, m0, m1, m2, m3.

min, SB and mout, SB will be the input and output masks for AES Sbox computation. m0,m1,m2,m3

will be used as input masks for MixColumns operation.

• Compute the lookup table for masked Sbox as given in Equation 4.72.

• Calculate m′
0,m

′
1,m

′
2,m

′
3 from m0,m1,m2,m3 using the MixColumns operation (see Equation 3.6):




m′
0

m′
1

m′
2

m′
3


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







m0

m1

m2

m3


 . (4.73)

Let us keep the matrix representation of the AES cipher state as in Equation 3.2. During the
encryption, the masking scheme continues as follows. We apply masks m′

0,m
′
1,m

′
2,m

′
3 to the plaintext

such that the four bytes in row i + 1 are masked with m′
i. Then the cipher state before the initial

AddRoundKey is of the format



s00 ⊕m′
0 s01 ⊕m′

0 s02 ⊕m′
0 s03 ⊕m′

0

s10 ⊕m′
1 s11 ⊕m′

1 s12 ⊕m′
1 s13 ⊕m′

1

s20 ⊕m′
2 s21 ⊕m′

2 s22 ⊕m′
2 s23 ⊕m′

2

s30 ⊕m′
3 s31 ⊕m′

3 s32 ⊕m′
3 s33 ⊕m′

3


 . (4.74)

We will not detail the masking scheme for the key schedule. For a round key K, we use the following
matrix representation 



k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

We assume that the round keys, except for the last round key, are all masked such that the bytes in
row i + 1 are masked with m′

i ⊕ min, SB. Then for a round key K, the representation of its masked
value in the matrix format will be




k00 ⊕m′
0 ⊕min, SB k01 ⊕m′

0 ⊕min, SB k02 ⊕m′
0 ⊕min, SB k03 ⊕m′

0 ⊕min, SB
k10 ⊕m′

1 ⊕min, SB k11 ⊕m′
1 ⊕min, SB k12 ⊕m′

1 ⊕min, SB k13 ⊕m′
1 ⊕min, SB

k20 ⊕m′
2 ⊕min, SB k21 ⊕m′

2 ⊕min, SB k22 ⊕m′
2 ⊕min, SB k23 ⊕m′

2 ⊕min, SB
k30 ⊕m′

3 ⊕min, SB k31 ⊕m′
3 ⊕min, SB k32 ⊕m′

3 ⊕min, SB k33 ⊕m′
3 ⊕min, SB


 . (4.75)

After the initial AddRoundKey, according to Equations 4.74 and 4.75, the cipher state becomes



s00 ⊕min, SB s01 ⊕min, SB s02 ⊕min, SB s03 ⊕min, SB
s10 ⊕min, SB s11 ⊕min, SB s12 ⊕min, SB s13 ⊕min, SB
s20 ⊕min, SB s21 ⊕min, SB s22 ⊕min, SB s23 ⊕min, SB
s30 ⊕min, SB s31 ⊕min, SB s32 ⊕min, SB s33 ⊕min, SB


 , (4.76)

where each byte is masked with min, SB.
For round 1−−round 9, the changes in cipher states after each operation of AES-128 with masked

implementation are detailed below:

230

• SubBytes. The SubBytes operation is performed using the table designed for SBm. By Equa-
tion 4.72, after the SubBytes operation, each byte of the cipher state is masked by mout, SB:




s00 ⊕mout, SB s01 ⊕mout, SB s02 ⊕mout, SB s03 ⊕mout, SB
s10 ⊕mout, SB s11 ⊕mout, SB s12 ⊕mout, SB s13 ⊕mout, SB
s20 ⊕mout, SB s21 ⊕mout, SB s22 ⊕mout, SB s23 ⊕mout, SB
s30 ⊕mout, SB s31 ⊕mout, SB s32 ⊕mout, SB s33 ⊕mout, SB


 . (4.77)

• ShiftRows. ShiftRows does not change the masks, each byte of the cipher state is still masked
by mout, SB.

• MixColumns. Before MixColumns, we change the masks of the cipher state by XOR-ing the
four bytes in row i+ 1 with m′

i ⊕mout, SB. In this way, the input of MixColumns is of the format



s00 ⊕m0 s01 ⊕m0 s02 ⊕m0 s03 ⊕m0

s10 ⊕m1 s11 ⊕m1 s12 ⊕m1 s13 ⊕m1

s20 ⊕m2 s21 ⊕m2 s22 ⊕m2 s23 ⊕m2

s30 ⊕m3 s31 ⊕m3 s32 ⊕m3 s33 ⊕m3


 .

By the choice of m′
i (see Equation 4.73), the cipher state at the output of MixColumns is the same

as in Equation 4.74: 


s00 ⊕m′
0 s01 ⊕m′

0 s02 ⊕m′
0 s03 ⊕m′

0

s10 ⊕m′
1 s11 ⊕m′

1 s12 ⊕m′
1 s13 ⊕m′

1

s20 ⊕m′
2 s21 ⊕m′

2 s22 ⊕m′
2 s23 ⊕m′

2

s30 ⊕m′
3 s31 ⊕m′

3 s32 ⊕m′
3 s33 ⊕m′

3


 .

• AddRoudKey. After the AddRoundKey of the round, the cipher state becomes the same as the
input of this round, as given in Equation 4.76:




s00 ⊕min, SB s01 ⊕min, SB s02 ⊕min, SB s03 ⊕min, SB
s10 ⊕min, SB s11 ⊕min, SB s12 ⊕min, SB s13 ⊕min, SB
s20 ⊕min, SB s21 ⊕min, SB s22 ⊕min, SB s23 ⊕min, SB
s30 ⊕min, SB s31 ⊕min, SB s32 ⊕min, SB s33 ⊕min, SB


 .

We can repeat the above for every round from round 1 to round 9. Finally, the input of round 10 is
in the form of Equation 4.76. After SubBytes and ShiftRows in round 10, the cipher state will be the
same as in Equation 4.77. Thus we require that each byte of the last round key is masked by mout, SB.
In this way, we will get unmasked ciphertext.

4.5.2.3 Boolean Masking for PRESENT

We will present two methods for masking PRESENT encryption. Let SB denote the PRESENT Sbox
(Table 3.11) for the rest of this part.

Before we go into details of the masking scheme, we introduce the notion of Quotient group and
Remainder group. We number the Sboxes in the ith round of PRESENT as SBi

0, SBi
1, . . . , SBi

15, where
SBi

0 is the right-most Sbox in Figure 3.9. Those Sboxes can be grouped in two different ways: the
Quotient group and the Remainder group:

Qji :=
{

SBi
4j , SBi

4j+1, SBi
4j+2, SBi

4j+3

}
, Rji :=

{
SBi

j , SBi
j+4, SBi

j+8, SBi
j+12

}
,

where j = 0, 1, 2, 3. Such a grouping allows us to relate the bits for each Sbox output in round i to
bits of each Sbox input in round i + 1 in a certain way through pLayer, as shown in Table 4.4. In
particular, we observe that

• Bits of the 0th Sbox (SBi
4j) output in Quotient group Qji are permuted to the 0th bits of Sbox

inputs in the corresponding Remainder group Rji+1;

• Bits of the 1st Sbox (SBi
4j+1) output in Qji are permuted to the 1st bits of Sbox inputs in Rji+1;

231

PPPPPPPPPRji+1
Qji

SBi
4j SBi

4j+1 SBi
4j+2 SBi

4j+3

SBi+1
j (0, 0) (1, 0) (2, 0) (3, 0)

SBi+1
j+4 (0, 1) (1, 1) (2, 1) (3, 1)

SBi+1
j+8 (0, 2) (1, 2) (2, 2) (3, 2)

SBi+1
j+12 (0, 3) (1, 3) (2, 3) (3, 3)

Table 4.4: Relation between the output bits of Sboxes from the Quotient group Qji and the input bits
of Sboxes from the corresponding Remainder group Rji+1. For example, the 0th input bit of SBi+1

j+4 in
Rji+1 comes from the 1st output bit of SBi

4j in Qji.

SBi
15 SBi

14 SBi
13 SBi

12 SBi
11 SBi

10 SBi
9 SBi

8 SBi
7 SBi

6 SBi
5 SBi

4 SBi
3 SBi

2 SBi
1 SBi

0

SBi+1
15 SBi+1

14 SBi+1
13 SBi+1

12 SBi+1
11 SBi+1

10 SBi+1
9 SBi+1

8 SBi+1
7 SBi+1

6 SBi+1
5 SBi+1

4 SBi+1
3 SBi+1

2 SBi+1
1 SBi+1

0

Ki

Ki+1

Figure 4.87: An illustration of the relation between Sbox outputs in a Quotient group to Sbox inputs
in the corresponding Remainder group. Sboxes in Quotient groups Q0i, Q1i, Q2i, Q3i and their
corresponding Remainder groups R0i+1, R1i+1, R2i+1, R3i+1 are in orange, blue, green, red colors
respectively.

• Bits of the 2nd Sbox (SBi
4j+2) output in Qji are permuted to the 2nd bits of Sbox inputs in Rji+1;

• Bits of the 3rd Sbox (SBi
4j+3) output in Qji are permuted to the 3rd bits of Sbox inputs in Rji+1.

An illustration is shown in Figure 4.87.
Hence pLayer can be considered as four identical parallel bitwise operations where each is a

function p : F16
2 → F16

2 that takes one Quotient group output and permutes it to the corresponding
Remainder group input.

The first masking scheme follows a similar methodology as the masking scheme for AES pre-
sented in Section 4.5.2.2. Given an input mask min and an output mask mout for the PRESENT Sbox,
we compute a table T that implements the masked Sbox such that

T [v ⊕min] = SB(v)⊕mout. (4.78)

At the beginning of each encryption,

• We randomly generate two independent masks min,mout with values from F4
2.

• Compute lookup table T (given in Equation 4.78) for the masked Sbox

• Calculate m3,m2,m1,m0 from mout with the pLayer operation

m3,m2,m1,m0 = p(mout,mout,mout,mout). (4.79)

Let us represent the intermediate values of PRESENT encryption as

b15, b14, . . . , b1, b0, (4.80)

where each bj denotes a nibble of the cipher state. At the start of the encryption, we mask the ith
four nibbles of the plaintext with mi,mi,mi,mi (i = 0, 1, 2, 3). This means the cipher state at the input
of round 1 is given by

b15 ⊕m3, . . . , b12 ⊕m3, b11 ⊕m2, . . . , b8 ⊕m2, b7 ⊕m1, . . . , b4 ⊕m1, b3 ⊕m0, . . . , b0 ⊕m0 (4.81)

The cipher state changes for each round of PRESENT are as follows:

232

• addRoundKey. We assume the key schedule is changed so that the ith (i = 0, 1, 2, 3) four
nibbles of each round key, except for the last round key, is masked by

mi ⊕min,mi ⊕min,mi ⊕min,mi ⊕min.

Then after the addRoundKey operation, the cipher state is of the following format:

b15 ⊕min, b14 ⊕min, . . . , b1 ⊕min, b0 ⊕min,

where each nibble is masked by min.

• sBoxLayer. By our design of the masked Sbox lookup table (Equation 4.78), after sBoxLayer,
each nibble of the cipher state will be masked by mout:

b15 ⊕mout, b14 ⊕mout, . . . , b1 ⊕mout, b0 ⊕mout

• pLayer. After the pLayer computation, according to our discussion above about Quotient
group, Remainder group and Equation 4.79, the cipher state will become (see Figure 4.87)

b15 ⊕m3, . . . , b12 ⊕m3, b11 ⊕m2, . . . , b8 ⊕m2, b7 ⊕m1, . . . , b4 ⊕m1, b3 ⊕m0, . . . , b0 ⊕m0,

which is the same as in Equation 4.81. Thus the above can be repeated for all 31 rounds.

We assume the last round key has the same masks as the plaintext. Then after the final addRoundKey
operation, we will get unmasked ciphertext.

The second masking scheme for PRESENT is detailed in [SBM18]. Different from the masked AES
Sbox lookup table, this time we compute a lookup table, denoted T1, such that for any v ∈ F4

2, any
input mask min ∈ F4

2 and the corresponding output mask mout ∈ F4
2 for PRESENT Sbox,

T1[v ⊕min,min] = SB(v)⊕mout. (4.82)

We also need another table T2 that helps us to keep track of the masks

T2[min] = mout, min = 0,1, . . . ,F. (4.83)

In this way, we do not need to generate a masked Sbox lookup table whenever the input mask for the
Sbox changes. The size of T1 is 8 × 4, and the storage required is 28 × 24 = 212 bits, or 29 bytes. The
table T2 requires 16 bits of memory. It is suggested that T2 should be designed such that all possible
values of min ⊕ mout appear. For example, one possible choice of T2 is given in Table 4.5, originally
presented in [SBM18].

min,SB 0 1 2 3 4 5 6 7 8 9 A B C D E F
mout,SB = T2[min,SB] E 4 F 9 0 3 D 5 7 8 A 2 B 1 6 C
min,SB ⊕mout,SB E 5 D A 4 6 B 2 F 1 0 9 7 C 8 3

Table 4.5: An example of T2, which specifies the output mask mout,SB for each input mask min,SB of
PRESENT Sbox [SBM18] such that all possible values of min ⊕mout appear

In fact, in general, we have the following observations:

Remark 4.5.1. Let f be a function and let min,f denote its input mask with corresponding output
mask mout,f . For any input x of f , we have

(x⊕ f(x))⊕ (min,f ⊕mout,f) = (x⊕min,f)⊕ (f(x)⊕mout,f).

Thus, when choosing the input mask min,f and its corresponding output mask mout,f , we need to
ensure that all possible values of min,f ⊕ mout,f appear. Otherwise, the distribution induced by (x ⊕
f(x)) ⊕ (min,f ⊕ mout,f) will not be uniform, and the signal corresponding to the value of x ⊕ f(x)
cannot be properly concealed, making it vulnerable to DPA attacks.

233

Since the pLayer operation is linear, we can simply apply pLayer to the masks to keep track
of their changes. We use the same notation as in Equation 4.80 for PRESENT cipher state. At the
beginning of one encryption, we randomly generate 16 masks, each is applied to one nibble of the
plaintext. Suppose the cipher state at the input of round i is of the following format:

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in, b0 ⊕mi−1

0,in.

The changes in cipher states of PRESENT for round i are as follows:

• addRoundKey. We do not apply masks to the round keys. Consequently, after the addRound-
Key operation, each nibble of the cipher state still has the same mask:

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in, b0 ⊕mi−1

0,in,

• sBoxLayer. Let
mi−1

j,out = T2
[
mi−1

j,in

]
, j = 0, 1, . . . , 15,

denote the output mask for PRESENT Sbox corresponding to the input mask mi−1
j,in . Then after

sBoxLayer, the cipher state is of the following format:

b15 ⊕mi−1
15,out, b14 ⊕mi−1

14,out, . . . , b1 ⊕mi−1
1,out, b0 ⊕mi−1

0,out,

• pLayer. We apply the pLayer operation to both the cipher state and the mask for the whole
cipher state. The mask for the whole cipher state is the string obtained by concatenating all 16
masks mi−1

j,out:
mi−1

15,out,m
i−1
14,out, . . . ,m

i−1
1,out,m

i−1
0,out.

After pLayer, masks for each nibble of the cipher state will be changed and the cipher state will
become:

b15 ⊕mi
15,in, b14 ⊕mi

14,in, . . . , b1 ⊕mi
1,in, b0 ⊕mi

0,in,

where
mi

15,in,m
i
14,in, . . . ,m

i
1,in,m

i
0,in = pLayer(mi−1

15,out,m
i−1
14,out, . . . ,m

i−1
1,out,m

i−1
0,out).

Consequently, mi
j,in will be the input mask for the jth Sbox in round i+ 1.

Finally, after 31 rounds, we have another addRoundKey operation, which does not change the masks
of the cipher state since the round keys are not masked. The cipher state will be

b15 ⊕m31
15,in, b14 ⊕m31

14,in, . . . , b1 ⊕m31
1,in, b0 ⊕m31

0,in.

To get the unmasked ciphertext, we remove the masks by XOR-ing the cipher state with

m31
15,in,m

31
14,in, . . . ,m

31
1,in,m

31
0,in.

An algorithmic description for masked PRESENT computation is given in Algorithm 4.10. The
changes in masks are recorded in the variable masks, and we remove them at the end of the compu-
tation (line 12).

As an illustration, we have implemented masked PRESENT following Algorithm 4.10, where we
used Table 4.5 to choose the output mask mout,SB given the input mask min,SB for PRESENT Sbox.
With the experimental setup described in Section 4.1 we have collected four datasets, with similar
settings as those datasets in Section 4.1. All the datasets contain traces that capture one round of
masked software implementation of PRESENT encryption.

• Masked fixed dataset A: This dataset contains 100 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext ABCDEF1234567890.

• Masked fixed dataset B: This dataset contains 100 traces with a fixed round key FEDCBA0123456789
and a fixed plaintext 84216BA484216BA4.

234

Algorithm 4.10: Masked implementation of PRESENT.
Input: p, T1, T2, Ki (i = 1, 2, . . . , 32)// p is the plaintext for encryption; T1 is the

table for masked Sbox as given in Equation 4.82; T2 specifies the output mask

given the input mask for PRESENT Sbox as defined in Equation 4.83; Ki are round

keys for PRESENT encryption

Output: ciphertext
1 randomly generate 16 masks m0,m1, . . . ,m15

2 array of size 16 state = p⊕m15,m14, . . . ,m1,m0// mask the jth nibble of the plaintext

with mj, each entry of the array is one masked nibble

3 array of size 16 masks = m15,m14, . . . ,m1,m0

4 for i = 0, i < 31, i++ do
5 state = addRoundKey(state, Ki)
6 for j = 0, j < 16, j ++ do

// for each nibble

7 state[j] = T1[state[j],masks[j]]// masked Sbox computation

8 masks[j] = T2[masks[j]]// record the output masks of Sbox computation

9 state = pLayer(state)// apply pLayer to the cipher state

10 masks = pLayer(masks)// apply pLayer to the masks

11 state = addRoundKey(state, Ki)
12 state = state ⊕masks
13 return state

• Masked random plaintext dataset: This dataset contains 20000 traces with a fixed round key

FEDCBA0123456789, (4.84)

and a random plaintext for each trace.

• Masked random dataset: This dataset contains 10000 traces with a random round key and a ran-
dom plaintext for each trace.

In each case, the execution of the cipher is surrounded by nop instructions so that the round operation
patterns can be clearly distinguished from the provided plots. While the raw traces are all 5000 time
samples long, for plotting and analysis purposes, we shorten them to 3600 time samples as the later
parts correspond to nop instructions and do not contain any useful information. We also note that
for these datasets, we reduced the number of collected time samples by a factor of 3.

Following the TVLA steps from Section 4.2.3, we have computed the t−values using 50 traces
from Masked fixed dataset A and 50 traces from Masked fixed dataset B. The intermediate value v (TVLA
Step 2) is chosen to be the plaintext value. Fixed versus fixed setting (TVLA Step 3) is used. The
results are shown in Figure 4.88. We can see that compared to Figure 4.13, the t−values are much
lower and there are no points with very high peaks to stand out from the rest. Even though some
time samples have t−values outside of the threshold, they are not far from it. This indicates that the
implementation should exhibit less leakage as compared to the unprotected one.

To see how the implementation is resistant to DPA attacks, we have adopted the template-based
DPA as described in Section 4.3.2.3. Following steps from Section 4.3.2.1, we take Masked random
dataset as our profiling traces. The same as in Section 4.3.2.3, the target part of the key (P-DPA Step 3)
is the 0th nibble of the first round key. The target intermediate value (P-DPA Step 4) is the 0th Sbox
output of the first round. We consider the target signal (P-DPA Step 5) to be the exact value of v, since
in Section 4.3.2.3 we have seen that this is a better choice than taking wt (v) to be the target signal (see
Figure 4.52). Consequently, we group our profiling traces Masked random dataset into 16 sets (P-DPA
Step 6). Using the methodology from P-DPA Step 7 and P-DPA Step 8, we have computed the SNR
values for all 3600 time samples using Masked random dataset. The results are shown in Figure 4.89

The time sample achieving the highest SNR is t = 1929, which will be our POI (Template Step a
from Section 4.3.2.3). Following Template Step b from Section 4.3.2.3, we have built the template for
this POI. In particular, the mean values µs for s = 0, 1, . . . , 15 (corresponding to v = 0, 1, . . . , 16) are

235

0 392 1,000 2,000 3,000

−5

0

5

Time sample

t−
va
lu
e

Figure 4.88: t-values (Equation 4.17) for all time samples 1, 2, . . . , 3600 computed with 50 traces from
Masked fixed dataset A and 50 traces from Masked fixed dataset B. The signal is given by the plaintext
value and the fixed versus fixed setting is chosen. Blue dashed lines correspond to the threshold 4.5
and −4.5.

0 1,000 1,929 3,000

0

1

2

3

4

Time sample

S
N
R

Figure 4.89: SNR computed with Masked random dataset. The signal is given by the exact value of the
0th Sbox output.

as follows:

{−0.04463,−0.04415,−0.04443,−0.04401,−0.03993,−0.03977,−0.03977,−0.03959,−0.04437,
−0.04397,−0.04419,−0.04374,−0.03958,−0.03948,−0.03947,−0.03932} .

We take the Masked random plaintext dataset as our attack traces (P-DPA Step 10). There are 16 key
hypotheses k̂i = i− 1 (i = 0, 1, . . . , 15). Based on our implementation, the hypothetical intermediate
value should be given by

v̂ij = SBPRESENT(k̂i ⊕ pj ⊕m0,j), i = 1, 2, . . . , 16, j = 1, 2, . . . , M̂p,

where pj is the 0th nibble of the plaintext corresponding to the jth trace, m0,j is the input mask
applied to this nibble and M̂p ≤ 20000 is the number of traces used for the attack. However, as mask
values are unknown to the attacker, we will only compute the unmasked hypothetical intermediate
value (P-DPA Step 11)

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , M̂p.

Since we chose the signal to be the exact value of v, our leakage model will be the identity leakage
model. The hypothetical signals are given by (P-DPA Step 12)

Hij = v̂ij , i = 1, 2, . . . , 16, j = 1, 2, . . . , M̂p.

236

Following Template Step c, we can compute the probability score for each key hypothesis. Then with
Algorithm 4.1, we can calculate the estimations for guessing entropy and success rate of the attack.
We have set

max trace = 60, no of attack = 100.

The results are shown in Figures 4.90 and 4.91.

5 10 15 20 25 30 35 40 45 50 55 60

0.20

0.40

0.60

0.80

1.00

Number of traces

S
u
cc
es
s
ra
te

attack on unprotected implementation
attack on masked implementation

Figure 4.90: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random plaintext dataset
(in red)

5 10 15 20 25 30 35 40 45 50 55 60

1

2

3

4

5

Number of traces

G
u
es
si
n
g
en
tr
op

y

attack on unprotected implementation
attack on masked implementation

Figure 4.91: Estimations of guessing entropy computed following Algorithm 4.1 for template-based
DPA attacks on the Masked random plaintext dataset (in black) as well as on the Random plaintext dataset
(in red).

For comparison, we have also plotted the results for template-based DPA attack on unprotected
implementations with one POI (in red in both figures). We can see that compared to the attacks on
unprotected implementations, the same attack on the masked PRESENT requires more traces for the
attack to be successful.

In practice, more than one mask will be applied to provide better protection, leading us to higher
order masking. We will briefly introduce this notion in Section 4.6.

4.5.2.4 Blinding for RSA and RSA Signatures

As mentioned before, the application of masking in the context of a public cryptosystem is called
blinding. Normally an arithmetic mask is applied.

Let p, q be two distinct odd primes, n = pq be the RSA modulus, d ∈ Z∗
φ(n) be the private key

for RSA, and e = d−1 mod φ(n) is the public key. The attacks we have seen in Section 4.4 exploit
leakages during the computation of

ad mod n

237

for some a ∈ Zn. Those attacks can be during the RSA signature signing process or RSA decryption.
More attacks will be discussed in Section 4.6.

Given those attacks, it is recommended to blind the secret values during the computation. It is
also required that the masks and blinded values should be updated frequently, or even during the
computations. In this case, it will be difficult for the attacker to combine whatever partial information
obtained from the leakages of the previously blinded value and the newly leaked information.

In this part, we will discuss a few methods, including exponent blinding, message blinding, and
modulus blinding. The countermeasures are mostly designed against DPA attacks. In particular, the
message blinding method will be effective against the DPA attack we have presented in Section 4.4.2.
The original proposals can be found in [BCDG10, KJJR11].

Exponent blinding. First, we consider how we can randomize the secret exponent d. One method is
that we generate a random number λ ∈ [0, 2ℓ − 1]. Then instead of computing

ad mod n,

we compute
ad+λφ(n) mod n. (4.85)

Note it follows from Corollary 1.4.5 that

ad+λφ(n) ≡ ad mod n.

Example 4.5.2. Let p = 3, q = 5, then n = 15 and φ(n) = 2× 4 = 8. The same as in Example 3.3.1, we
choose e = 3 and we get d = 3. Take a = 8 and λ = 2. We have computed in Example 3.3.1 that

ad mod n = 83 mod 15 = 2.

With the above countermeasure (Equation 4.85), we have

ad+λφ(n) mod n = 83+2×8 mod 15 = 819 mod 15 = 8× (82)9 mod 15 = 8× 49 mod 15

= 8× 4× (42)4 mod 15 = 32 mod 15 = 2.

Typically, for RSA modulus of bit length 1024, we take ℓ = 20 or 30 to guarantee a reasonable
overhead [BCDG10].

The next method takes a random number λ and calculates

aλ × ad−λ mod n.

It is easy to see that
aλ × ad−λ mod n = ad mod n.

A third method generates a random number λ such that gcd(λ, φ(n)) = 1 and calculates

(aλ)d(λ
−1 mod φ(n)) mod n. (4.86)

Since
λ(d(λ−1 mod φ(n))) ≡ d mod φ(n),

it follows from Corollary 1.4.5 that

(aλ)d(λ
−1 mod φ(n)) mod n = ad mod n.

Example 4.5.3. The same as in Example 4.5.2, let p = 3, q = 5, n = 15, d = 3, a = 8. We have
computed that

ad mod n = 2.

Choose λ = 3, which is coprime to φ(n) = 8. Then by the extended Euclidean algorithm,

8 = 3× 2 + 2, 3 = 2 + 1 =⇒ 1 = 3− 2 = 3− (8− 3× 2) = 3× 3− 8,

we have
λ−1 mod φ(n) = 3−1 mod 8 = 3.

According to Equation 4.86,

(aλ)d(λ
−1 mod φ(n)) mod n = (83)3×3 mod 15 = (512)9 mod 15 = 29 mod 15 = 512 mod 15 = 2.

238

Another exponent blinding method considers a CRT-based RSA implementation. Recall from
Section 3.5.1.3, that to compute

ad mod n,

following CRT-based RSA, we can first calculate

ap := ad mod (p−1) mod p, aq := ad mod (q−1) mod q. (4.87)

Then ad mod n is given by

apyqq + aqypp mod n, or equivalently ap + ((aq − ap)yp mod q)p,

where
yq = q−1 mod p, yp = p−1 mod q.

The countermeasure takes two random numbers λ1, λ2, and instead of computing ap, aq with Equa-
tion 4.87, we calculate

ap = ad+λ1(p−1) mod p, aq = ad+λ2(q−1) mod q.

It follows from Corollary 1.4.3 that

ad+λ1(p−1) mod p = ad mod (p−1) mod p, ad+λ2(q−1) mod q = ad mod (q−1) mod q.

Example 4.5.4. The same as in Example 4.5.2, let

p = 3, q = 5, n = 15, d = 3, a = 8.

We have computed in Example 3.5.5 that

ap = ad mod (p−1) mod p = 83 mod 2 mod 3 = 2, aq = ad mod (q−1) mod q = 83 mod 4 mod 5 = 2.

Take λ1 = 2, λ2 = 3, with our countermeasure, we have

ap = ad+λ1(p−1) mod p = 83+2×2 mod 3 = 87 mod 3 = 27 mod 3 = 128 mod 3 = 2

aq = ad+λ2(q−1) mod q = 83+3×4 mod 5 = 815 mod 5 = 315 mod 5 = 3× (32)7 mod 5

= 3× 47 mod 5 = 3× 4× (42)3 mod 5 = 12 mod 5 = 2.

Our SCA attacks from Section 4.4 rely on exploiting the leakages to get the value of each bit of
the secret exponent d. We can see that for all the exponent blinding methods above, assuming an
attack on one RSA decryption (or RSA signatures singing) execution, with the same methods, we
can only recover the value of d+a random number or d×a random number, making the real value
of d concealed from the attacker. On the other hand, if two computations with different masks are
attacked, the secret key can be recovered. For example, with the first countermeasure, if we know
the values for

d+ λ1φ(n), d+ λ2φ(n),

then we can get
(λ1 − λ2)φ(n).

Since λ1 and λ2 have bit length 20 or 30, we can factorize (λ1 − λ2)φ(n) by trying all possible values
of λ1 and λ2.
Message blinding. We can also mask the value a. In this way, DPA attacks (e.g., the attack in
Section 4.4.2) that rely on knowing certain intermediate values related to a cannot be carried out.

Take a random number λ such that gcd(λ, n) = 1, and compute

a1 = λe mod n, a2 = λ−1 mod n.

To get
ad mod n,

239

we calculate
(((aa1)

d mod n)a2) mod n.

Since
ed ≡ 1 mod φ(n),

by Corollary 1.4.5,
λed ≡ λ mod n =⇒ λed−1 mod n = 1.

Then

(((aa1)
d mod n)a2) mod n = (((aλe mod n)d mod n)(λ−1 mod n)) mod n

= ((ad mod n)(λed−1 mod n)) mod n = ad mod n.

The first mask a1 randomizes the input of the computation and the second mask a2 corrects the
output to the expected result.

Example 4.5.5. Keep the same parameters as in Example 4.5.2:

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8.

We know that ad mod n = 2. Take λ = 4, which is coprime with n. Then with the message blinding
countermeasure above, we have

a1 = λe mod n = 43 mod 15 = 64 mod 15 = 4.

By the extended Euclidean algorithm

15 = 4× 3 + 3, 4 = 3 + 1 =⇒ 1 = 4− 3 = 4− (15− 4× 3) = 4× 4− 15

and
a2 = λ−1 mod n = 4−1 mod 15 = 4.

Finally,

(((aa1)
d mod n)a2) mod n = (((8× 4)3 mod 15)× 4) mod 15 = ((23 mod 15)× 4) mod 15

= 32 mod 15 = 2.

Modulus blinding. When the modulus is random during the computations, similar to random val-
ues of a, DPA attacks such as the one in Section 4.4.2 cannot be carried out as the attacker does not
know the modulus to derive the target intermediate values.

For blinding the modulus n, we generate a random number λ and compute

(ad mod (λn)) mod n.

It is easy to see that
(ad mod (λn)) mod n = ad mod n.

Example 4.5.6. Keep the same parameters as in Example 4.5.2:

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8.

We know that ad mod n = 2. Let λ = 4, then we have

(ad mod (λn)) mod n = (83 mod (4× 15)) mod 15 = (512 mod 60) mod 15 = 32 mod 15 = 2.

Remark 4.5.2. Note that the message blinding and the modulus blinding methods we have presented
can also be used in a similar way to protect the computation of

ad mod p, ad mod q,

in CRT-based RSA implementations.

240

4.6 Further Reading

Leakage model. We note that the Hamming distance, Hamming weight, identity (Section 4.2.1),
and stochastic leakage (Section 4.3.2.2) models all assume there are no differences in the leakage
when the value in a bit switches from 0 to 1 or from 1 to 0. Improved models can be found in
e.g. [PSQ07, GHP04].

Leakage assessment. TVLA (see Section 4.2.3) was first proposed in 2011 [GGJR+11]. More dis-
cussions on how to set the threshold 4.5 can be found in [DZD+18]. Another prominent leakage
assessment method is Person’s χ2−test [SM15], which is normally used as a replacement for TVLA
when analyzing multivariate and horizontal leakages.

Simple power analysis. We have seen that by visual inspection of the power traces, the attacker
can gain information about the operations being executed on the device. SPA was first introduced
in [KJJ99], which is also the very first proposal of power analysis attacks. The authors mentioned that
programs involving conditional branch operations depending on secret parameters are at risk. Later
this idea was applied to develop an SPA attack on RSA [MDS99b] (see Section 4.4.1).

[Nov02] (see also [KJJR11, Section 3.3]) proposes an attack that exploits vulnerability in Garner’s
algorithm for CRT-based RSA. The authors demonstrate that with SPA, we can identify if a mod p >
a mod q. Then with adaptive chosen ciphertext and binary search, the value of p can be recovered.
[FMP03] shows that with only known messages, assuming p and q have different lengths, in case
q < p/2ℓ, p and q can be recovered by performing 60× 2ℓ signatures on average. A lower bound of ℓ
is specified in the paper.

SPA has also been used to obtain the Hamming weight of operands [MS00] or attack AES key
schedule [Man03]. Similar to profiled DPA, we can carry out a profiled SPA attack, see e.g.[Man03,
Section5.3].

Differential power analysis. A DPA attack on DES can be found in e.g. [MDS99a]. For AES, detailed
descriptions are given in [MOP08, Chapter 6].

For DPA attacks on RSA. [MDS99b] lists different variants of DPA on RSA, where some can be
considered as extended SPA attacks. [dBLW03] proposes a DPA attack on CRT-based implementation
using Garner’s algorithm. The target intermediate value is the remainder after the modular reduc-
tion with one of the primes. [AFV07] studies more attacks on other intermediate values of CRT-based
RSA. We have elaborated one of the methods in Section 4.4.2.

We also refer the readers to [MOP08, Sta10, KJJR11] for more discussions on SPA and DPA.

Template attacks. The idea of template attacks was first introduced in [CRR03]. In Section 4.3.2.3,
we discussed how templates can be used for DPA on symmetric block ciphers. In a similar manner,
template-based attacks can also be applied to SPA on symmetric block ciphers [MOP08, Section 5.3],
and SCA on RSA [VEW12, XLZ+18].

We note that the template attacks we have described used normal distributions to approximate
the distributions induced by leakages. One might refer to this as a Gaussian template attack. A more
generic method, MIA, can be found in [GBTP08], where the authors aim to approximate the mutual
information between the hypothetical leakages and the actual measured leakages without making
assumptions on the leakage distribution.

SCADPA. Side-channel assisted differential plaintext attack (SCADPA) was first proposed in [BJB18]
for PRESENT and in [BJHB19] for GIFT implementations. It was later generalized to all SPN block
ciphers in [BBH+20]. The attack presented in Section 4.3.3 is based on this generalized attack. We
refer the readers to the original paper [BBH+20] for attacks on more ciphers and analysis of attack
complexity.

More attacks. Other side-channel attack methods exist for symmetric block ciphers. For example,
collision attacks [SWP03] identify the collision of intermediate values between two encryptions us-
ing power traces to recover the secret key. Algebraic side-channel attacks [RS09] express both the

241

target algorithm and its leakages as equations to achieve successful attacks with unknown plain-
text/ciphertext. Soft-analytical SCA [VCGS14] constructs a graph for the implementation and uses
the belief propagation algorithm on this graph to efficiently combine the information of all leakage
points. DCSCA – differential ciphertext SCA [HBB21] targets GIFT cipher. The attack analyzes the
statistical distribution of intermediate values with the help of side-channel leakages to recover the
last round key. The authors also demonstrated the extension of the attack to GIFT-based AEAD
schemes.

Preprocessing of traces. During the measurements, it can happen that the traces contain too much
noise. Or if there are certain countermeasures in place, the traces can also be misaligned. There
are various classical methods for preprocessing traces. For example, moving average computes the
average of the leakages from a few time samples to smooth the signal. Principal component analy-
sis [BHvW12] aims to reduce the noise in the traces by projecting high-dimensional data to a lower-
dimensional subspace while preserving the data variance. Elastic alignment [vWWB11] aligns the
traces by focusing on the synchronization of trace shape and generating artificial samples. It can be
used to counter jitter-based countermeasures. The method is based on the dynamic time warping
algorithm designed for speech recognition [SC78].

Hiding-based countermeasure. A hiding-based countermeasure aims to make the leakage random
or constant independent of the operation/data.

To randomize the leakage, we can insert random delays (jitters) [CK09], or shuffle the execution
order of independent operations. For example, shuffle Sboxes in AES implementations [HOM06],
randomize the sequence of square and multiply operations in RSA [Wal02]. Another approach to
randomizing the leakage proposes to use residue number systems to allow randomizing the repre-
sentation of finite field elements for computing exponentiation [BILT04].

To make the leakage constant, different methodologies have been proposed on different levels.
For the cell level (or logic design level), we have, for example, dual-rail precharge logic (DPL) [TV06],
and dynamic and differential logic styles [TAV02]. DPL has two phases: in the pre-charge phase, val-
ues in the wires are set to a precharge value (either 0 or 1), then during the evaluation phase, one
wire carries the signal 0 and the other wire carries the signal 1. We note that this is equivalent to
using the binary code {01, 10} for encoding 0, 1. For the software level, we have seen encoding-
based countermeasures for symmetric block ciphers in Section 4.5.1.1, as well as square and multiply
always algorithm for RSA in Section 4.5.1.2. The original proposal of the square and multiply al-
ways algorithm can be found in [Cor99]. More on encoding-based countermeasures can be found in,
e.g. [CG16]. [CG16] uses linear complementary dual code – a code C is a complementary dual code
if C ∩ C⊥ = {0} (see Definition 1.6.9). Another example of software level countermeasure can be
found in [HDD11], where the authors propose to use DPL in software for symmetric block ciphers.
See also [RGN13] for a DPL in software countermeasure with provable security for bitsliced imple-
mentation of PRESENT.

Masking-based countermeasures. Those countermeasures are designed to make the leakage depen-
dent on some random value. Masking was first proposed by Goubin and Patarin [GP99], and Chari et
al. [CJRR99] independently. It has been proven that masking-based countermeasure is secure given
that the source of randomness is truly random [PR13]. Due to this sound mathematical basis, it has
become the most adopted countermeasure for symmetric block ciphers.

Instead of a naive lookup table implementation of a masked Sbox as presented in Sections 4.5.2.2
and 4.5.2.3, many other methods have also been proposed. We refer the readers to [DCRB+16, OS05]
for masked AES Sbox and [PMK+11, SBM18] for masked PRESENT Sbox.

In Sections 4.5.2.1 – 4.5.2.3 we have seen how Boolean masking, i.e. the intermediate value is con-
cealed by ⊕ with the mask(s), can be implemented for AES and PRESENT. Section 4.5.2.4 focuses on
arithmetic masking, where the intermediate value is concealed by an arithmetic operation (modular
addition or modular multiplication). There are many other ways of applying the masks. For exam-
ple, affine masking [VW01], polynomial masking [GM11], inner product masking [BFGV12], etc. The
exact operation for applying a mask is typically chosen depending on the operations that are used in
the cryptographic algorithm that we would like to protect. Some cryptographic algorithms (e.g. AES)

242

contain both Boolean and arithmetic operations,11 and they can be protected using both Boolean and
arithmetic masking. But switching from one type of masking to another is not a trivial task. We refer
the readers to [Mes00, Gou01, CT03, AG01] for more discussions on this topic.

Masking-based countermeasures can also be implemented on the hardware level. For example,
masking buses [BGM+03], Boolean masking of DLP [PM05], random precharging [BGLT04]. How-
ever, it has been shown that masked gates in hardware are vulnerable to DPA attacks due to glitches
in CMOS circuits [MPG05]. This leads to the development of threshold implementations [NRS11],
which are based on multiparty computation [CD+15], as a way to realize secure Boolean masking in
hardware.

Higher-order masking. In Sections 4.5.2.1 – 4.5.2.3 we focused on masking schemes with one mask
only. In particular, the masked value vm is related to the original value v and the mask m through
a binary operation vm = v · m. In the language of secret sharing [Bei11], we can say that the secret
value v is represented by two shares, vm and m. We can see that given only one of the two shares, no
information about v can be revealed. Instead of two shares (or one mask), we can also use several
shares, resulting in a higher-order masking. In particular, a dth order masking applies d − 1 masks to
the secret value v.

Similarly, in Sections 4.3.1 and 4.3.2, we only focused on one target intermediate value. Such a
DPA attack is also called a first-order DPA. When leakages of several different intermediate values
(e.g. at different time samples) are analyzed, we have a higher-order DPA [CJRR99]. The number
of traces needed for a higher-order DPA to succeed is exponential in the standard deviation of the
noise. The exponent is given by d + 1, where d + 1 is the order of the masking (i.e. d masks are
applied) [PR13].

For the security of a Boolean masking. Let us take a secret value v of bit length at most mv. The
masked value is given by v⊕m, where m ∈ Fmv

2 . We can consider the value of m as a discrete random
variable. In case the distribution induced by this random variable is uniform on Fmv

2 , the distribu-
tion induced by the value of v ⊕ m is also uniform on Fmv

2 , regardless of the value of v. Thus, we
expect the leakage to be independent of v when only first-order DPA is carried out. The security
proof for first-order Boolean masking against first-order DPA can be found in [BGK04]. Results for
higher-order Boolean masking are given in [RP10]. However, the proofs rely on the masks to be truly
random, which is not easy to achieve in practice. For example, our masked implementation from
Section 4.5.2.3 can still be attacked with first-order DPA (see Figures 4.90 and 4.91). We also note
that the choice of masks should follow certain rules so that the masking scheme is more secure (see
e.g.[BGN+15])

Blinding. Blinding was first suggested in [Koc96]. It was then later formalized by J. S. Coron [Cor99].
It is worth noting that several patents have been published about masking [KJJ10] and blinding [KJ01].

Various attacks on blinding have also been published. For example, [FV03] proposes an attack
on the left-to-right square and multiply algorithm that recovers a blinded secret exponent with SPA.
[WvWM11] discusses a DPA attack on the square and multiply-always algorithm and message blind-
ing. [FRVD08] exploits the leakage during the computation of the random exponent.

More about countermeasures. For SCA countermeasures, except for those introduced in this chapter,
there are also many other techniques. In general, we can divide them according to the levels of
protection.

Protocol level countermeasures aim to design cryptographic protocols to survive leakage analysis.
For example, by limiting the number of communications that can be performed with any given key,
fewer measurements can be done by the attacker for the same key. Or by rekeying [MSGR10].

Cryptographic primitive level countermeasures are proposals of new cipher designs that are resis-
tant to side-channel attacks.

Implementation level countermeasures were the focus of this chapter, where we discussed some
hiding and masking/blinding techniques in Section 4.5. There are also other implementation-level
countermeasures, for example, time randomization [MMS01b], and encryption of the buses [BHT01].

Architecture level countermeasures refer to techniques that modify the architecture of the compu-

11AES Sbox is based on modular computations in a specific field – see Equation 3.3.

243

tation device. For example, [MMS01a] proposes to use a non-deterministic processor to randomly
change the sequence of the executed program during each execution; [SVK+03] integrates secure
instructions into a non-secure processor.

Hardware level countermeasures protect the implementations through external means. For exam-
ple, conforming glues [AK96], protective coating [TSS+06], and detachable power supplies [Sha00].

Attacks on post-quantum cryptographic implementations. Several papers propose SCA on post-
quantum cryptosystems.

For example, in [UXT+22], side-channel leakage during the execution of a pseudorandom func-
tion in the re-encryption of key encapsulation mechanism decapsulation is exploited. With the leak-
age, the attacker gains information on whether the public key decryption result is equivalent to the
reference plaintext. The authors in [GJJ22] propose to submit special ciphertexts to the decryption or-
acle that correspond to cases of single errors. Through leakage in the additive Fast Fourier Transform
step used to evaluate the error locator polynomial, a single entry of the secret key can be determined.
A survey on SCA and FIA on Kyber and Dilithium post-quantum schemes with novel countermea-
sures was presented in [RCDB22].

Attacks on neural networks. SCA techniques have also been adopted for attacking neural network
implementations. In such cases, normally a black-box scenario is assumed and the attacker’s goal is
to recover the secret parameters of the target neural network. [BBJP19] demonstrated how a timing-
based attack can recover the architecture information. Then with DPA techniques, weights for each
neuron can be recovered. The provided experiments were done on the ARM Cortex-M3 microcon-
troller. [YMY+20] experimented on a hardware implementation of neural networks on an FPGA. For
a more comprehensive overview of the topic, we refer the interested reader to [BBB+22].

Correspondingly, SCA countermeasures for cryptographic implementations have also been adopted
for protecting neural network implementations. For example, masking methods have been utilized
in [DCA20, DAP+22, DCSA22]. Threshold implementation was proposed in [MBFC22] with a Triv-
ium stream cipher to generate the randomness. From the area of hiding countermeasures, shuffling
was implemented in [NY21] and desynchronization by adding a random jitter in [BJHB23].

4.6.1 AI-assisted SCA

AI-based methods have been applied for side-channel analysis in the past few years. If we look at
DPA (Sections 4.3.1, 4.3.2 and 4.4.2), the key recovery is essentially a classification problem. In partic-
ular, in a profiled setting, the profiling phase corresponds to the training phase of an AI-based algo-
rithm. During the attack phase, the analysis of the leakage traces can be seen as a classification prob-
lem where the goal of an attacker is to classify those traces based on the related data (e.g. a specific
Sbox output value). Various AI-based techniques have been adopted for SCA, e.g. k−nearest neigh-
bor algorithm [MZMM16], random forest [LBM15], support vector machines [HZ12], multilayer per-
ception (MLP) [GHO15], and convolutional neural networks (CNN) [ZBHV20]. It has also been
shown that, with neural networks, protected implementations can be broken. For example, [WP20]
used autoencoder to break hiding countermeasures, while in [MPP16], the authors successfully broke
masking countermeasures with deep learning techniques.

As an example, let us consider the case of a neural network used for the classification problem in
a DPA attack on AES implementations (see Section 4.3.1). The input of the network will then be (part
of) the traces. The output layer will have a softmax activation function and each class corresponds
to one possible value of the target Sbox output, hence leading to one key byte hypothesis with the
knowledge of the plaintext. Then during the inference, for each input data, the network output in-
dicates the possibilities of the 256 values for the Sbox output, which gives a possibility of each of the
corresponding key byte hypotheses.

Success rate and guessing entropy. Given a few, say M̂p, data (trace), we can compute a score
for each key hypothesis by summing up the corresponding probabilities predicted using each data.
Then we can rank the key hypotheses according to their scores with the one ranked the 1st hav-

ing the highest score. Let us denote the rank of the correct key hypothesis by rk
M̂p

AI . It is easy to

244

see that we can consider rkM̂p

AI as a random variable whose randomness comes from different plain-
texts/measurements.

Recall that in Equation 4.36, we have defined the success rate for a DPA attack. For AI-based

SCA attacks, we have an equivalent definition of success rate, namely the probability that rkM̂p

AI = 1.
Similarly, we can also define the guessing entropy (see Equation 4.37) to be the expectation of the

random variable rk
M̂p

AI . Same as for DPA attacks, we can estimate success rate with the frequency of
successful attacks among a number of trials and estimate guessing entropy using the sample mean

of rkM̂p

AI .
In particular, for a fixed M̂p, we randomly select M̂p data from the test set and carry out an attack

with M̂p traces, and then we compute rk
M̂p

AI . We repeat this procedure for, e.g. 100, times, which gives

us a sample of rkM̂p

AI . Its mean is then an estimation for the guessing entropy. An estimation for the

success rate is the frequency of rkM̂p

AI = 1 among those 100 simulated attacks.
In most cases, the goal of AI-based SCA is to achieve a low guessing entropy or a high success

rate with as few traces as possible after training.

Different research topics in AI-assisted SCA. Many different aspects of AI-assisted SCA have been
analyzed by researchers.

Firstly, there are a few publications on public datasets, which are used to evaluate novel propos-
als of AI-based techniques. To name a few. ASCAD dataset [BPS+20, BPS+21] contains power traces
for software implementations of AES with masking countermeasures and artificially introduced ran-
dom jitters. AES HD [BJP20] dataset are EM traces corresponding to unprotected AES hardware
implementation on FPGA. AES RD [CK09, CK10, CK18] dataset consists of power traces of software
implementations of AES with random delay.

The most studied direction is of course to achieve high success rates or low guessing entropy.
By examining the similarity of side-channel traces to time series data (e.g. audio signals), [KPH+19]
proposed a VGG15-like network together with a regularization method achieved by adding noise
to the traces. Zaid et al. [ZBHV20] introduced a methodology for the design of convolutional neural
networks (CNN) in the SCA context. The paper analyzed several datasets and constructed an optimal
CNN for each dataset. [WJB20] showed an improvement of [ZBHV20] using data oversampling.
[PCP20] used ensemble models to achieve good generalization from the training set to the validation
set for a given dataset. On the other hand, Won et al. [WHJ+21] utilized Multi-scale Convolutional
Neural Networks for SCA to achieve the goal of integrating classical trace preprocessing techniques
and attacking several datasets without changing the network architectures.

Hyperparameter tuning, an important problem in AI algorithm development in general, natu-
rally attracted attention in the domain of SCA. Various methods have been proposed. For example,
bayesian optimization and random search [WPP22], reinforcement learning [RWPP21], and genetic
algorithm for choosing architectures [MPP16] or for choosing all hyperparameters [AGF21].

It has been shown that test accuracy in machine learning cannot properly assess SCA perfor-
mance [PHJ+19]. Because of this observation, many training strategies are studied. For example,
stopping criteria based on success rate [RZC+21], or based on mutual information [PBP21].

Recently, non-profiled AI-based SCA has also gained attention in the research community. For
example, in [Tim19], the authors propose to train a neural network for each key hypothesis. To do
this, the attacker splits the traces based on the key hypothesis, just like when carrying out DPA. The
network that achieves the best training metrics then reveals the actual key byte. This method was
titled Differential Deep Learning Analysis (DDLA).

Stream ciphers were targeted by a combination of machine learning, mixed integer linear pro-
gramming, and satisfiability modulo theory methods [KDB+22].

Furthermore, AI-based methods have also been adopted for the identification of points of inter-
est [LZC+21] and leakage assessment [MWM21].

Chapter 5

Fault Attacks and Countermeasures

Abstract

Fault attacks are active attacks where the attacker tries to perturb the internal com-
putations by external means. Such attacks exploit a scenario where the attacker has
access to the device and can tamper with it.

In this chapter, we will present different attack methodologies on symmetric
block ciphers as well as on RSA and RSA signatures. Countermeasures against those
attacks will also be discussed.
Keywords: fault attacks, countermeasures for fault attacks

Fault attacks are active attacks where the attacker tries to perturb the internal computations by exter-
nal means. Such attacks exploit a scenario where the attacker has access to the device and can tamper
with it.

Fault attacks can be achieved with different techniques, ranging from simple clock/voltage glitches
to sophisticated optical fault injections (see Section 6.2 for more details).

The attacker’s goal is to recover the secret master key of the cryptographic algorithm. The at-
tack methodologies are normally developed on the algorithmic level. But implementation-specific
vulnerabilities also exist (Section 5.1.4).

There are different effects that a fault injection can achieve. Instruction skip and instruction change
perturbs the instruction being executed by modifying the opcode of the instruction. Bit flip flips
the bits in the data. The number of bits affected is normally limited by the register size (although,
technically it is possible to affect a few registers at once). We use the notation m−bit flip to indicate
how many bits are flipped by the fault attack. This notion is consistent with our previous definition
of bit flip (see Definition1.2.17). Bit set/rest fixes the bit value to be 1 (set) or 0 (reset). Random byte fault
changes the byte value to a random number. Stuck-at fault permanently changes the value of one bit
to 0 (stuck-at-0) or 1 (stuck-at-1). We refer to those different effects as fault models.

If the fault injected in an intermediate value x results in a faulty value x′, we refer to ε := x ⊕ x′

as the fault mask, which represents the change in the faulted value.
We can divide the faults into two types depending on how long the effects last. A permanent fault

is a destructive fault that changes the value of a memory cell permanently and hence affects data
during the computations. Whereas when a transient fault is injected, the circuit recovers its original
behavior after the fault stimulus ceases (usually just one instruction) or after the device reset. A
transient fault can perturb both data and instruction. In this chapter, we only consider transient
faults.

After the fault injection, there are two possible scenarios. The output (ciphertext) is faulty, or the
fault is ineffective and the ciphertext is not changed. We will see that both scenarios can be exploited.

In the rest of this chapter, we will discuss fault attacks and countermeasures for symmetric block
ciphers (Sections 5.1 and 5.2) as well as for RSA and RSA signatures (Sections 5.3 and 5.4).

245

246

5.1 Fault Attacks on Symmetric Block Ciphers

This section presents a few fault attack methods on symmetric block ciphers. By convention (see
Kerckhoffs’ principle in Definition 2.1.3), we assume that the specifications of round functions and
key schedules are public. The master key, and hence also the round keys, are secret. We also assume
that throughout the attack, the same master key is used and the goal of the attacker is normally
to recover certain round key(s). The methodologies presented can be applied to an unprotected
implementation of any symmetric block cipher proposed up to now.

Fault attacks normally aim to recover the last/first round key(s), then use the inverse key schedule
to find the master key. As mentioned in Remarks 3.1.1, 3.1.4, and 3.1.5, for DES and PRESENT-80, the
knowledge of any round key gives 48 and 64 bits of the master key respectively, and the rest of the
key bits can be brute forced; while for AES, the value of any round key reveals the value of the full
master key.

5.1.1 Differential Fault Analysis

Differential Fault Analysis (DFA) was first introduced by Biham et al. [BS97] in 1997. It has been
studied by numerous researchers in different settings and is one of the most popular fault attack
analysis methods for symmetric block ciphers.

DFA considers a fault injection into the intermediate state of the cipher, normally in the last few
rounds. Then the difference between correct and faulty ciphertexts is analyzed to recover the round
key(s).

Before going into details of DFA, we recall the notion of differential distribution table of an Sbox
from Definition 4.3.1.

Example 5.1.1. Let us consider one of the DES Sboxes, SB1
DES : F6

2 → F4
2 (Table 3.3). We note that since

the maximum bit length of the input, 6, is longer than that of the output, 4, the output difference can
be zero for some cases. The size of the table is 26 × (24 − 1). Part of it can be found in Table 5.1.

HHHH
HH∆
δ

1 2 ... 7 8 ...

0 ... 13,14 ...
1 ... 1,6,30,37 ...

2 ...
3,4,A,D,23,24,
31,33,34,36

...

3
1C,1D,2C,2D,

3C,3D
5,7,C,E,21,23,

30,32
... 2,5,8,F

11,12,13,17,19,1A,
1B,1F,26,2E,37,3F

...

4

5 6,7 20,22,3C,3E ... 1B,1C,3B,3C
7,F,23,27,2B,2F,

35,3D
...

6 C,D,24,25 24,26,2D,2F ...
9,E,11,12,15,16,

20,27
4,C,10,14,18,1C,

32,3A
...

7 16,17,32,33 15,17,1C,1E ... 21,26,2A,2D 22,2A,36,3E ...
8 ... 10,17 ...

9
E,F,10,11,28,29,

36,37,38,39
10,12,2C,2E,

38,3A
... B,C,22,25 6,E,20,25,28,2D ...

A
4,5,14,15,26,27,
30,31,34,35,3A,3B

0,2,14,16,25,27,
39,3B

...
0,7,1A,1D,28,2F,

39,3E
5,D ...

...
...

...
...

...
...

...

Table 5.1: Part of the difference distribution table for SB1
DES (Table 3.3).

For example,

SB1
DES(5⊕ 8)⊕ SB1

DES(5) = SB1
DES(D)⊕ SB1

DES(000101) = SB1
DES(001101)⊕ 7 = 13⊕ 7 = A.

An illustration of DFA is shown in Figure 5.1. The attacker injects a fault in a chosen round of
the algorithm to get the desired fault propagation at the end of the encryption. By examining the
differences between a correct and a faulty ciphertext, the possible values of the secret key can be
narrowed down, we also say that the key hypotheses are reduced. Another important concept needed
for DFA is non-linear functions (see Definition 4.5.1). The fault is usually injected at the input of a
non-linear function of the algorithm.

247

Figure 5.1: An illustration of DFA.

Example 5.1.2 (How DFA works on a simple example). Let us consider the AND operation (see Ex-
ample 1.2.14) that takes inputs a, b ∈ F2 and outputs

c = a & b.

All possible values of a, b, c are given by

a b c = a & b

0 0 0
0 1 0
1 0 0
1 1 1

Suppose the output c can be observed by the attacker and a, b are unknown. The goal of the
attacker is to recover the value of a. This can be achieved by DFA – during the computation, the
attacker injects a fault in b by flipping it. By the knowledge of the faulty and the correct outputs, the
attacker can easily recover the value of a: if the output stays the same, then a = 0; otherwise a = 1.

Next, we will detail how DFA works on an Sbox. Let SB: Fω1
2 → Fω2

2 be an Sbox, and let a ∈
Fω1
2 , b ∈ Fω2

2 be fixed secret values. Define

f : Fω1
2 → Fω

2 (5.1)
x 7→ SB(x⊕ a)⊕ b.

We will show how to recover the values of a and b with DFA.
Let us consider faults injected in the input of f . We use x′ to denote the faulty value of x. The

same as in Example 5.1.2, we assume a bit flip fault model. Let ε denote the fault mask, i.e. ε = x⊕x′.
Suppose the attacker has the knowledge of the Sbox design, inputs and outputs of f , as well as

the fault mask ε. Furthermore, the attacker can repeat the computation with the same input (not
chosen by the attacker). With details of the Sbox, the attacker can compute the DDT, denoted by T ,
of SB.

Let ∆ denote the difference between the correct and the faulty output, we have

∆ = (SB(x⊕a)⊕ b)⊕ (SB(x′⊕a)⊕ b) = SB(x⊕a)⊕ SB(x′⊕a) = SB(x⊕a)⊕ SB(x⊕a⊕ ε). (5.2)

Then the value x⊕ a is in the entry of T corresponding to input difference δ = ε and output dif-
ference ∆. Thus, the possible values for x⊕a can be reduced to those in T [∆, ε]. With the knowledge
of x, the attacker can narrow down the possible values of a. With the knowledge of the input and
output of f , each value of a gives a unique value of b. The attacker can repeat the attack until the
value of a (and hence b) is recovered, or until brute force is possible to try the remaining values.

Example 5.1.3 (How DFA works on PRESENT Sbox). Let us consider the case when the Sbox in the
definition of f (Equation 5.1) is the PRESENT Sbox (Table 3.11). Suppose the attacker fixes the input
to be x = 0 and they know that the correct output of f is 0.

When the attacker injects fault in x with fault mask ε1 = 3, they get a faulty output 1. By
Equation 5.2, we have

∆1 = 0⊕ 1 = 1.

Thus x⊕ a is in the entry of DDT of PRESENT Sbox corresponding to input difference 3 and output
difference 1. By Table 4.1, the possible values for x⊕ a are given by 9 and A.

248

When the attacker injects another fault with fault mask ε2 = 2, they get a faulty output 6. We
have ∆2 = 6. Again by Table 4.1, the possible values for x⊕ a are given by 9 and B.

Thus, the attacker can conclude that
x⊕ a = 9.

Since x = 0, we know a = 9. With the knowledge that the correct output is 0, we have

SBPRESENT(0⊕ 9)⊕ b = 0 =⇒ b = SBPRESENT(9).

Table 3.11 gives b = E.
We can check that for ε1 = 3,

∆1 = f(0⊕ 3) = SBPRESENT(3⊕ 9)⊕ E = SBPRESENT(A)⊕ E = F⊕ E = 1.

And for ε2 = 2,

∆2 = f(0⊕ 2) = SBPRESENT(2⊕ 9)⊕ E = SBPRESENT(B)⊕ E = 8⊕ E = 6.

One might ask, how many faults are needed to recover the values of a and b. If we take a closer
look at Table 4.1, we can see that in case the attacker can choose the fault mask, they only need two
faults. For example, fault masks 3 and 5 can uniquely determine the Sbox input – any two distinct
elements that appear in the same entry in column δ = 3 are in two different entries in column δ = 5.
When a random fault mask is considered, a brute force analysis can show that at most four different
fault masks are needed.

5.1.1.1 DFA on DES

Now, we will discuss how DFA can break implementations of DES (Section 3.1.1).
Recall that DES is a Feistel cipher. Its cipher state at the end of round i can be denoted as Li and

Ri, where L stands for left and R stands for right. The DES round function F satisfies

(Li, Ri) = F (Li−1, Ri−1), where Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1,Ki). (5.3)

Before the first round function, the encryption starts with an initial permutation (IP). The inverse
of IP, called the final permutation (IP−1) is applied to the cipher state after the last round before
outputting the ciphertext. In our analysis, we ignore the final permutation and consider the value
before that as the ciphertext. Otherwise, the attacker can easily obtain this value by applying IP to
the ciphertext.

At the ith round, the function f in the round function (Equation 5.3) of DES takes input Ri−1 ∈ F32
2

and round key Ki ∈ F48
2 , and outputs a 32−bit intermediate value as follows:.

f(Ri−1,Ki) = PDES(Sboxes(EDES(Ri−1)⊕Ki)). (5.4)

First, Ri−1 is passed to an expansion function EDES : F32
2 → F48

2 (Table 3.2). Then the output
EDES(Ri−1) is XOR-ed with the round key Ki, producing a 48−bit intermediate value. This 48−bit
value is divided into eight 6−bit sub-blocks. 8 distinct Sboxes, SBj

DES : F6
2 → F4

2 (1 ≤ j ≤ 8), are
applied to each of the 6 bits. Finally, the resulting 32−bit intermediate value goes through a permu-
tation function PDES : F32

2 → F32
2 (Table 3.4).

For j = 1, 2, . . . , 8, let EDES(Ri)
j denote the jth 6 bits of EDES(Ri). For example, EDES(Ri)

1 are bits
at positions 1, 2, 3, 4, 5, 6 of EDES(Ri) (see also Note in Section 3.1.1). Similarly, let Kj

i denote the jth
6 bits of Ki and P−1

DES(Ri ⊕ Li−1)
j be the jth 4 bits of P−1

DES(Ri ⊕ Li−1). By Equations 5.3 and 5.4, we
have

P−1
DES(Ri ⊕ Li−1)

j = SBj
DES(EDES(Ri−1)

j ⊕Kj
i) (5.5)

We consider a fault injection at the right half of the cipher state at the beginning of the 16th round,
i.e. fault in R15. Suppose the fault model is 1−bit flip. In other words, the fault mask ε ∈ F32

2 satisfies
wt (ε) = 1 and

R′
15 = R15 ⊕ ε.

249

We assume the attacker has the knowledge of the output of DES (correct and faulty ciphertexts),
fault model, and fault location. They can also repeat the computation with the same plaintext, not
chosen by the attacker. The attacker’s goal is to recover K16, the last round key.

Let L′
16 and R′

16 denote the left and right parts of the faulty ciphertext respectively. By our as-
sumption, the attacker has the knowledge of L′

16 and L16. Since R15 = L16, we have

L′
16 ⊕ L16 = R′

15 ⊕R15 = ε (fault mask) (5.6)

Define
∆R16 := R′

16 ⊕R16. (5.7)

By Equation 5.5,

P−1
DES(R16 ⊕ L15)

j = SBj
DES(EDES(L16)

j ⊕Kj
16),

P−1
DES(R

′
16 ⊕ L15)

j = SBj
DES(EDES(L

′
16)

j ⊕Kj
16) = SBj

DES(EDES(L16 ⊕ ε)j ⊕Kj
16).

Since PDES and EDES are linear, we have

P−1
DES(∆R16)

j = SBj
DES(EDES(L16)

j ⊕Kj
16 ⊕ EDES(ε)

j)⊕ SBj
DES(EDES(L16)

j ⊕Kj
16).

Thus, EDES(L16)
j ⊕Kj

16 is an input for the jth DES Sbox such that with input difference EDES(ε)
j , the

output difference is P−1
DES(∆R16)

j . With the knowledge of ε, ∆R16 and L16, the attacker can reduce
the key hypotheses for Kj

16.
We note that if EDES(ε)

j = 0, the input for the jth Sbox is not changed, and the output will also
not change. In this case, we say that this Sbox is inactive. Otherwise, we say the Sbox is active. For an
inactive Sbox, a different fault mask will be needed to activate this Sbox. Since we consider a 1−bit
flip, by the design of EDES (Table 3.2), 16 bits of the input are repeated in the output, thus only one or
two Sboxes will be active for one fault mask.

Example 5.1.4. Let

L15 = 00000000, R15 = 00000000, K16 = 14D8F55DAA7A.

By Equation 5.4,

f(R15,K16) = PDES(Sboxes(EDES(R15)⊕K16)) = 832ABB8E.

By Equation 5.3,

L16 = R15 = 00000000, R16 = L15 ⊕ 832ABB8E = 832ABB8E.

Suppose fault mask ε = 40000000, then

R′
15 = 40000000,

and
L′
16 = R′

15 = 40000000, R′
16 = L15 ⊕ f(R′

15,K16) = 83AAB98E.

We note that the values agree with Equation 5.6:

ε = L′
16 ⊕ L16 = 40000000.

By Equation 5.7,
∆R16 = R′

16 ⊕R16 = 00800200.

Since the bit flip is in the 2nd bit of input for EDES, according to Table 3.2, the 3rd bit of the output
of EDES will be changed. Consequently, SBj

DES is active for j = 1 and inactive otherwise. We have

EDES(ε)
1 = 8, EDES(ε)

j = 0 for j ̸= 1.

By Table 3.4, the first 4 bits of the output of PDES are given by the 9th, 17th, 23rd and 31st bits of the
input, hence

P−1
DES(∆R16)

1 = 1010 = A.

250

Consequently, the input of SB1
DES, which is

EDES(R15)
1 ⊕K1

16 = K1
16,

gives output difference A when the input difference is 8. By Table 5.1, K1
16 is equal to one of the two

possible values: 5 and D, where 5 agrees with the first six bits of K16.

In [BS97], the authors reported that with exhaustive search, they found that on average, 4 possible
6−bit key hypotheses remain for each active Sbox. An improved attack that considers fault injection
in the earlier rounds can be found in [Riv09]

5.1.1.2 Diagonal DFA on AES-128

In this part, we discuss a DFA attack on AES-128 implementations. Recall that AES cipher state can
be represented as a four-by-four matrix of bytes (see Equation 3.2):




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 . (5.8)

Let us represent those bytes by squares as in Figure 3.6 for visual illustration. Suppose a fault is in-
jected at the beginning of one round (except for the last round) in byte s00. Then the fault propagation
in this round can be represented by Figure 5.2, where blue squares correspond to bytes that might be
affected by the fault. Since SubBytes and ShiftRows only affect one byte and the first row does not

SB SR MC
AK

Figure 5.2: Visual illustration of how the fault propagates when a fault is injected at the beginning of
one AES round (not the last round) in byte s00. Blue squares correspond to bytes that can be affected
by the fault.

change in ShiftRows operation, in the first three states, the blue squares stay in the same position.
MixColumns takes one column as input and outputs one column. AddRoundKey does not change
the fault effects. Hence in the last state, the whole first column can be affected by the fault. Similarly,
if the fault is injected at the beginning of one round in any combination of bytes s00, s11, s22, s33, at
the end of this round, the whole first column might be affected by the fault. Some cases are shown in
Figure 5.3.

SB SR MC
AK

(a)

SB SR MC
AK

(b)

SB SR MC
AK

(c)

Figure 5.3: Visual illustration of how the fault propagates when a fault is injected at the beginning of
one AES round in bytes (a) s00, s11, (b) s00, s11, s22, and (c) s00, s11, s22, s33. Blue squares correspond
to bytes that can be affected by the fault.

251

Let us refer to the bytes s00, s11, s22, s33 as a diagonal of AES state. We consider a fault attack where
a random byte fault is injected in this diagonal of the AES state at the end of round 7. By the above
discussion, we know that at the end of round 8, the whole first column might be affected by the fault.
Similarly, we can study the fault propagation in round 9. Let δi (i = 1, 2, 3, 4) denote the differences
between the four correct and faulty bytes in the first column of the cipher state after SubBytes in
round 9. An illustration is shown in Figure 5.4, where S8 (resp. S9) denotes the cipher state at the
end of round 8 (resp. round 9). After ShiftRows, those four δis move to different positions as shown
in the third cipher state in the figure.

SB SR MC
AK

S8 S9

δ1

δ2

δ3

δ4

δ1

δ2

δ3

δ4

2δ1

δ1

δ1

3δ1

δ4

δ4

3δ4

2δ4

δ3

3δ3

2δ3

δ3

3δ2

2δ2

δ2

δ2

Figure 5.4: Visual illustration of fault propagation in the 9th round of AES when the fault was injected
in the diagonal s00, s11, s22, s33 of the AES cipher state at the end of round 7.

Recall that MixColumns multiplies one column by the following matrix (see Equation 3.6)



02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 .

Since this is a linear operation, the differences will also be multiplied by the corresponding coeffi-
cients in the matrix. Consequently, we get the last state S9 as shown in Figure 5.4.

Let us represent the cipher state at the end of round nine S9, the correct ciphertext c, and the last
round key K10 with the following matrices

S9 =




a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

In Round 10, we have SubBytes, ShiftRows, and AddRoundKey operations. In particular, we have

c00 = SBAES(a00)⊕ k00, c13 = SBAES(a10)⊕ k13, c22 = SBAES(a20)⊕ k22, c31 = SBAES(a30)⊕ k31,

which gives

a00 = SB−1
AES(c00 ⊕ k00)

a10 = SB−1
AES(c13 ⊕ k13)

a20 = SB−1
AES(c22 ⊕ k22)

a30 = SB−1
AES(c31 ⊕ k31).

Let us denote the faulty ciphertext by c′, we write

c′ =




c′00 c′01 c′02 c′03
c′10 c′11 c′12 c′13
c′20 c′21 c′22 c′23
c′30 c′31 c′32 c′33


 .

Then

a′00 = SB−1
AES(c

′
00 ⊕ k00)

a′10 = SB−1
AES(c

′
13 ⊕ k13)

a′20 = SB−1
AES(c

′
22 ⊕ k22)

a′30 = SB−1
AES(c

′
31 ⊕ k31).

252

Let δ = δ1. By observing the first column of S9 in Figure 5.4, we have

2δ = a00 ⊕ a′00 = SB−1
AES(c00 ⊕ k00)⊕ SB−1

AES(c
′
00 ⊕ k00)

δ = a10 ⊕ a′10 = SB−1
AES(c13 ⊕ k13)⊕ SB−1

AES(c
′
13 ⊕ k13)

δ = a20 ⊕ a′20 = SB−1
AES(c22 ⊕ k22)⊕ SB−1

AES(c
′
22 ⊕ k22)

3δ = a30 ⊕ a′30 = SB−1
AES(c31 ⊕ k31)⊕ SB−1

AES(c
′
31 ⊕ k31).

Then for each value of δ, the possible values for k00, k13, k22, k31 will be restricted by the above four
equations. In particular,

a00 = SB−1
AES(c00 ⊕ k00)

can be considered as an AES Sbox input that corresponds to input difference 2δ and output difference
c00 ⊕ c′00. Similarly,

a10 = SB−1
AES(c13 ⊕ k13), a20 = SB−1

AES(c22 ⊕ k22), a30 = SB−1
AES(c31 ⊕ k31)

are AES Sbox inputs that give output differences

c13 ⊕ c′13, c22 ⊕ c′22, c31 ⊕ c′31,

when the input differences are
δ, δ, 3δ,

respectively. It was shown [SMR09] that on average, the key hypotheses for (k00, k13, k22, k31) can be
reduced to 28.

Example 5.1.5. Suppose the master key is



00 04 08 0C
01 05 09 0D
02 06 0A 0E
03 07 0B 0F




and the plaintext is 


00 44 88 CC
11 55 99 DD
22 66 AA EE
33 77 BB FF


 .

By AES encryption and key schedule (Section 3.1.2), we can find that (see [NIS01] Appendix C)

S7 =




D1 79 B4 D6
87 C4 55 6F
6C 30 94 F4
0F 0A AD 1F


 ,

K8 =




47 A4 E0 AE
43 1C 16 BF
87 65 BA 7A
35 B9 F4 D2


 , K9 =




54 F0 10 BE
99 85 93 2C
32 57 ED 97
D1 68 9C 4E


 , K10 =




13 E3 F3 4D
11 94 07 2B
1D 4A A7 30
7F 17 8B C5


 .

Then the intermediate values in round 8 are as follows

S7
SB−→




3E B6 8D F6
17 1C FC A8
50 04 22 BF
76 67 95 C0




SR−→




3E B6 8D F6
1C FC A8 17
22 BF 50 04
C0 76 67 95




MC−−→




BA A1 D5 5F
A0 F9 51 41
3D B5 2C 4D
E7 6E BA 23




AK−−→




FD 05 35 F1
E3 E5 47 FE
BA D0 96 37
D2 D7 4E F1


 = S8,

253

where SB, SR, MC, and AR stand for SubBytes (Table 3.9), ShiftRows, MixColumns, and AddRound-
Key respectively. The operations in round 9 compute

S8
SB−→




54 6B 96 A1
11 D9 A0 BB
F4 70 90 9A
B5 0E 2F A1




SR−→




54 6B 96 A1
D9 A0 BB 11
90 9A F4 70
A1 B5 0E 2F




MC−−→




E9 02 1B 35
F7 30 F2 3C
4E 20 CC 21
EC F6 F2 C7




AK−−→




BD F2 0B 8B
6E B5 61 10
7C 77 21 B6
3D 9E 6E 89


 = S9.

In round 10 we have

S9
SB−→




7A 89 2B 3D
9F D5 EF CA
10 F5 FD 4E
27 0B 9F A7




SR−→




7A 89 2B 3D
D5 EF CA 9F
FD 4E 10 F5
A7 27 0B 9F




AK−−→




69 6A D8 70
C4 7B CD B4
E0 04 B7 C5
D8 30 80 5A


 = c.

Suppose a fault is injected in byte s00 of S7 with fault mask D8. We have

s′00 = D1⊕ D8 = 09.

The computations in round 8 become

S′
7 =




09 79 B4 D6
87 C4 55 6F
6C 30 94 F4
0F 0A AD 1F




SB−→




01 B6 8D F6
17 1C FC A8
50 04 22 BF
76 67 95 C0




SR−→




01 B6 8D F6
1C FC A8 17
22 BF 50 04
C0 76 67 95




MC−−→




C4 A1 D5 5F
9F F9 51 41
02 B5 2C 4D
A6 6E BA 23




AK−−→




83 05 35 F1
DC E5 47 FE
85 D0 96 37
93 D7 4E F1


 = S′

8.

Round 9 then calculates

S′
8

SB−→




EC 6B 96 A1
86 D9 A0 BB
97 70 90 9A
DC 0E 2F A1




SR−→




EC 6B 96 A1
D9 A0 BB 86
90 9A 97 70
A1 DC 0E 2F




MC−−→




82 6B 78 97
4F 59 57 09
F6 9B 0A B6
3F 24 91 50




AK−−→




D6 9B 68 29
D6 DC C4 25
C4 CC E7 21
EE 4C 0D 1E


 = S′

9.

And in round 10 we have:

S′
9

SB−→




F6 14 45 A5
F6 86 1C 3F
1C 4B 94 FD
28 29 D7 72




SR−→




F6 14 45 A5
86 1C 3F F6
94 FD 1C 4B
72 28 29 D7




AK−−→




E5 F7 B6 E8
97 88 38 DD
89 B7 BB 7B
0D 3F A2 12


 = c′.

The attacker obtains the following equations:

2δ = SB−1
AES(69⊕ k00)⊕ SB−1

AES(E5⊕ k00)

δ = SB−1
AES(B4⊕ k13)⊕ SB−1

AES(DD⊕ k13)

δ = SB−1
AES(B7⊕ k22)⊕ SB−1

AES(BB⊕ k22)

3δ = SB−1
AES(30⊕ k31)⊕ SB−1

AES(3F⊕ k31).

254

Thus the possible values of

SB−1
AES(69⊕ k00), SB−1

AES(B4⊕ k13), SB−1
AES(B7⊕ k22), SB−1

AES(30⊕ k31)

are inputs of AES Sbox that with input differences

2δ, δ, δ, 3δ,

produce output differences

69⊕ E5 = 8C, B4⊕ DD = 69, B7⊕ BB = 0C, 30⊕ DD = ED,

respectively.
Part of the AES Sbox difference distribution table corresponding to output differences 8C, 69, 0C,

and ED is shown in Table 5.2. We can see that δ ̸= 02 since for input difference 02, the entry for row
69 is empty. In other words, there are no inputs that have output difference 69 for input difference
02. Thus δ can only take values that give nonempty entries in the DDT for columns 2δ, δ, δ, 3δ and
corresponding rows 8C, 69, 0C, ED. By searching the rows 8C, 69, 0C, ED, we can find all possible
values of δ:

01, 06, 0B, 28, 3D, 49, 6B, 76, 8F, 90, A6, B2, B8, D0, EE,

in total 15 choices. In most of the entries of AES Sbox DDT there are only two values, thus the
remaining number of key hypotheses is roughly

24 × 15 ≈ 28.

HHH
HHH∆

δ
1 2 3 4 5 6 7 8 9 ...

0C 2,3 35,37 7D,7E E2,E7 0,6,A3,A5 4,C D2,DB ...
69 48,49 70,76 ...
8C D9,DB 42,47 E5,ED ...
ED 52,53 49,4A 41,45 68,6F 70,78 C5,CC ...

Table 5.2: Part of the difference distribution table for AES Sbox (Table 3.9) corresponding to output
differences 0C, 69, 8C, and ED.

We can also check that for the correct values k00 = 13, k13 = 2B, k22 = A7, k31 = 17 (see
Table 3.10 for SB−1

AES),

2δ = SB−1
AES(7A)⊕ SB−1

AES(F6) = BD⊕ D6 = 6B

δ = SB−1
AES(9F)⊕ SB−1

AES(F6) = 6E⊕ D6 = B8

δ = SB−1
AES(10)⊕ SB−1

AES(1C) = 7C⊕ C4 = B8

3δ = SB−1
AES(27)⊕ SB−1

AES(28) = 3D⊕ EE = D3.

According to Examples 1.5.17 and 1.5.18,

B8× 02 = 10111000× 02 = 01110000⊕ 1B = 6B, B8× 03 = 6B⊕ B8 = D3.

The other three columns of S9 in Figure 5.4 can provide similar results, reducing the key hypothe-
ses for other key bytes of K10. Consequently, with just one pair of correct and faulty ciphertext, the
key hypotheses for K10 can be reduced to 232 as opposed to the original 2128.

We note that in this attack, we assume the attacker has the knowledge of the fault location (diago-
nal of cipher state at the end of round 7), fault model (random byte), and output of AES (correct and
faulty ciphertext). Since the attack is on the diagonal of the cipher state, it is also called the diagonal
DFA. Similar attacks can be carried out if the fault is injected in the other three “diagonals” of the
cipher state at the end of round 7. The corresponding fault propagations are depicted in Figure 5.5,
where Si denotes the cipher state at the end of round i.

255

δ2

δ2

3δ2

2δ2

δ1

3δ1

2δ1

δ1

3δ4

2δ4

δ4

δ4

2δ3

δ3

δ3

3δ3

δ3

3δ3

2δ3

δ3

3δ2

2δ2

δ2

δ2

2δ1

δ1

δ1

3δ1

δ4

δ4

3δ4

2δ4

3δ4

2δ4

δ4

δ4

2δ3

δ3

δ3

3δ3

δ2

δ2

3δ2

2δ2

δ1

3δ1

2δ1

δ1

S7 S8 S9

Figure 5.5: Fault propagation for random byte fault injected in the “diagonals” of the cipher state at
the end of round 7.

5.1.2 Statistical Fault Analysis

Statistical Fault Analysis (SFA) [FJLT13] assumes no knowledge of plaintext or correct ciphertext for
the attacker. Only knowledge of faulty ciphertext and a non-uniform fault model is required.

We will provide more details on the definition of a non-uniform fault model. We consider fault
models that change an intermediate value x to x′. We can model these two intermediate values as
random variables X and X ′. Based on the fault properties, we can draw a table with probabilities for
the value x to be changed to x′, i.e. P (X ′ = x′|X = x). Such a table is called a fault distribution table.
We say that the fault model is non-uniform if

P (X ′ = x′|X = x) ̸= 1

2b

for some x and x′, where b is the maximum bit length of x.

Example 5.1.6. Let us consider the case when x is just one bit. A stuck-at-0 fault changes x to 0 with
probability 1. A bit flip fault model changes x to x⊕ 1 with probability 1. A random fault changes x
to x ⊕ 1 with probability 0.5. The fault distribution tables for those three fault models are shown in
Table 5.3. In this case, the bit length of x is 1, and a fault model is non-uniform if

P (X ′ = x′|X = x) ̸= 1

2

for some x and x′. Thus both stuck-at-0 and bit flip fault models are non-uniform.

x′

x
0 1 0 1 0 1

0 1 0 0 0 1 0 0.5 0.5
1 1 0 1 1 0 1 0.5 0.5

(a) (b) (c)

Table 5.3: Fault distribution tables for fault models (a) stuck-at-0, (b) bit flip, (c) random fault.

Example 5.1.7. We again consider the case when x is one bit. We discuss two more complicated
non-uniform fault models. Stuck-at-0 with probability 0.5 changes x to 0 with probability 0.5. The
corresponding fault distribution table is shown in Table 5.4 (a). Random-AND with δ, where δ follows
a uniform distribution, has the same fault distribution table. For example,

P (x′ = 1|x = 1) = P (δ = 1) = 0.5.

256

x′

x
0 1 0 1

0 1 0 0 1 0
1 0.5 0.5 1 0.5 0.5

(a) (b)

Table 5.4: Fault distribution tables for fault models (a) stuck-at-0 with probability 0.5, (b) random-
AND with δ, where δ follows a uniform distribution.

5.1.2.1 SFA attack on AES-128 Round 9

In this part, we will discuss an SFA attack on AES-128. We represent the cipher state at the end of
round 9 S9, the correct ciphertext c, and the last round key K10 with the following matrices

S9 =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

According to the round operations, SubBytes, ShiftRows and AddRoundKey, in round 10, we have

c00 = SBAES(s00)⊕ k00 =⇒ s00 = SB−1
AES(c00 ⊕ k00). (5.9)

We consider a fault in s00 with a non-uniform fault model. Let S00 and S′
00 denote the random

variables corresponding to s00 and its faulty value s′00 respectively. Suppose the attacker has the
knowledge of the fault location and the fault distribution table, i.e. the probabilities

P (S′
00 = s′00|S00 = s00)

for all s00 and s′00 from F8
2. The goal of the attacker is to recover k00.

We assume S00 follows a uniform distribution, i.e.

P (S00 = s00) =
1

256
, ∀s00 ∈ F8

2.

Then by Lemma 1.7.2,

P (S′
00 = s′00) =

255∑

s00=0

P (S′
00 = s′00|S00 = s00)P (S00 = s00) =

1

256

255∑

s00=0

P (S′
00 = s′00|S00 = s00). (5.10)

To carry out the attack, the attacker injects fault in s00 above and collects a set of m faulty cipher-
texts

{
c
′1, c

′2, . . . , c
′m
}

. Let k̂00 denote a key hypothesis for k00. Then for each c
′i, we can compute a

hypothetical value for s′00 using Equation 5.9, denoted ŝi00, as follows:

ŝi00 = SB−1
AES(c

′i
00 ⊕ k̂00). (5.11)

The probability that the faulty value of s00 in the ith encryption equals ŝi00 can be found using the
fault distribution table with Equation 5.10:

P (S′
00 = ŝi00) =

1

256

255∑

s00=0

P (S′
00 = ŝi00|S00 = s00).

Define ℓ(k̂00) to be the probability that the faulty value of s00 in the ith encryption equals the hypo-
thetical value ŝi00 for all i, i.e.

ℓ(k̂00) :=
m∏

i=1

P (S′
00 = ŝi00). (5.12)

Then the correct key can be found using the maximum likelihood approach

k00 = argmax
k̂00

ℓ(k̂00).

257

Example 5.1.8. Let us consider a stuck-at-0 fault model, i.e.

P (S′
00 = s′00|S00 = s00) =

{
1 s′00 = 00

0 Otherwise
,

for all s00 ∈ F8
2.

In this case, one faulty ciphertext is enough to recover k00. Since the attacker knows that the faulty
value s′00 is always 00, they can recover k00 by computing

k00 = c′00 ⊕ SBAES(00) = c′00 ⊕ 63.

Example 5.1.9. In this example, we consider a random−AND fault model such that

P (S′
00 = s′00|S00 = s00) =

{
1 s′00 = s00 AND δ

0 Otherwise
,

where
P (δ = x) =

1

256
, ∀x ∈ F8

2.

By Equation 5.10,

P (S′
00 = s′00) =

1

256

255∑

s00=0

P (S′
00 = s′00|S00 = s00) =

1

256

255∑

s00=0

(
255∑

x=1

P (S′
00 = s′00|S00 = s00, δ = x)P (δ = x)

)

=
1

2562

255∑

s00=0

|
{
δ
∣∣ s′00 = δ AND s00

}
|

=
|
{
(δ, s00)

∣∣ s′00 = δ AND s00, s00 ∈ F8
2, δ ∈ F8

2

}
|

2562
=

38−wt(s′00)

2562
, (5.13)

where wt (s′00) denotes the Hamming weight of s′00 (See Definition 1.6.10). To derive the last equality,
we note that if one bit of s′00 is 0, then the corresponding bit for δ and s00 can be either 0 or 1 but not
both 1, giving us three choices. If one bit of s′00 is 1, then the corresponding bit in δ and s00 must both
be 1.

Let s00 = AB, k00 = 00. Then (see Table 3.9 for SBAES)

c00 = SBAES(s00 ⊕ k00) = 62.

Suppose five injected faults result in values of δ = 0F,F0,FF,54,CD respectively. Then the
corresponding faulty values of s

′i
00 are 0B,A0,AB,00,89. And the faulty ciphertext bytes c

′i
00 are

2B,E0,62,63,A7.
Take k̂00 = 1A, by Equation 5.11, we have (see Table 3.10 for SB−1

AES)

ŝ100 = SB−1
AES(2B⊕ 1A) = SB−1

AES(31) = C7,

ŝ200 = SB−1
AES(E0⊕ 1A) = SB−1

AES(FA) = 2D,

ŝ300 = SB−1
AES(62⊕ 1A) = SB−1

AES(78) = BC,

ŝ400 = SB−1
AES(63⊕ 1A) = SB−1

AES(79) = B6,

ŝ500 = SB−1
AES(A7⊕ 1A) = SB−1

AES(BD) = 7A.

By Equations 5.12 and 5.13,

ℓ(1A) =
5∏

i=1

P (S′
00 = ŝi00) = P (S′

00 = C7)P (S′
00 = 2D)P (S′

00 = BC)P (S′
00 = B6)P (S′

00 = 7A)

=
1

25610
× 38×5−wt(C7)−wt(2D)−wt(BC)−wt(B6)−wt(7A)

=
1

25610
× 340−5−4−5−5−5 =

316

25610
.

258

Take k̂00 = 00, we have

ŝ100 = SB−1
AES(2B) = 0B,

ŝ200 = SB−1
AES(E0) = A0,

ŝ300 = SB−1
AES(62) = AB,

ŝ400 = SB−1
AES(63) = 00,

ŝ500 = SB−1
AES(A7) = 89.

And

ℓ(00) =
5∏

i=1

P (S′
00 = ŝi00) = P (S′

00 = 0B)P (S′
00 = A0)P (S′

00 = AB)P (S′
00 = 00)P (S′

00 = 89)

=
1

25610
× 38×5−wt(0B)−wt(A0)−wt(AB)−wt(00)−wt(89)

=
1

25610
× 340−3−2−5−3 =

327

25610
.

We can see that ℓ(00) > ℓ(1A).

It was shown in [FJLT13] that with high probability, the correct key byte can be found with only a
few faults. The same method can recover other bytes of K10. We note that each byte can be recovered
in parallel, hence the number of faults required to get the full round key depends on the number of
bytes that can be faulted with one fault injection.

In case the attacker only knows that the fault model is non-uniform, without the knowledge of its
fault distribution table, a metric based on the Square Euclidean Imbalance (SEI) can be used. Define

SEI(k̂00) :=
255∑

j=0

(
|
{
i
∣∣ ŝi00 = j

}
|

m
− 1

256

)2

.

We can see that by definition, SEI measures a certain distance between the obtained hypothetical
distribution of S′

00 and the uniform distribution. Since we know that the fault model is non-uniform,
we expect the distribution induced by S′

00 to be far from the uniform distribution. Thus we take the
correct key to be

k00 = argmax
k̂00

SEI(k̂00).

5.1.2.2 SFA on AES-128 Round 8

In this part, we consider the fault to be injected in the output of round 8, S8. Similar to before, we
represent the cipher state at the end of round 8 S8, the correct ciphertext c, and the last round key
K10 with the following matrices

S8 =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

We further represent the output of InvMixColumns operation on the second last round key, K9, as
follows

InvMixColumns(K9) =




a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33


 .

Suppose a fault is injected in s00 with a non-uniform fault model. The fault propagation is shown in
Figure 5.6.

259

SB SR MC
AK

SB SR AR

S8 S9 S10

Figure 5.6: Illustration of fault propagation for a fault injected in the first byte of S8 (the cipher state
at the end of round 8).

We can see that s00 is related to c00, c13, c22, c31 and k00, k13, k22, k31 as follows:

s00 = SB−1
AES(a00 ⊕ InvMixColumns for the first column

(SB−1
AES(c00 ⊕ k00), SB−1

AES(c13 ⊕ k13), SB−1
AES(c22 ⊕ k22), SB−1

AES(c31 ⊕ k31))).

As discussed in Section 3.1.2, InvMixColumns computation is equivalent to multiplication with the
following matrix: 



0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


 .

We have

s00 = SB−1
AES(a00 ⊕ 0E · SB−1

AES(c00 ⊕ k00)⊕ 0B · SB−1
AES(c13 ⊕ k13)

⊕ 0D · SB−1
AES(c22 ⊕ k22)⊕ 09 · SB−1

AES(c31 ⊕ k31)).

With a set of m faulty ciphertexts
{
c
′1, c

′2, . . . , c
′m
}

, the attacker can make hypothesis on the values

of k00, k13, k22, k31 and a00, denoted by k̂00, k̂13, k̂22, k̂31, and â00. Then the attacker can compute the
corresponding hypothetical values for s′00, denoted ŝi00, as follows

ŝi00 = SB−1
AES(â00 ⊕ 0E · SB−1

AES(c
′i
00 ⊕ k̂00)⊕ 0B · SB−1

AES(c
′i
13 ⊕ k̂13)

⊕ 0D · SB−1
AES(c

′i
22 ⊕ k̂22)⊕ 09 · SB−1

AES(c
′i
31 ⊕ k̂31)).

The correct key bytes can be recovered with either maximum likelihood (when the fault distribution
table is known) or SEI (when the fault distribution table is unknown) as discussed above.

We refer the reader to the original paper [FJLT13] for other methods of obtaining the correct key
hypothesis and attacks in even earlier rounds of AES.

The main advantage of SFA is that only faulty ciphertexts are required and there is no need for
repeated plaintexts. However, the attack assumes that each fault injection is successful.

5.1.3 Persistent Fault Analysis

Persistent Fault Analysis (PFA) [ZLZ+18] considers a fault in the memory, normally where the Sbox
lookup table is stored. As we do not expect the table to be rewritten during the computation, the
fault would stay until the device is reset, hence the name “persistent” is used in the attack method.

We will use AES-128 as a running example to show how the attack works. The methodology also
applies to other block ciphers.

We consider a random byte fault model. Suppose the fault location is in the first byte of the Sbox
lookup table. Then the output for SBAES(00) = v is changed to v′, the fault mask ε ∈ F8

2 is given by

ε = v ⊕ v′.

By Table 3.9, we know that v = 63. We assume the attacker has the knowledge of the output of AES
(correct and faulty ciphertexts), fault model, and fault location. However, the attacker does not know
the fault mask. The attacker aims to recover the last round key K10.

260

Recall that in round 10, the operations for AES encryption include SubBytes, ShiftRows, and
AddRoundKey. We represent the cipher state right before AddRoundKey in round 10, denoted S,
the ciphertext c, and K10 with the following matrices

S =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

We have c00 = s00 ⊕ k00.
Since the fault affects the encryption starting from the first round, here we only consider the

values of S and c with fault present in the Sbox lookup table and do not look into the original values
of S and c. We omit the superscript ′ in S′ and c′ which were used to indicate the faulty value in our
previous discussions. We note that it is possible that for some encryptions the fault does not affect
the result, e.g. when 00 is never used as an input for the Sbox computations. However, such cases
do not affect the attack method.

Let S00 denote the random variable corresponding to the value of s00. Due to the diffusion and
confusion layers in AES, it is reasonable to assume

P (S00 = s00)





≈ 2
256 s00 = v ⊕ ε

= 0 s00 = v

≈ 1
256 otherwise

.

Since c00 = s00 ⊕ k00, given c00, we know

k00 ̸= c00 ⊕ v.

Thus the attacker can collect a set of m (faulty) ciphertexts
{
c1, c2, . . . , cm

}
and eliminate key hy-

potheses for k00 that are equal to
ci00 ⊕ v.

Example 5.1.10. Let the key byte k00 = 45, and the fault mask ε = 12. Then the faulty output of AES
Sbox for input 00 becomes

63⊕ 12 = 71.

In this case, no matter what input the AES Sbox gets during the computations, the output will never
be 63. In particular, we have s00 ̸= 63. Equivalently,

k00 ⊕ 63 = 45⊕ 63 = 26

would never appear in the first byte of the ciphertexts. Otherwise, we would have

s00 = 26⊕ k00 = 26⊕ 45 = 63,

which is not possible.
Suppose the attacker collects the following values for c00 with the fault present in the Sbox lookup

table: 00,12,FE. Then the attacker can eliminate

00⊕ 63 = 63, 12⊕ 63 = 71, FE⊕ 63 = 9D

from the key hypotheses.

Next, we consider the case when the attacker has the knowledge of the fault mask ε. Let Y denote
the random variable corresponding to the value of c00, we have

P (Y = c00)





≈ 2
256 c00 = v ⊕ ε⊕ k00

= 0 c00 = v ⊕ k00

≈ 1
256 otherwise

261

Given a set of ciphertexts
{
c1, c2, . . . , cm

}
, if we look at the first byte of those ciphertexts, we expect

v ⊕ ε⊕ k00 to appear with the highest frequency. Thus the attacker computes

ymax := argmax
y
|
{
ci00

∣∣ ci00 = y
}
|.

Then a candidate for the correct key is given by ymax ⊕ v ⊕ ε.
Alternatively, we can also calculate the empirical probabilities for each y, denoted P̂ (Y = y), as

follows:

P̂ (Y = y) =
|
{
ci00

∣∣ ci00 = y
}
|

m
.

For a large enough sample, we expect

P̂ (ymax) ≈
2

256
.

The simulated results in [ZLZ+18] show that with about 4000 faulty ciphertexts, the empirical prob-
ability of ymax is high enough to be distinguished from that of other values of y.

5.1.4 Implementation Specific Fault Attack

In this subsection, we discuss an implementation-specific DFA attack on PRESENT [BHL18]. We
consider the implementation of PRESENT with the second method discussed in Section 3.2.2.1 (Al-
gorithm 3.5). Recall that the method combines sBoxLayer and pLayer by using four 8 × 8 tables –
Table one, Table two, Table three and Table four. Each table extracts certain bits of the cipher state
and the final output will be obtained by combining those bits using bitwise OR. The particular imple-
mentation we target is from [PV13, AV13], which was written in AVR assembly (see [Atm16] for 8-bit
AVR Instruction Set Manual). Part of the implementation is listed in Algorithm 5.1.

Algorithm 5.1: Part of an implementation for PRESENT encryption that combines sBoxLayer
and pLayer in AVR assembly [PV13, AV13]. A pseudo-code can be found in Algorithm 3.5

1 . . .
2 ldi ZH, 0x06 // load Table one address

3 mov ZL, r0 // r0 contains input to Table one

// lookup program memory at address Z, store in r21. This is equivalent to storing

the Table one output corresponding to input from r0 in r21. Thus in this step,

we lookup bits 0, 1, 16, 17, 32, 33, 48, 49.

4 lpm r21, Z
5 andi r21, 0xC0 // extract output bits 0, 1

6 ... // load Table Two address

7 lpm r23, Z // lookup Table two (bits 50, 51, 2, 3, 18, 19, 34, 35) and store in r23

8 andi r23, 0x30 // extract output bits 2, 3

9 or r21, r23 // combine bits 0, 1, 2, 3

10 ... // lookup Table three (bits 36, 37, 52, 53, 4, 5, 20, 21) and store in r23

11 andi r23, 0x0C // extract output bits 4, 5

12 or r21, r23 // combine bits 0, 1, 2, 3, 4, 5

13 ... // lookup Table four (bits 22, 23, 38, 39, 54, 55, 6, 7) and store in r23

14 andi r23, 0x03 // extract output bits 6, 7

15 or r21, r23 // combine bits 0, 1, 2, 3, 4, 5, 6, 7

16 . . .

In line 2, we load the address of Table one, then line 3 looks up the table, finally, line 4 stores the
table output in the register r21. These three lines implement line 1 in Algorithm 3.5. Afterward, in
line 5, the leftmost two bits are extracted from r21 and stored in r21. This corresponds to line 5 in
Algorithm 3.5. As we have explained in Section 3.2.2.1, these two bits correspond to bits at positions
0 and 1 of pLayer output. Similarly, lines 6 – 8 extract the 2nd and 3rd bits of pLayer output using
Table two and store them in r23. Then line 9 combines bits 0, 1, 2, 3 with bitwise OR. Then the
implementation continues to extract pLayer output bits at positions 4 and 5 with Table three, and at

262

positions 6, 7 with Table four. Those bits are all combined through bitwise OR to register r21 (lines 12
and 15).

The fault attack on this implementation injects fault in register r23 between lines 14 and 15 in the
final round of PRESENT. The fault model used is a bit flip.

Recall that in this round of PRESENT, we have operations addRoundKey, sBoxLayer, pLayer,
which will be followed by another addRoundKey (see Section 3.1.3). Let κ7κ6 . . . κ1κ0 denote the 0th
byte of the round key K32, which is the round key used right before outputting the ciphertext. Let
b7b6b5 . . . b0 denote the intermediate value contained in register r21 right after line 15. Then the 0th
byte of the correct ciphertext, denoted c7c6c5 . . . c0 is given by

c7c6c5 . . . c0 = b7b6b5 . . . b0 ⊕ κ7κ6 . . . κ1κ0.

And the value in register r23 between lines 14 and 15 is 000000b1b0.
We assume the attacker has the knowledge of the outputs of PRESENT (ciphertext) and can repeat

the computation with the same plaintext (not chosen by the attacker). Furthermore, we consider a
relatively strong attacker model where the attacker can choose the fault mask ε. In particular, we let
ε = 11111100. Consequently, we inject a 6−bit flip in register r23 between lines 14 and 15. The faulty
value in register r23 will be

000000b1b0 ⊕ ε = 000000b1b0 ⊕ 11111100 = 111111b1b0.

After line 15, the value in register r21 will then become 111111b1b0. And the faulty ciphertext
byte c′7c

′
6c

′
5 . . . c

′
0 is given by

c′7c
′
6c

′
5 . . . c

′
0 = 111111b1b0 ⊕ κ7κ6 . . . κ1κ0.

Since the faulty ciphertext byte c′7c
′
6c

′
5 . . . c

′
0 is known, the attacker can recover six bits of K32 by

computing
κ7κ6κ5κ4κ3κ2 = c′7c

′
6c

′
5c

′
4c

′
3c

′
2 ⊕ 111111.

Similar methods can be used to recover all other bits of K32.
We note that this attack is specific to the implementation considered. It shows that even with

theoretically secure countermeasures in place, the programmer should verify its implementation, for
example by using an automated tool (see [BHL18, HBZL19, HSP20] for automated evaluation of SW
implementations and [BGE+17, PGP+19] for HW implementations).

5.2 Fault Countermeasures for Symmetric Block Ciphers

A simple countermeasure one might consider to protect against certain fault attacks would be to
repeat the encryption, compare the two outputs, and only return the ciphertext if those two outputs
are equal [BECN+06]. For example, for DFA attacks described in Section 5.1.1, such a countermeasure
will be successful since those attacks require the knowledge of the faulty ciphertext. However, an
easy attack on this countermeasure would be fault injection on both encryption computations or
skipping the instruction for checking the outputs [SHS16].

In this section, we will discuss in detail two more sophisticated countermeasures against fault
attacks on symmetric block ciphers.

5.2.1 Encoding-based Countermeasure

We recall from Definition 1.6.3 that the (minimum) distance of a binary code C, denoted dis (C), is
given by

dis (C) = min { dis (c1, c2) | c1, c2 ∈ C, c1 ̸= c2 } .
We have seen that a binary code with minimum distance dis (C) can detect dis (C) − 1 bit flips

(see Definition 1.6.5 and Theorem 1.6.1). Thus a natural choice for fault countermeasure is to consider
encoding the intermediate values during the computation. The question is, which code to choose and
how to implement it?

As an example of what kind of code to use, we will discuss one proposal of using anticode (see
Definition 1.6.12) for the countermeasure against bit flips and instruction skips [BHL19]. Recall that

263

a binary (n,M, d, δ)−anticode has length n, cardinality M , minimum distance d and maximum dis-
tance δ, where the maximum distance of a binary code C (see Definition 1.6.12) is given by

maxdis(C) = max { dis (c1, c2) | c1, c2 ∈ C } .

For example { 10, 01 } is a binary (2, 2, 2, 2)−anticode.
Following Kerckhoffs’ principle (see Definition 2.1.3) we assume the code used for the counter-

measure is public. In particular, the attacker has the knowledge of all the codewords and how the
information is encoded.

Intuitively if the minimum distance of the code is too small, we know that the code cannot detect
a large number of bit flips. On the other hand, let us consider a code of length n and size M that
contains at least two codewords, say c1, c2, with dis (c1, c2) = n. If an n−bit flip is injected when
c1 or c2 is used for the computation, then the resulting faulty value is still a codeword and cannot
be detected. Since there are in total M codewords, the possibility for the fault to go undetected is at
least 2/M . Thus, a very big maximum distance is also not desirable.

We refer the reader to the original paper [BHL19] for the formalization of encoding-based coun-
termeasures for symmetric block ciphers and calculations of the probability of detecting any m−bit
flips and instruction skips given a binary code. The authors also provide a theoretical analysis which
concludes that to have overall good protection against all possible bit flips, it is better to use code
with not too small minimum distance and not too big maximum distance.

Such an observation leads us to the notion of anticode (see Definition 1.6.12). The paper [BHL19]
also demonstrated the effectiveness of using anticodes with simulated results.

In the rest of this part, we would like to focus on how encoding countermeasures can be im-
plemented in software for PRESENT encryption. The implementation we present has the following
properties:

• Each operation is implemented as a table lookup from memory;

• Before the table lookup, the destination register of an operation is precharged to 0;

• When any of the inputs is 0, the output is 0;

• When an error is detected, the output is 0 (error message).

Furthermore, we also assume the registers are precharged to 0 before the program starts and this
process cannot be faulted. Such a design can protect the implementation from single instruction
skips.

For example, Algorithm 5.2 implements the computation of a binary operation through a table
lookup. The two inputs a and b are loaded to registers r0 and r1 in instructions 1 and 2. The binary
operation is computed by table lookup and the result is stored in register r2 (instruction 4). Note
that instruction 3 puts the error message 0 in r2 before it is used. Since the registers are supposed to
be precharged to 0, skipping instructions 1 or 2 will result in the input of the table lookup being 0
and by our design, the final output will be 0. Skipping instruction 3 will not change the output or the
program flow. Skipping instruction 4 will make the final output to be 0. Thus a single instruction skip
of any instruction of Algorithm 5.2 will either make no change to the output or result in outputting
0, which is the error message.

Algorithm 5.2: A simple program to demonstrate protection against single instruction skip
attacks.
1 LDI r0 a// load input a

2 LDI r1 b// load input b

3 EOR r2 r2// precharge register r2 to zero

4 LPM r2 r0 r1// execution of an operation by table lookup

Clearly, we need to choose codes that do not contain 0 as a codeword. Of course, the error mes-
sage can be changed to a different value, allowing the usage of codes containing 0, e.g. linear codes
(see Definition 1.6.7). But for the implementation technique we are going to discuss, the structure of
linear codes is not important.

264

In case the fault changes some encoded intermediate value to a word that is not a codeword, the
table lookup will produce 0, which indicates an error. In the subsequent instructions, when the input
of a table is 0, the output will always be 0 since 0 is not a codeword. In such cases, we say that the
fault is detected. Otherwise, when a successful fault injection does not result in 0 output, we say the
fault is undetected.

Example 5.2.1. As a simple example, let us consider { 01, 10 }, a binary (2, 2, 2, 2)−anticode. Since
there are two codewords, it can be used to encode one bit of information. Let 01 be the codeword
for 0 and 10 be the codeword for 1. The lookup table for carrying out XOR between a, b (a, b ∈ F2) is
shown in Table 5.5. As mentioned before, 00 indicates an error. Thus the table outputs 00 if one input
is not a codeword.

00 01 10 11
00 00 00 00 00
01 00 01 10 00
10 00 10 01 00
11 00 00 00 00

Table 5.5: Lookup table for carrying out XOR between a, b (a, b ∈ F2) using 01 as the codeword for 0
and 10 as the codeword for 1.

Example 5.2.2. Let us consider bit flip attacks on the inputs of XOR operation from Example 5.2.1. We
can see that any 1−bit flip will be detected: if the fault is injected in input 01, with 1−bit flip, we get
either 00 or 11, both will give output 00. Similarly, if 1−bit flip is injected in input 10, we will have 00
or 11, and the output will again be 00.

On the other hand, a 2−bit flip will be undetected. For example, suppose we would like to
compute 0 ⊕ 0. Then the inputs for the table lookup will be 01 and 01, the output will be 01, which
corresponds to 0. If a 2−bit flip is injected in the first input, we get 10 and 01 for table lookup. The
result will be 10. Such a fault will not be detected and can successfully change the output of the
operation.

We recall the notion of Quotient group and Remainder group for PRESENT Sboxes from Section 4.5.2.3.
We have discussed that pLayer can be considered as four identical parallel bitwise operations where
each is a function p : F16

2 → F16
2 that takes one Quotient group output and permutes it to the corre-

sponding Remainder group input. Furthermore, we have seen in Section 3.1.3 that addRoundKey is
a function F64

2 → F64
2 . Each Sbox in the sBoxLayer, is a function SB: F4

2 → F4
2. Thus, one convenient

code choice would be those with cardinality 16, encoding 4 bits of information. In particular, we are
looking for a binary (n, 16, d, δ)−anticode, where d is the minimum distance of the code and δ is the
maximum distance of the code.

We refer the readers to [BHL19] for an algorithm for finding anticodes that achieve a low proba-
bility of undetected faults with given length, minimum distance, and maximum distance. In the rest
of this subsection, we will use the following binary (8, 16, 2, 7)−anticode as a running example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } . (5.14)

In particular, 01 is the codeword for 0000, 08 in the codeword for 0001, etc. And we write

01 = encode(0000).

Given an anticode C, the addRoundKey operation can be implemented using an XOR table similar
to the one shown in Example 5.2.1. The size of the table will be 28×28. Let ⊕̃ denote this table lookup
operation.

Example 5.2.3. Using the anticode given in Equation 5.14, the table entry corresponding to 01 and
08 will be

encode(0000⊕ 0001) = encode(0001) = 08.

And we write
01⊕̃08 = 08.

265

The implementation of sBoxLayer and pLayer is based on four 16× 64 lookup tables, T0, T1, T2,
T3. Let x = x3x2x1x0 be an element in F4

2. We write

SB(x3x2x1x0) = xs3x
s
2x

s
1x

s
0.

Example 5.2.4. Take D = 1101, then

x3 = 1, x2 = 1, x1 = 0, x0 = 1.

Since SB(D) = 7 = 0111 (see Table 3.11), we have

xs3 = 0, xs2 = 1, xs1 = 1, xs0 = 1.

The design of tables T0, T1, T2 and T3 is as follows:

T0 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(000xs3),encode(000x
s
2),encode(000x

s
1),encode(000x

s
0)

T1 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(00xs30),encode(00x
s
20),encode(00x

s
10),encode(00x

s
00)

T2 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(0xs300),encode(0x
s
200),encode(0x

s
100),encode(0x

s
000)

T3 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(xs3000),encode(x
s
2000),encode(x

s
1000),encode(x

s
0000)

Thus, each table extracts the bits of the Sbox output, permutes them, and outputs the corresponding
codeword. It is easy to see that each entry of the outputs of each table can be either encode(0000) or
encode(0001) for T0, encode(0010) for T1, encode(0100) for T2, and encode(1000) for T3.

Example 5.2.5. Suppose the input is 01 = encode(0000). The corresponding Sbox output would be
C = 1100 (see Table 3.11), i.e. xs3x

s
2x

s
1x

s
0 = 1100. Using the anticode given in Equation 5.14, the output

of T0 will be

encode(0001) = 08, encode(0001) = 08, encode(0000) = 01, encode(0000) = 01.

The output of T1 is

encode(0010) = 02, encode(0010) = 02, encode(0000) = 01, encode(0000) = 01.

T2 gives

encode(0100) = 04, encode(0100) = 04, encode(0000) = 01, encode(0000) = 01.

Finally, T3 produces

encode(1000) = 07, encode(1000) = 07, encode(0000) = 01, encode(0000) = 01.

Example 5.2.6. Suppose the input is 08 = encode(0001). The corresponding Sbox output would be
5 = 0101, i.e. xs3x

s
2x

s
1x

s
0 = 0101. Using the anticode given in Equation 5.14, the output of T0 will be

encode(0000) = 01, encode(0001) = 08, encode(0000) = 01, encode(0001) = 08.

The output of T1 is

encode(0000) = 01, encode(0010) = 02, encode(0000) = 01, encode(0010) = 02.

T2 gives

encode(0000) = 01, encode(0100) = 04, encode(0000) = 01, encode(0100) = 04.

Finally, T3 produces

encode(0000) = 01, encode(1000) = 07, encode(0000) = 01, encode(1000) = 07.

266

Now, let the original cipher state at sBoxLayer input be b63b62 . . . b0. For the encoding-based
implementation, the corresponding cipher state will be

encode(b63b62b61b60)encode(b59b58b57b56) . . .encode(b7b6b5b4)encode(b3b2b1b0).

Each codeword in this cipher state will be passed to tables T0, T1, T2, T3, and the outputs will be
recorded. Then the output of pLayer will be computed by combining those table outputs through ⊕̃.

Example 5.2.7. By Table 3.12, the pLayer output bits at positions 0, 1, 2, 3 come from the bits at posi-
tions 0, 4, 8, 12 of the input of pLayer. Thus, we first get encode(000bs0) from T0 output, encode(00bs40)
from T1, encode(0bs800) from T2, encode(bs12000) from T3, and then the 0th nibble of pLayer output
will be

encode(000bs0)⊕̃encode(00bs40)⊕̃encode(0bs800)⊕̃encode(bs12000).
As another example, the 3rd nibble (bits 16, 17, 18, 19) of pLayer output is given by

encode(000bs1)⊕̃encode(00bs50)⊕̃encode(0bs900)⊕̃encode(bs13000).
Remark 5.2.1. By the design of our implementation, when the faulty intermediate value is not a
codeword, the table lookup returns 0, and the attacker will not be able to tell what the original faulty
ciphertext is. Since both DFA and SFA require analysis of the faulty ciphertexts, they can be prevented
when the fault model is bit flip and the number of bit flips is lower than the minimum distance of the
binary code.

We have also seen that binary codes can correct error. According to Theorem 1.6.2, if m bits are
flipped during the computation, a binary code C used for encoding-based countermeasure can cor-
rect this fault as long as m ≤ ⌊(d− 1)/2⌋, where d is the minimum distance of C. Note that to realize
the incomplete decoding rule, we need an error message to indicate more than one codeword is at
the same smallest distance from the input word.

For example, let us consider the 3−repetition code C[3,1,3] = { 000, 111 }, which is a [3, 1, 3]−linear
code (see Example 1.6.8). Since C[3,1,3] contains two codewords, it can be used to encode 1 bit of
information. As 000 is a codeword of C[3,1,3], we cannot use it as the error message. On the other
hand, we note that no word in F3

2 is at the same distance from 000 and 111, which means we will
always be able to find a codeword using the minimum distance decoding rule. C[3,1,3] has minimum
distance 3. Then we know that an implementation based on encoding countermeasure with C[3,1,3]

will be able to correct errors caused by 1−bit flip attacks.
Let 000 be the codeword for 0 and 111 be the codeword for 1. The lookup table for computation

of AND between a, b (a, b ∈ F2) with error correction is shown in Table 5.6. For example, if the inputs
are 0 (000) and 1 (111), the correct output should be 0, which corresponds to codeword 000.

We can also see that if there are more bit flips, the faulty output might be corrected to a wrong
codeword. For example, if the inputs are 111 and 111, but the second 111 is faulted to 001 with a 2−bit
flip attack, then the table lookup gives output 000. However, since 1 & 1 = 1, the output should be
111. Thus, it is better to only use error-correcting code-based countermeasure when we know at most
⌊(d− 1)/2⌋ bits can be flipped, where d is the minimum distance of the binary code.

& 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 000 000 000 000 000 000 000
010 000 000 000 000 000 000 000 000
011 000 000 000 111 000 111 111 111
100 000 000 000 000 000 000 000 000
101 000 000 000 111 000 111 111 111
110 000 000 000 111 000 111 111 111
111 000 000 000 111 000 111 111 111

Table 5.6: Lookup table for error-correcting code based computation of AND between a, b (a, b ∈ F2),
using the 3−repetition code { 000, 111 }. 000 is the codeword for 0 and 111 is the codeword for 1.

We refer the readers to [BKHL20] for an encoding-based hardware implementation of PRESENT
using the 3−repetition code C[3,1,3].

267

5.2.2 Infective Countermeasure

The idea of infective countermeasure is to process the ciphertext in a way that the output becomes
useless for an attacker when faults are injected during the computations. We will take the proposal
from [TBM14] and only focus on the case for AES-128. The protection for other AES variants can be
done in a similar way, we refer the readers to [TBM14] for more details.

The main methodology of the countermeasure is to compute each round of AES encryption twice
before moving to the next round. The results of the two computations of the same round will be
compared, if a fault is detected, the rest of the computation should produce random values. Compu-
tations of dummy rounds are also randomly added in between the AES rounds so that the attacker
would not know where the fault was actually injected.

Algorithm 5.3: Infective Countermeasure for AES-128.
Input: p, β, keys, t // p is a plaintext block; β is a random number; keys contains

the AES round keys Ki and the dummy round keys κi (Equation 5.15) for

i = 0, 1, 2, . . . , 10, see Equation 5.16; t is a user-specified security parameter.

Output: ciphertext or infected ciphertext
1 R0 = p// cipher state

2 R1 = p// redundant cipher state

3 R2 = β// dummy round state

4 Generate rstr∈ Ft
2// contains 22 of 1s corresponding to AES rounds and t− 22 of 0s

corresponding to dummy rounds

5 j = 0
6 idx = 1
7 while idx ≤ t do
8 i = ⌊j/2⌋// i is the round counter

9 λ = rstr[idx]// λ is given by the idx-th bit of rstr, λ = 0 implies a dummy

round

10 a = ((LSB of j) & λ)⊕ 2(¬λ)// LSB stands for the least significant bit, & is

bitwise AND (see Definition 1.3.6), ¬ is logical negation

11 Ra = Fi(Ra,keys[λ][i])
12 γ = λ & (LSB of j) & (¬10(R0 ⊕R1))// if j is odd and λ = 1, detect fault injection

in AES

13 δ = (¬λ) & (¬10(R2 ⊕ β))// detect fault injection in dummy round when λ = 0

14 R0 = (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
15 j = j + λ
16 idx = idx+ 1

17 return R0

As mentioned in Section 3.1.2, AES-128 has key size 128 bits and round number Nr= 10. We
define Fi (i = 0, 1, 2, . . . , 10) as follows: F0 denotes the initial AddRoundKey operation in AES; for i =
1, 2, . . . , 9, Fi denotes the AES round function, in particular, Fi consists of the following operations:
SubBytes, ShiftRows, MixColumns, and AddRoundKey; F10 denotes the AES round function for the
last round. It consists of SubBytes, ShiftRows, and AddRoundKey. Let Ki (i = 0, 1, 2, . . . , 10) denote
the round keys for AES. Each Fi takes as input the cipher state at the end of round i− 1 and Ki, and
outputs the cipher state at the end of round i.

Correspondingly, we also generate a random number β and the round keys for the dummy
rounds, denoted κi (i = 0, 1, 2, . . . , 10), such that

Fi(β, κi) = β (5.15)

for i = 0, 1, 2 . . . , 10. We note that since F0 is an AddRoundKey operation,

κ0 = 0000000000000000.

Furthermore,

κi = β ⊕MixColumns(ShiftRows(SubBytes(β))), for i = 1, 2, . . . , 9

268

and
κ10 = β ⊕ ShiftRows(SubBytes(β)).

We set an array of keys of size 2× 11, denoted keys as

keys[0][i] = κi, keys[1][i] = Ki. (5.16)

The details of the countermeasure are shown in Algorithm 5.3. As mentioned before, each AES
round is computed twice. The user-specified number t determines how many dummy rounds will
be added during the computation. The cipher state for the first AES computation is stored in R0

and the cipher state in the redundant AES computation is stored in R1. Both are initialized to be the
plaintext (lines 1 and 2). The dummy round state is stored in R2 and initialized to be the random
number β (line 3). j (line 5) counts the total number (including the redundant ones) of AES rounds
computed and i = ⌊j/2⌋ (line 8) is the actual round counter. The random string rstr contains 22 of
1s corresponding to two computations of each Fi for i = 0, 1, . . . , 10 and t−22 bits of 0 corresponding
to dummy rounds. In each loop, we go through the idx-th bit of rstr (line 9), and the value is stored
in λ. The value of idx is increased by 1 (line16) at the end of each loop so that in the next loop we
will go to the next bit of rstr.

In line 10, we note that if j is even (resp. odd), the least significant bit (LSB) of j is 0 (resp. 1), thus

a = ((LSB of j) & λ)⊕ 2(¬λ) =





0⊕ 2 = 2, if λ = 0

(0 & 1)⊕ 0 = 0, if λ = 1 and j is even
(1 & 1)⊕ 0 = 1, if λ = 1 and j is odd

.

Then in line 11, when λ = 0, a = 2, we compute a dummy round i with

R2 = Fi(R2,keys[0][i]) = Fi(R2, κi).

When λ = 1 and j is even, a = 0, we compute AES round i with

R0 = Fi(R0,keys[1][i]) = Fi(R0,Ki).

When λ = 1 and j is odd, a = 1, we compute a redundant AES round i with

R1 = Fi(R1,keys[1][i]) = Fi(R1,Ki).

The total round counter j is increased by λ at the end of each loop (line 15). When λ = 0, only a
dummy round is computed.

Up to now, we have seen how the AES rounds and dummy rounds are computed. Next, we
discuss how fault is handled in the algorithm.

First, we recall the notion of indicator function from Definition 3.2.2. We consider the indicator
function for 0 with domain F128

2 :

10 : F128
2 → F2

x 7→
∏

i

(1− xi).

In other words,

10(x) =

{
1 if x = 0

0 otherwise
.

Then with logical negation, ¬10(x) : F128
2 → F2 and

¬10(x) =
{
0 if x = 0

1 otherwise
.

Consequently in line 12, we have

γ = λ & (LSB of j) & (¬10(R0 ⊕R1)) =

{
0 if λ = 0 or j is even
¬10(R0 ⊕R1) otherwise

=

{
0 if λ = 0 or j is even or R0 = R1

1 λ = 1, j is odd, and R0 ̸= R1

269

Thus, when j is odd and λ = 1 (i.e. in the loop when the redundant AES round is computed), γ
indicates if the cipher state in the AES round computation, R0, is equal to the redundant cipher state,
R1, or equivalent, whether fault happened in AES round or in the redundant round computation. If
there was no fault, γ = 0; otherwise, γ = 1.

Algorithm 5.4: Computation of AES round in the infective Countermeasure for AES-128
from Algorithm 5.3.

1 j is even
2 i = ⌊j/2⌋// i is the round counter

3 λ = 1
4 a = 0
5 R0 = Fi(R0,keys[1][i])// keys[1][i] = Ki is the ith round key for AES

6 γ = 0
7 δ = 0
8 R0 = R0

Algorithm 5.5: Computation of redundant AES round in the infective Countermeasure for
AES-128 from Algorithm 5.3.

1 j is odd
2 i = ⌊j/2⌋// i is the round counter

3 λ = 1
4 a = 1
5 R1 = Fi(R1,keys[1][i])// keys[1][i] = Ki is the ith round key for AES

6 γ = ¬10(R0 ⊕R1)// detect fault injection in AES

7 δ = 0
8 R0 = ((¬γ) ·R0)⊕ (γ ·R2)// if there is fault in AES computation, R0 = R2 becomes a

random number

Algorithm 5.6: Computation of the dummy round in the infective Countermeasure for AES-
128 from Algorithm 5.3.

1 λ = 0
2 a = 2
3 R2 = Fi(R2,keys[0][i])// i is the round counter, keys[0][i] = κi is the ith round key for

the dummy rounds

4 γ = 0
5 δ = ¬10(R2 ⊕ β)// detect fault injection in dummy round

6 R0 = ((¬δ) ·R0)⊕ (δ ·R2)// if there is fault in the dummy round computation, R0 = R2

becomes a random number

Similarly, in line 13, we have

δ =

{
0 if λ = 1

¬10(R2 ⊕ β) if λ = 0
=

{
0 if λ = 1 or R2 = β

1 if λ = 0 and R2 ̸= β
.

Thus when λ = 0, i.e. in the loop when the dummy round is computed, δ indicates if there is a fault
injected in the computation of the dummy round state R2. By the design of dummy round keys and
β (see Equation 5.15), if there are no faults, R2 = β and δ = 0. Otherwise, R2 ̸= β and δ = 1.

Finally, in line 14, we have

R0 = (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2) =

{
R0 if γ = 0 and δ = 0

R2 otherwise
.

270

This line guarantees that R0 will be changed to a random number R2 if a fault is detected in any of
the computations. Consequently, the output will be a random number, or infected ciphertext.

The computations for the AES round, the redundant round, and the dummy round are shown in
Algorithms 5.4, 5.5, and 5.6.

5.3 Fault Attacks on RSA and RSA Signatures

As discussed in Section 2.1.2, a public key cryptosystem has a public key and a private key. For fault
attacks that will be discussed in this section, the attacker’s goal will be the recovery of the secret key.

Unlike fault attacks on symmetric block ciphers, attacks on public key ciphers depend on the
underlying intractable problem and we do not have a systematic methodology. However, the general
attack concept can be applied to ciphers based on similar intractable problems. This section will focus
on fault attacks on implementations of RSA signatures. We will discuss a few fault attacks during the
signature signing procedure to recover the private key.

Note

We note that the attacks on RSA signature signing procedure can also be applied to
RSA decryption process.

For the rest of this section, let p and q be two distinct odd primes. Let n = pq and e ∈ Z∗
φ(n) be the

public key for RSA signatures. d = e−1 mod φ(n) denotes the private key. The goal of the attacker is
to recover d. As discussed in Section 3.5.1.3, the signature is computed on the hash value, h(m), of
the intended message m, where h is a fast public hash function (see Section 2.1.1). For simplicity, we
will use m to denote the hash value h(m).

Let ℓd and ℓn denote the bit length of d and n respectively. We have the following binary repre-
sentation (see Theorem 1.1.1) of d:

d =

ℓd−1∑

i=0

di2
i.

We recap here the CRT-based implementation for RSA signatures. Following the discussions in
Section 3.5.1.3, to sign the signature for m, the owner of the private key, say Alice, computes

sp := md mod (p−1) mod p, sq := md mod (q−1) mod q, (5.17)

and the signature s is given by Gauss’s algorithm,

s = spyqq + sqypp mod n,

or by Garner’s algorithm,
s = sp + ((sq − sp)yp mod q)p,

where
yq = q−1 mod p, yp = p−1 mod q. (5.18)

Alice sends s and m to Bob. To verify the signature, Bob computes and checks if

se mod n = m.

If the equality holds, Bob considers the signature valid.

5.3.1 Bellcore Attack

We first describe an attack that recovers the private key of RSA signatures by exploiting a faulty
signature. The attack was first introduced by Boneh et al. [BDL97]. The name “Bellcore” comes from
the company the authors were working for at the time of the publication. This paper is also the very
first paper that introduced fault attacks to cryptographic implementations.

As mentioned in Section 3.5.1.3, yq and yp (Equation 5.18) can be precomputed. We assume there
are no faults in their computations.

271

By the design of sp, sq, yp and yq, we have

s ≡ sq mod q, s ≡ sp mod p, (5.19)

which gives
m ≡ se ≡ seq mod q, m ≡ se ≡ sep mod p. (5.20)

Suppose a malicious fault was induced during the signing of the signature and the computation of
sp or sq (Equation 5.17), but not both, is corrupted. Let us assume that sp is faulty and sq is computed
correctly. A similar attack applies if sq is faulty and sp is correct. Let s′ denote the faulty signature.
By Equation 5.19,

s′ ≡ s ≡ sq mod q, s′ ̸≡ s mod p.

In other words,
q|(s′ − s), p ∤ (s′ − s).

Recall that n and e are public. If the attacker further has the knowledge of s and s′, then they can
compute

q = gcd(s′ − s, n), p =
n

q
.

As mentioned in Section 3.3, after factorizing n, the attacker can compute

φ(n) = (p− 1)(q − 1)

and eventually, recover the private key

d = e−1 mod φ(n)

by the extended Euclidean algorithm (Algorithm 1.2)
For a different attack [Len96], we assume the attacker does not have the knowledge of the correct

signature s. Instead, the attacker can obtain the faulty signature s′ and the original message hash
value m. For example, the attacker can request Alice for the signature of a chosen message. By
Equation 5.20,

s′e ≡ m mod q, s′e ̸≡ m mod p,

i.e.
q|(s′e −m), p ∤ (s′e −m).

Thus the attacker can factorize n by computing

q = gcd(s′e −m,n), p =
n

q
.

Example 5.3.1. Let p = 5, q = 7, and e = 5. We have calculated that d = 5 in Example 3.4.1 and
yq = 3, yp = 3 in Example 3.5.8. Suppose m = 6. By Equation 5.17, to calculate the signature, Alice
computes

sp = md mod (p−1) mod p = 65 mod 4 mod 5 = 1,

sq = md mod (q−1) mod q = 65 mod 6 mod 7 = 6.

And the signature

s = sp + ((sq − sp)yp mod q)p = 1 + ((6− 1)× 3 mod 7)× 5 = 6.

We can verify that
se mod n = 65 mod 35 = 6 = m.

Now suppose the computation of sp is faulty and s′p = 3. Then we have

s′ = s′p + ((sq − s′p)yp mod q)p = 3 + ((6− 3)× 3 mod 7)× 5 = 3 + 2× 5 = 13.

If the attacker has the knowledge of s = 6 and s′ = 13, they can compute

q = gcd(s′ − s, n) = gcd(13− 6, 35) = gcd(7, 35) = 7.

272

If the attacker has the knowledge of s′ = 13 and m = 6, they can compute

q = gcd(s′e −m,n) = gcd(135 − 6, 35) = gcd(371287, 35).

By the Euclidean algorithm,

371287 = 35× 10608 + 7, gcd(371287, 35) = gcd(35, 7),
35 = 7× 5, gcd(35, 7) = 7,

and q = 7.
Similarly, suppose the computation of sq is faulty and s′q = 2. Then

s′ = sp + ((s′q − sp)yp mod q)p = 1 + ((2− 1)× 3 mod 7)× 5 = 16.

If the attacker has the knowledge of s = 6 and s′ = 16, they can compute

p = gcd(s′ − s, n) = gcd(16− 6, 35) = gcd(10, 35) = 5.

If the attacker has the knowledge of s′ = 16 and m = 6, they can compute

p = gcd(s′e −m,n) = gcd(165 − 6, 35) = gcd(1048570, 35).

By the Euclidean algorithm

1048570 = 35× 29959 + 5, gcd(1048570, 35) = gcd(35, 5),
35 = 5× 7, gcd(35, 5) = 5.

Hence p = 5.

Example 5.3.2. Let p = 11, q = 13. Then n = 143,

φ(n) = 10× 12 = 120.

Choose e = 11, which is coprime with φ(n). By the extended Euclidean algorithm,

120 = 11× 10 + 10, 11 = 10× 1 + 1 =⇒ 1 = 11− (120− 11× 10) = 11× 11− 120,

and we have d = 11−1 mod 120 = 11. Again, by the extended Euclidean algorithm,

13 = 11× 1 + 2, 11 = 2× 5 + 1 =⇒ 1 = 11− 2× 5 = 11− 5× (13− 11) = 11× 6− 13× 5,

we have

yq = q−1 mod p = 13−1 mod 11 = −5 mod 11 = 6, yp = p−1 mod q = 11−1 mod 13 = 6.

Let m = 2. By Equation 5.17, to calculate the signature, Alice computes

sp = md mod (p−1) mod p = 211 mod 10 mod 11 = 2 mod 11 = 2,

sq = md mod (q−1) mod q = 211 mod 12 mod 13 = 2048 mod 13 = 7.

Using Garner’s algorithm, the signature

s = sp + ((sq − sp)yp mod q)p = 2 + ((7− 2)× 6 mod 13)× 11 = 2 + 4× 11 = 46.

We have

462 mod 143 = 114, 463 mod 143 = 114× 46 mod 143 = 96,

465 mod 143 = 114× 96 mod 143 = 76, 4610 mod 143 = 762 mod 143 = 56.

We can then verify that

se mod n = 4611 mod 143 = 56× 46 mod 143 = 2 = m.

273

Now suppose the computation of sp is faulty and s′p = 7. Then we have

s′ = s′p + ((sq − s′p)yp mod q)p = 7 + ((7− 7)× 6 mod 13)× 11 = 7.

If the attacker has the knowledge of s = 46 and s′ = 7, they can compute

q = gcd(s′ − s, n) = gcd(7− 46, 143) = gcd(−39, 143) = gcd(39, 143).

By the Euclidean algorithm,

143 = 39× 3 + 26, gcd(39, 143) = gcd(39, 26),
39 = 26 + 13, gcd(39, 26) = gcd(26, 13),
26 = 13× 2, gcd(26, 13) = 13.

Hence q = 13.
If the attacker has the knowledge of s′ = 7 and m = 2, they can compute

q = gcd(s′e −m,n) = gcd(711 − 2143) = gcd(1977326741, 143).

By the Euclidean algorithm,

1977326741 = 143× 13827459 + 104, gcd(1977326741, 143) = gcd(143, 104),
143 = 104 + 39, gcd(143, 104) = gcd(104, 39),
104 = 39× 2 + 26, gcd(104, 39) = gcd(39, 26),
39 = 26 + 13, gcd(39, 26) = gcd(26, 13),
26 = 13× 2, q = gcd(26, 13) = 13.

Similarly, suppose the computation of sq is faulty and s′q = 2. Then

s′ = sp + ((s′q − sp)yp mod q)p = 2 + ((2− 2)× 6 mod 13)× 11 = 2.

If the attacker has the knowledge of s = 46 and s′ = 2, they can compute

p = gcd(s′ − s, n) = gcd(2− 46, 143) = gcd(−44, 143) = gcd(44, 143).

By the Euclidean algorithm

143 = 44× 3 + 11, gcd(44, 143) = gcd(44, 11),
44 = 11× 4, q = gcd(44, 11) = 11.

If the attacker has the knowledge of s′ = 2 and m = 2, they can compute

p = gcd(s′e −m,n) = gcd(211 − 2, 143) = gcd(2046, 143).

By the Euclidean algorithm,

2046 = 143× 14 + 44, gcd(2046, 143) = gcd(143, 44),
143 = 44× 3 + 11, gcd(143, 44) = gcd(44, 11),
44 = 11× 4, p = gcd(44, 11) = 11.

5.3.2 Attack on the Square and Multiply Algorithm

In this subsection, we will look at fault attacks on the square and multiply algorithm. We will first de-
tail the bit flip attack proposed in [BDH+97], and then we will discuss an improved version proposed
in [JQBD97].

Instead of a CRT-based implementation, we assume the implementation computes the signature
with the right-to-left square and multiply algorithm. Following Algorithm 3.7, to compute md mod n,
we have Algorithm 5.7, where ℓd is the bit length of d.

For the attack, we inject a bit flip fault model so that one bit of d, say di, is flipped. Let d′ denote
the faulty value of d. Then the faulty signature is given by s′ = md′ mod n. From Algorithm 5.7

274

Algorithm 5.7: Computing RSA signature with the right-to-left square and multiply algo-
rithm.

Input: n, m, d// n is the RSA modulus; m is hash value of the message; d is the

private key of bit length ℓd

Output: s = md mod n
1 s = 1
2 t = m
3 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

4 if di = 1 then
// multiply by m2i

5 s = s ∗ t mod n

// t = m2i+1

6 t = t ∗ t mod n

7 return s

lines 4 and 5, we can see that the computations of s and s′ will differ by the multiplication of m2i . In
particular, we have

s′

s
≡
{
m−2i mod n, if di = 1, d′i = 0

m2i mod n, if di = 0, d′i = 1
. (5.21)

Suppose the attacker has the knowledge of s, s′, and m, then they can compute

s′

s
mod n

and compare it with
m2i mod n

to recover the value of di.
To improve the attack, we loosen the assumption on the attacker and assume that they only have

the knowledge of s′ and m (not knowing s). In this case, we note that

s
′e

se
≡ s

′e

m
mod n.

Then it follows from Equation 5.21 that

s
′e

m
≡
{
m−e2i mod n, if di = 1, d′i = 0

me2i mod n, if di = 0, d′i = 1
. (5.22)

Thus the attacker can compute
s
′e

m
mod n

and compare with
me2i mod n

to recover the value of di.
Both attacks can be repeated for different bits of d to recover the whole private key.

Example 5.3.3. Let p = 3, q = 5. We have n = 15 and φ(n) = 2 × 4 = 8. Suppose d = 3 = 112 and
m = 2. We have computed in Example 3.5.1 that

s = md mod n = 8.

The intermediate values for the computation with Algorithm 5.7 will be:

275

i di t result
0 1 4 2
1 1 1 8

By the extended Euclidean algorithm, we get

e = d−1 mod φ(n) = 3−1 mod 8 = 3.

Suppose d0 is flipped, then d′ = 2 = 102. The resulting computation following Algorithm 5.7 will
then have the intermediate values as follows:

i di t result
0 0 4 1
1 1 1 4

Thus s′ = 4.
With the knowledge of s = 8, s′ = 4 and m = 2, the attacker computes

s′

s
≡ 4

8
≡ 2−1 mod 15, m2i ≡ 21 ≡ 2 mod 15 =⇒ s′

s
≡ m−2i mod n.

By Equation 5.21, d0 = 1.
In case the attacker does not have the knowledge of s, they can compute

s
′e

m
≡ 43

2
≡ 32 ≡ 2 mod 15.

By the extended Euclidean algorithm

15 = 2× 7 + 1 =⇒ 2−1 mod 15 = −7 mod 15 = 8.

And we have

me2i ≡ 23×20 ≡ 23 ≡ 8 mod 15, m−e2i ≡ 2−3×20 ≡ 2−3 ≡ 83 ≡ 512 ≡ 2 mod 15

Thus
s
′e

m
≡ m−e2i mod n.

By Equation 5.22, d0 = 1.

5.3.3 Attack on the Public Key

In this subsection, we will discuss an attack [BCG08] that injects faults into the RSA public key n,
during the signature singing and recovers the private key d. Since the value n is big, it will be stored
in a few registers. The fault can be injected during loading or preparing n. The attack is specific to
the right-to-left square and multiply algorithm.

The RSA signature computation with the right-to-left square and multiply algorithm is detailed
in Algorithm 5.7. Let n′ denote the faulty RSA modulus and

ε := n⊕ n′

be the fault mask. Suppose the fault is injected in round j (1 ≤ j ≤ ℓd−2), resulting in a faulty square
computation in line 6

t = t ∗ t mod n′,

and this faulty n′ is also used for the rest of the computation. Then the faulty signature is given by

s′ =



(

j−1∏

i=0

m2idi mod n

)
ℓd−1∏

i=j

(
m2j−1

mod n
)2i−j+1di


 mod n′. (5.23)

We note that if the fault is injected in round j = ℓd − 1 for the computation of the square, the
output will not be affected, and hence the faulty signature will not be useful for recovery of the secret

276

key. If the fault is injected in round 0, since m ∈ Zn, the computation result will be md mod n′ and
the attacker would need to brute force all possible values of d to find out which one gives the faulty
signature. Hence we assume j ≥ 1.

Recall that the correct signature is given by

s =

ℓd−1∏

i=0

m2idi mod n.

Define
d(j) := dℓd−1 . . . dj+1dj00 . . . 00,

then

md(j) =

ℓd−1∏

i=j

m2idi mod n,

and

s′ =


(sm−d(j) mod n)

ℓd−1∏

i=j

(
m2j−1

mod n
)2i−j+1di


 mod n′.

There are 2ℓd−j possible values for d(j).
Suppose the attacker has the knowledge of ε (hence n′), the message hash value m, the correct

signature s, and the faulty signature s′. For each guessed value of d(j), denoted

d̂(j) = d̂ℓd−1 . . . d̂j+1d̂j00 . . . 0,

the attacker computes

ŝ′ =


(sm−d̂(j) mod n)

ℓd−1∏

i=j

(
m2j−1

mod n
)2i−j+1d̂i


 mod n′, (5.24)

and compares it with s′. Then they record values of d̂(j) that satisfy

ŝ′ = s′,

which reduces the hypotheses for the jth – (ℓd − 1)th bits of d.
The attack can be repeated for other bits of d to reduce the key hypotheses further.

Example 5.3.4. Let n = 15, m = 2. Then φ(n) = 8. Let d = 5 = 1012. Computing

s = md mod n = 25 mod 15

with Algorithm 5.7, we have the following intermediate values in each loop:

i di t s

0 1 4 2
1 0 1 2
2 1 1 2

and the correct signature s = 2.
Suppose a fault is injected in n when line 6 is executed in the iteration i = 1, resulting in n′ = 13.

The intermediate values will be

i di t s

0 1 4 2
1 0 3 2
2 1 9 6

277

and the faulty signature s′ = 6, which agrees with Equation 5.23:

s′ =



(

j−1∏

i=0

m2idi mod n

)
ℓd−1∏

i=j

(
m2j−1

mod n
)2i−j+1di


 mod n′

=

[
(m20d0 mod n)

2∏

i=1

(
m20 mod n

)2idi
]

mod n′

=
[
(md0 mod n)(m mod n)2d1+22d2

]
mod n′

= (2 mod 15)(2 mod 15)4 mod 13 = 25 mod 13 = 6.

To recover the secret key d, the attacker takes all possible values for d(1) = d2d10 and computes
the corresponding possible faulty signatures with Equation 5.24:

ŝ′ =


(sm−d̂(j) mod n)

ℓd−1∏

i=j

(
m2j−1

mod n
)2i−j+1d̂i


 mod n′

=
[
(2m−d̂(1) mod n)(m mod n)2d̂1+22d̂2

]
mod n′

=
[
(21−d̂(1) mod 15)× 22d̂1+22d̂2

]
mod n′

For d̂(1) = 000, we have

ŝ′ =
[
(21−d̂(1) mod 15)× 22d̂1+22d̂2

]
mod n′ = 2× 1 mod 13 = 2.

For d̂(1) = 010,

ŝ′ =
[
(21−d̂(1) mod 15)× 22d̂1+22d̂2

]
mod n′ = (2−1 mod 15)× 22 mod n′ = 8× 4 mod 13 = 6.

For d̂(1) = 100,

ŝ′ =
[
(21−d̂(1) mod 15)× 22d̂1+22d̂2

]
mod n′ = (2−3 mod 15)× 24 mod n′ = 2× 16 mod 13 = 6.

For d̂(1) = 110,

ŝ′ =
[
(21−d̂(1) mod 15)× 22d̂1+22d̂2

]
mod n′ = (2−5 mod 15)× 26 mod n′ = 8× 64 mod 13 = 5.

Thus the attacker can conclude that d(1) = 010 or 100, i.e. d1d2 = 01 or 10.

In case the attacker does not have the knowledge of the exact fault mask ε (and hence n′), but
instead, they know the range for ε. Then the attacker can brute force all possible values of ε and d̂(j)
to reduce the key candidate. We refer the readers to [BCG08] for more details.

5.3.4 Safe Error Attack

This part looks into implementations that are either based on the right-to-left square and multiply
algorithm (Section 3.5.1.1) or the Montgomery powering ladder (Section 3.5.1.2). We further require
that the modular multiplication is implemented with Blakely’s method (Section 3.5.2.1). We will
discuss a fault attack that is specific to such a setting.

The attack exploits the knowledge of whether an intermediate faulty value is used or not by
observing whether the final output is changed, thus the name safe error attack [YJ00]. Since only
knowing whether the output is changed or not is enough, if we implement a countermeasure that
repeats the computation, compares the final results, and outputs an error when a fault is detected,
the safe error attack still applies.

Let ω be the computer’s word size (see Section 2.1.2). Take κ = ⌈ℓn/ω⌉, i.e.

(κ− 1)ω < ℓn ≤ κω,

where ℓn is the bit length of n.

278

5.3.4.1 Safe Error Attack on the Montgomery Powering Ladder

With the Montgomery powering ladder and Blakley’s method, the signature s = md mod n is com-
puted with Algorithm 5.8 (see Algorithm 3.15).

Since ℓn is the bit length of n, the bit lengths of the variables R0 and R1 are at most ℓn. We can
write

R0 =
κ−1∑

i=0

R0i(2
ω)i, R1 =

κ−1∑

i=0

R1i(2
ω)i.

We can also assume each R0i and R1i is stored in one register.
Suppose dj = 0 and a fault is injected during the jth iteration of the outer loop, when i < i0 in

the loop starting from line 6, in the variable R0i0 , for some i0 such that 0 ≤ i0 ≤ κ− 1. Then the value
in R1 in line 9 will not be affected since R0i0 is used when i = i0. However, the value in R0 in line 14
will be faulty. Hence the final output will be faulty.

On the other hand, suppose dj = 1 and a fault is injected during the jth iteration of the outer
loop, and when i < i0 in the loop starting from line 17, in the variable R0i0 , for some i0 such that
0 ≤ i0 ≤ κ − 1. Then the fault will go unnoticed since R0i0 is used when i = i0 and the value in R0

will be rewritten in line 20. Thus the final output will be correct.
We assume the attacker has the knowledge of the correct signature and they can rerun the algo-

rithm with the same inputs, inject fault, and observe the final output. To recover the value of dj , the
attacker fixes an i0, estimates the time for i to be less than i0 in loop j, and injects fault in R0i0 . If
the signature is faulty, then dj = 0, and if the signature is correct, then dj = 1. We note that the
computation times for one loop starting from line 6 and one loop starting from line 17 are similar
since they both involve two multiplications and one modular reduction. The attack can be repeated
for different bits of d to recover the full private key.

Example 5.3.5. Let us repeat the computations in Examples 5.3.3 and 3.5.1 with Algorithm 5.8. We
have

p = 3, q = 5, n = 15, φ(n) = 2× 4 = 8, d = 3 = 112, m = 2.

And ℓn = 4, ℓd = 2. Suppose ω = 2, then

κ =

⌈
ℓn
ω

⌉
=

⌈
4

2

⌉
= 2.

With Algorithm 5.8, lines 1 and 2 give

R0 = 1, R00 = 01, R01 = 00. R1 = 2, R10 = 10, R11 = 00.

The intermediate values are

j = 1 d1 = 1
loop line 17 i = 1 R = 2ωR+R01R1 mod n = 0

i = 0 R = 2ωR+R00R1 mod n = 2 mod 15 = 2
line 20 R0 = 2 R00 = 10, R01 = 00
loop line 22 i = 1 R = 2ωR+R11R1 mod n = 0

i = 0 R = 2ωR+R10R1 mod n = 2× 2 mod 15 = 4
line 25 R1 = 4 R10 = 00, R11 = 01

j = 0 d0 = 1
loop line 17 i = 1 R = 2ωR+R01R1 mod n = 0

i = 0 R = 2ωR+R00R1 mod n = 2× 4 mod 15 = 8
line 20 R0 = 8 R00 = 00, R01 = 10

Hence the output is 8.
Suppose the attacker would like to find out what is d0. They estimate the time for j = 0 in the

outer loop and i = 0 in the loop starting from either line 6 or line 17. Then they inject fault into R01

at this time. We note that R01 is used (blue R01 in the above equations) before i = 0 and reassigned
value in line 20 (orange R01 in the above equations). Thus the computations are not affected, and the
signature is correct. The attacker can conclude that d0 = 1.

279

Algorithm 5.8: RSA signature computation with Montgomery powering ladder and
Blakely’s method

Input: n, m, d// n is the RSA modulus of bit length ℓn; m is the hash value of the

message; d is the private key of bit length ℓd

Output: md mod n
1 R0 = 1
2 R1 = m
3 for j = ℓd − 1, j ≥ 0, j −− do
4 if dj = 0 then

// lines 5 -- 9 implement R1 = R0R1 mod n

5 R = 0
6 for i = κ− 1, i ≥ 0, i−− do

// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

7 R = 2ωR+R0iR1

8 R = R mod n

9 R1 = R
// lines 10 -- 14 implement R0 = R2

0 mod n

10 R = 0
11 for i = κ− 1, i ≥ 0, i−− do
12 R = 2ωR+R0iR0

13 R = R mod n

14 R0 = R

15 else
// lines 16 -- 20 implement R0 = R0R1 mod n

16 R = 0
17 for i = κ− 1, i ≥ 0, i−− do
18 R = 2ωR+R0iR1

19 R = R mod n

20 R0 = R
// lines 21 -- 25 implement R1 = R2

1 mod n

21 R = 0
22 for i = κ− 1, i ≥ 0, i−− do
23 R = 2ωR+R1iR1

24 R = R mod n

25 R1 = R

26 return R0

Example 5.3.6. Let d = 2 = 102, and keep the other parameters the same as in Example 5.3.5. Then

s = md mod n = 22 mod 15 = 4.

With Algorithm 5.8, lines 1 and 2 give

R0 = 1, R00 = 01, R01 = 00. R1 = 2, R10 = 10, R11 = 00.

280

The intermediate values are

j = 1 d1 = 1
loop line 17 i = 1 R = 2ωR+R01R1 mod n = 0

i = 0 R = 2ωR+R00R1 mod n = 2 mod 15 = 2
line 20 R0 = 2 R00 = 10, R01 = 00
loop line 22 i = 1 R = 2ωR+R11R1 mod n = 0

i = 0 R = 2ωR+R10R1 mod n = 2× 2 mod 15 = 4
line 25 R1 = 4 R10 = 00, R11 = 01

j = 0 d0 = 0
loop line 6 i = 1 R = 2ωR+R01R1 mod n = 0

i = 0 R = 2ω +R00R1 mod n = 8
line 9 R1 = 8 R10 = 00, R11 = 10
loop line 11 i = 1 R = 2ωR+R01R0 mod n = 0

i = 0 R = 2ωR+R00R0 mod n = 2× 2 mod 15 = 4
line 14 R0 = 4

Hence the output is 4.
Suppose the attacker would like to find out what is d0. They estimate the time for j = 0 in the

outer loop and i = 0 in either the loop starting from line 6 or line 17. Then they inject fault into R01

at this time. Suppose the faulty R01 has a value 01. The intermediate values will be as follows:

j = 1 d1 = 1
loop line 17 i = 1 R = 0

i = 0 R = R00R1 mod n = 2 mod 15 = 2
line 20 R0 = 2 R00 = 10, R01 = 00
loop line 22 i = 1 R = 0

i = 0 R = R10R1 mod n = 2× 2 mod 15 = 4
line 25 R1 = 4 R10 = 00, R11 = 01

j = 0 d0 = 0
loop line 6 i = 1 R = 2ωR+R01R1 mod n = 0

i = 0 R = 2ω +R00R1 mod n = 8
line 9 R1 = 8 R10 = 00, R11 = 10
loop line 11 i = 1 R = 2ωR+R01R0 mod n = 1× 4 mod 15 = 4

i = 0 R = 2ωR+R00R0 mod n = 22 × 4 + 2× 2 mod 15 = 5
line 14 R0 = 5

Where the blue R01 is used before the fault injection and the green R01 carries the faulty value of R01.
Thus the final result will be changed and the attacker can conclude d0 = 0.

5.3.4.2 Safe Error Attack on the Square and Multiply Algorithm

Before detailing the safe error attack on the square and multiply algorithm, we first consider a fault
attack on Algorithm 5.9, where Blakely’s method (Algorithm 3.11) is used for computing modular
multiplication.

Let a, b ∈ Zn be two integers. Since ℓn is the bit length of n, the bit length of a is at most ℓn. Recall
that κ = ⌈ℓn/ω⌉. We can store a in κ registers, each containing one ai and (see also Equation 3.22)

a =
κ−1∑

i=0

ai(2
ω)i. (5.25)

We assume the attacker has the knowledge of the correct output for a pair of a and b. And they
can rerun the algorithm with the same input, inject fault, and observe the output. Suppose c = 1 and
a fault is injected during the loop starting from line 3 in the register containing ai0 (0 ≤ i0 ≤ κ − 1),
when i < i0. In this case, the fault in ai0 will not affect the output since ai0 is used when i is equal
to i0. On the other hand, if c = 0 and a fault is injected in the register containing ai0 during the
computation, then the final result will be faulty since the faulty value in a will be returned.

281

Algorithm 5.9: An algorithm involving computing modular multiplication with Blakely’s
method.

Input: n, a, b, c// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn; c = 0, 1

Output: ab mod n if c = 1 and a otherwise
1 if c = 1 then
2 R = 0

// κ = ⌈ℓn/ω⌉, where ω is the computer’s word size

3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

Now, if the attacker does not know the value of c and would like to recover it by fault injection
attacks, they can assume that c = 1 and the loop in line 3 is executed. Then they inject fault in ai0 at
the time when i is less than i0. Finally, they compare the output with the correct one and recovers the
value of c – if the output is correct, c = 1; otherwise c = 0.

The same attack idea can be applied to the square and multiply algorithm to recover the secret
key. With the right-to-left square and multiply algorithm and Blakley’s method, the signature s =
md mod n is computed with Algorithm 5.10 (see Algorithms 3.13 and 5.7). Since ℓn is the bit length
of n, the bit lengths of the variables s and t are at most ℓn. We can write

s =
κ−1∑

j=0

sj(2
ω)j , t =

κ−1∑

j=0

tj(2
ω)j .

Then, in Algorithm 5.10, lines 5 – 9 implement s = s ∗ t mod n (line 5 of Algorithm 5.7) and lines 10
– 14 implement t = t ∗ t mod n (line 6 of Algorithm 5.7).

Algorithm 5.10: RSA signature signing computation with the right-to-left square and multi-
ply algorithm and Blakely’s method.

Input: n, m, d// n is the RSA modulus of bit length ℓn; m is the hash value of the

message; d is the private key of bit length ℓd

Output: md mod n
1 s = 1
2 t = m
3 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

4 if di = 1 then
// lines 5 -- 9 implement s = s ∗ t mod n

5 R = 0
// κ = ⌈ℓn/ω⌉, where ω is the computer’s word size

6 for j = κ− 1, j ≥ 0, j −− do
7 R = 2ωR+ sjt
8 R = R mod n

9 s = R

// lines 10 -- 14 implement t = t ∗ t mod n

10 R = 0
11 for j = κ− 1, j ≥ 0, j −− do
12 R = 2ωR+ tjt
13 R = R mod n

14 t = R

15 return s

282

Similar to before, we consider fault injections in the variables in Algorithm 5.10 at a certain time.
Suppose di = 1 and a fault is injected during the ith iteration of the outer loop and at the time

when j is less than j0 during the loop starting from line 6, in the register containing sj0 , where
0 ≤ j0 ≤ κ − 1. The fault in sj0 will not affect the output since sj0 is used when j is equal to j0 and
the value in s is replaced by R in line 9.

Suppose di = 0 and a fault is injected during the ith iteration of the outer loop in the register
containing sj0 (0 ≤ j0 ≤ κ − 1), then the value in s will be changed and the final result will be
different.

From these observations, similarly to the attack on Algorithm 5.9, the attacker first assumes di =
1, and injects fault in sj0 at the time corresponding to j < j0. If the final result is not changed, the
attacker can conclude that di = 1, otherwise, di = 0. The attacker can then repeat the attack for
different values of i to recover the entire private key.

Similar techniques can also be applied to attack the left-to-right square and multiply algorithm
with Blakely’s method. We refer the interested reader to [YJ00].

Example 5.3.7. Let us repeat the computations in Example 5.3.5 with Algorithm 5.10. We have

p = 3, q = 5, n = 15, d = 3 = 112, m = 2, ℓn = 4, ℓd = 2, ω = 2, κ = 2.

With Algorithm 5.10, lines 1 and 2 give

s = 1, s0 = 01, s1 = 00. t = 2, t0 = 10, t1 = 00.

The intermediate values during the computation are

i = 0 d0 = 1
loop line 6 j = 1 R = 2ωR+ s1t mod n = 0

j = 0 R = 2ωR+ s0t mod n = 0 + 2 mod 15 = 2
line 9 s = 2 s0 = 10, s1 = 00
loop line 11 j = 1 R = 2ωR+ t1t mod n = 0

j = 0 R = 2ωR+ t0t mod n = 0 + 2× 2 mod 15 = 4
line 14 t = 4 t0 = 00, t1 = 01

i = 1 d1 = 1
loop line 6 j = 1 R = 2ωR+ s1t mod n = 0

j = 0 R = 2ωR+ s0t mod n = 0 + 2× 4 mod 15 = 8
line 9 s = 8

Hence the correct output is 8.
Suppose the attacker would like to find out what is d0. They make the guess that d0 = 1, and

injects faults into s1 when i = 0 for the outer loop and j = 0 in the loop starting from line 6. We note
that s1 is used (blue s1 in the above equations) before j = 0 and reassigned value in line 9 (orange
s1 in the above equations). Thus the computations are not affected and the final result is unchanged.
The attacker can conclude that d0 = 1.

Example 5.3.8. Let d = 2 = 102 and keep the rest of the parameters as in Example 5.3.7. Then

s = md mod n = 22 mod 15 = 4.

With Algorithm 5.10, lines 1 and 2 give

s = 1, s0 = 01, s1 = 00. t = 2, t0 = 10, t1 = 00.

And the intermediate values are

i = 0 d0 = 0
loop line 11 j = 1 R = 2ωR+ t1t mod n = 0

j = 0 R = 2ωR+ t0t mod n = 0 + 2× 2 mod 15 = 4
line 14 t = 4 t0 = 00, t1 = 01

i = 1 d1 = 1
loop line 6 j = 1 R = 2ωR+ s1t mod n = 0

j = 0 R = 2ωR+ s0t mod n = 0 + 1× 4 mod 15 = 4
line 9 s = 4

283

Hence the correct output is 4.
Now we consider an attacker who would like to recover the value of d0. They make the guess

that d0 = 1, estimates the time for i = 0 in the outer loop and j = 0 in the loop starting from line 6,
and injects faults into s1 at this point of time. Since d0 = 0, s is not used in the iteration for i = 0.
We can assume the fault is injected before the start of the next iteration as the computation time for
lines 10 – 14 is similar to that for lines 5 – 9.

Suppose the faulty s1 has a value 01. The intermediate values will be as follows:

i = 0 d0 = 0
loop line 11 j = 1 R = 2ωR+ t1t mod n = 0

j = 0 R = 2ωR+ t0t mod n = 0 + 2× 2 mod 15 = 4
line 14 t = 4 t0 = 00, t1 = 01

i = 1 d1 = 1
loop line 6 j = 1 R = 2ωR+ s1t mod n = 0 + 1× 4 mod 15 = 4

j = 0 R = 2ωR+ s0t mod n = 22 × 4 + 1× 4 mod 15 = 5
line 9 s = 5

Where the green s1 is the faulty s1. The final result is changed, and the attacker can conclude d0 = 0.

5.4 Fault Countermeasures for RSA and RSA Signatures

In this section, we will discuss a few countermeasures for the attacks presented in Section 5.3. We
keep the same notations as before. p and q are two distinct odd primes and n = pq. d ∈ Z∗

φ(n) is the
private key for RSA signatures and e = d−1 mod φ(n). n has bit length ℓn. d has bit length ℓd with
the following binary representation (see Theorem 1.1.1):

d =

ℓd−1∑

i=0

di2
i.

m denotes the hash value of the message. s = md mod n is the corresponding signature.
CRT-based implementation of RSA signatures computes

sp := md mod (p−1) mod p, sq := md mod (q−1) mod q, (5.26)

and s is given by Gauss’s algorithm,

s = spyqq + sqypp mod n,

or by Garner’s algorithm,
s = sp + ((sq − sp)yp mod q)p,

where
yq = q−1 mod p, yp = p−1 mod q. (5.27)

5.4.1 Shamir’s Countermeasure

A simple countermeasure proposed by A. Shamir [Sha97] for the Bellcore attack (Section 5.3.1) is
to use an extended modulus. More specifically, let r be a random ℓr−bit prime number. Typically
ℓr = 32 [KQ07]. Instead of computing sp and sq as given in Equation 5.26, we compute

s∗p = md mod (p−1)(r−1) mod pr, s∗q = md mod (q−1)(r−1) mod qr. (5.28)

Then we check if
s∗p ≡ s∗q mod r. (5.29)

If yes, the signature s is given by
s = s∗pyqq + s∗qypp mod n. (5.30)

284

Firstly, we note that when there is no fault, by Equation 5.28,

s∗p ≡ md mod (p−1)(r−1) mod p.

Let
a = d mod (p− 1)(r − 1),

then we can write
d = a+ b(p− 1)(r − 1)

for some integer b. We have

d ≡ a ≡ (d mod (p− 1)(r − 1)) mod (p− 1).

By Corollary 1.4.3,
s∗p ≡ md mod (p−1) mod p. (5.31)

Hence
s∗p ≡ md mod (p−1) ≡ sp mod p.

Similarly,
s∗q ≡ md mod (q−1) ≡ sq mod q.

Consequently, s given by Equation 5.30 satisfies

s ≡ s∗pyqq ≡ s∗p ≡ sp mod p, s ≡ s∗qypp ≡ s∗q ≡ sq mod q

and is indeed the signature md mod n.
Furthermore, since r is prime, by a similar argument for Equation 5.31, we have

s∗p ≡ md mod (r−1) mod r, s∗q ≡ md mod (r−1) mod r,

which gives
s∗p ≡ s∗q mod r.

Suppose the Bellcore attack is to be carried out and a malicious fault is injected during the com-
putation (Equation 5.28) of s∗p or s∗q , but not both. Without loss of generality, let us assume s∗p is faulty
and s∗q is computed correctly. Let s∗

′
p denote the faulty s∗p. The fault will be detected if

s∗
′

p ̸≡ s∗q mod r,

which means the probability of injecting an undetectable fault is the probability of producing s∗
′

p such
that

s∗
′

p ≡ s∗q mod r. (5.32)

If we assume the fault is injected so that the resulting value of s∗
′

p is random and follows a uniform
distribution in Zpr, then the probability for s∗

′
p to satisfy Equation 5.32 is 1/r. Thus, with Shamir’s

countermeasure, the Bellcore attack will be successful with probability 1/r. When the bit length of r
is around 32 bits, this probability is about 2−32.

Example 5.4.1. Let us compute the signature from Example 5.3.1 with Shamir’s countermeasure. We
have

p = 5, q = 7, n = 35, d = 5, m = 6.

Suppose r = 3. By Equation 5.28,

s∗p = md mod (p−1)(r−1) mod pr = 65 mod (4×2) = 65 mod 15 = 6,

s∗q = md mod (q−1)(r−1) mod qr = 65 mod (6×2) = 65 mod 21 = 6.

We can check that
s∗p ≡ s∗q ≡ 0 mod 3.

285

We have shown in Example 3.5.8 that yq = 3 and yp = 3. By Equation 5.30, the signature is given by

s = s∗pyqq + s∗qypp mod n = 6× 3× 7 + 6× 3× 5 mod 35 = 6,

which agrees with the computations in Example 5.3.1.
Suppose an error occurred during the computation of s∗p, and the faulty value s∗

′
p = 4. Then we

would have
s∗

′
p ̸≡ s∗q mod r.

However, in case s∗
′

p = 9, we have
s∗

′
p ≡ s∗q ≡ 0 mod 3,

and the faulty signature will be

s′ = s∗
′

p yqq + s∗qypp mod n = 9× 3× 7 + 6× 3× 5 mod 35 = 34.

In this case, the attacker can repeat the Bellcore attack by computing

q = gcd(s′ − s, n) = gcd(34− 6, 35) = gcd(28, 35) = 7.

Example 5.4.2. Let us compute the signature from Example 5.3.2, by Shamir’s countermeasure. We
have

p = 11, q = 13, n = 143, d = 11, m = 2.

Suppose r = 5. By Equation 5.28,

s∗p = md mod (p−1)(r−1) mod pr = 211 mod 55 = 13,

s∗q = md mod (q−1)(r−1) mod qr = 211 mod 65 = 33.

We can check that
s∗p ≡ s∗q ≡ 3 mod 5.

We have shown in Example 5.3.2 that yq = 6 and yp = 6. By Equation 5.30, the signature is given by

s = s∗pyqq + s∗qypp mod n = 13× 6× 13 + 33× 6× 11 mod 143 = 46,

which agrees with the computations in Example 5.3.2.
Suppose an error occurred during the computation of s∗p, and the faulty value s∗

′
p = 10. Then we

would have
s∗

′
p ̸≡ s∗q mod r.

However, in case s∗
′

p = 3, we have
s∗

′
p ≡ s∗q ≡ 3 mod 5,

and the faulty signature will be

s′ = s∗
′

p yqq + s∗qypp mod n = 10× 6× 13 + 33× 6× 11 mod 143 = 98,

In this case, the attacker can repeat the Bellcore attack by computing

q = gcd(s′ − s, n) = gcd(98− 46, 143) = gcd(52, 143).

By the Euclidean algorithm

143 = 52× 2 + 39, gcd(52, 143) = gcd(52, 39),
52 = 39× 1 + 13, gcd(52, 39) = gcd(39, 13),
39 = 13× 3, q = gcd(39, 13) = 13.

286

5.4.2 Infective Countermeasure

Although Shamir’s countermeasure can effectively protect RSA signature computations against the
Bellcore attack (Section 5.3.1), a simple improved attack is to bypass the check of Equation 5.29 using
an instruction skip.

In this subsection, we will discuss a more sophisticated countermeasure against the Bellcore at-
tack, an infective countermeasure, proposed by Sung-Ming et al. [SMKLM02]. The main goal of the
countermeasure is to make sp (Equation 5.26) faulty if sq is faulty, hence the name “infective”. We
have discussed an infective countermeasure for AES in Section 5.2.2. We remark that the infective
countermeasure was first proposed for RSA signatures.

The same as before, let p and q be distinct odd primes. n = pq. d is the private key for RSA
signatures. e = d−1 mod φ(n). m is the hash value for the message. Recall that

yq = q−1 mod p, yp = p−1 mod q.

We select a random integer r such that gcd(dr, φ(n)) = 1 and er is a small integer, where

dr = d− r,

and
er = d−1

r mod φ(n). (5.33)

Let

kp =

⌊
m

p

⌋
, kq =

⌊
m

q

⌋
.

The signature s is then computed using Equations 5.34 – 5.39.

sp = mdr mod p, (5.34)
m̂ = ((serp mod p) + kpp) mod q, (5.35)

sq = m̂dr mod q, (5.36)
sdr = spyqq + sqypp mod n, (5.37)
m̃ = (serq mod q) + kqq, (5.38)
s = sdrm̃

r mod n. (5.39)

In Lemma 5.4.1, we will show that the signature s computed above is indeed equal to the signa-
ture given by md mod n.

Lemma 5.4.1.
s ≡ md mod n. (5.40)

Proof. By definition of er (Equation 5.33),

drer ≡ 1 mod φ(n).

Since φ(n) = (p− 1)(q − 1), we have

drer ≡ 1 mod (p− 1).

By Corollary 1.4.3,
mdrer mod p = m mod p.

Furthermore, ⌊
m

p

⌋
p = m− (m mod p).

Hence

(mdrer mod p) +

⌊
m

p

⌋
p = m. (5.41)

By Equations 5.34 and 5.35, we have
m̂ = m mod q.

287

By Equation 5.36,
sq ≡ mdr mod q.

Together with Equation 5.34, it follows from Chinese Remainder Theorem (see Theorem 1.4.7 and
Example 1.4.19) that

sdr ≡ mdr mod n.

Following a similar argument that leads to Equation 5.41, we can show

m̃ = (serq mod q) + kqq = mdrer mod q +

⌊
m

q

⌋
q = m.

Finally by Equation 5.39,

s = sdrm̃
r mod n = mdrmr mod n = md−r+r = md mod n.

Next, we show that the Bellcore attack cannot succeed if s is calculated using Equations 5.34
– 5.39.

Proposition 5.4.1. Suppose p < q. If sp is faulty, then sq is also faulty.

Proof. Let s′p denote the faulty value of sp, then sp ̸= s′p. By Corollary 1.4.4,

serp ̸≡ s
′er
p mod p.

Since p < q,
(serp mod p) mod q ̸= (s

′er
p mod p) mod q.

By Equation 5.35, m̂ is faulty. Thus sq is also faulty by Equation 5.36.

Lemma 5.4.2. Suppose p > q. The cardinality of the set

{ (a, b) | a, b ∈ Zp, a ̸= b, a ≡ b mod q }

is given by

E := 2(p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
.

Proof. There are

(p mod q)

(⌊
p

q

⌋
+ 1

)

many a ∈ Zp such that
0 ≤ a mod q ≤ (p mod q)− 1.

In this case, there are
⌊
p
q

⌋
of b ∈ Zp such that b ≡ a mod q.

There are

q − (p mod q)

(⌊
p

q

⌋
+ 1

)
= (q − p mod q)

⌊
p

q

⌋

many a ∈ Zp such that
p mod q ≤ a mod q ≤ q − 1.

In this case, there are
⌊
p
q

⌋
− 1 of b ∈ Zp such that b ≡ a mod q. We have

E = (p mod q)

(⌊
p

q

⌋
+ 1

)⌊
p

q

⌋
+ (q − p mod q)

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)

= (p mod q)

⌊
p

q

⌋⌊
p

q

⌋
+ (p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
− (p mod q)

⌊
p

q

⌋⌊
p

q

⌋
+ (p mod q)

⌊
p

q

⌋

= 2(p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
.

288

Example 5.4.3. Let p = 7, q = 5. There are

(p mod q)

(⌊
p

q

⌋
+ 1

)
= 2× (1 + 1) = 4

many a ∈ Z7 such that

0 ≤ a mod q ≤ (p mod q)− 1, i.e. 0 ≤ a mod 5 ≤ 1.

Those values of a are given by { 0, 1, 5, 6 }. In this case, there are
⌊
p

q

⌋
=

⌊
7

5

⌋
= 1

many b ∈ Z7 such that b ≡ a mod q. In particular, all possible values of (a, b) are given by

(0, 5), (5, 0), (1, 6), (6, 1).

There are

(q − p mod q)

⌊
p

q

⌋
= (5− 2)× 1 = 3

many a ∈ Z7 such that

p mod q ≤ a mod q ≤ q − 1, i.e. 2 ≤ a mod 5 ≤ 4.

The values of a are given by { 2, 3, 4 }. In this case, there are
⌊
p

q

⌋
− 1 = 0.

many b ∈ Z7 such that b ≡ a mod q. For example, there is no other number except for 2 in Z7 that is
congruent to 2 mod 7.
Thus the total number of pairs (a, b) is 4. We can check that

E = 2(p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
= 2× 2 + 5× 0 = 4.

Proposition 5.4.2. Suppose p > q. If sp is faulty, the probability for sq to be also faulty is

1− E

p(p− 1)
.

Proof. Let s′p denote the faulty value of sp, then sp ̸= s′p. By Corollary 1.4.4,

serp ̸≡ s
′er
p mod p.

There are p(p−1) distinct pairs (sp, s′p). By Equations 5.35, 5.36 and Lemma 5.4.2, there are E possible
pairs (sp, s′p) that produce the same m̂, hence the same sq.

Thus the probability for sq to be faulty is

1− E

p(p− 1)
.

We note that in practice, p is large, and p and q are of similar bit lengths. Then E will be small
compared to p(p− 1).

Example 5.4.4. Let p = 421, q = 419, then

E = 2(p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
= 2× 2× 1 + 419× 1× 0 = 4.

and
1− E

p(p− 1)
= 1− 4

421× 420
= 0.99998.

289

Proposition 5.4.3. If sq is faulty and sp is computed correctly, the attacker cannot compute q =

gcd(s
′er
dr −m,n) without brute force.

Proof. Suppose sq is faulty and sp is computed correctly. Let s′dr, m̃′, s′q and s′ denote the faulty values
of sdr, m̃, sq and s respectively.

To carry out the Bellcore attack, the attacker needs to compute

q = gcd(s
′er
dr −m,n).

However, the attacker does not have the knowledge of s′dr. Instead, we can assume that the attacker
knows s′. To get s′dr, attacker needs to compute m̃

′r.
We note that there are q − 1 possible values for s′q. By Corollary 1.4.4 and Equation 5.38, there are

q − 1 possible values for m̃′. And by Corollary 1.4.6, there are q − 1 possible values for m̃
′r mod n.

Thus the attacker cannot tell which value in Zn is m̃
′r mod n even with the knowledge of m and r

because of the unknown m̃′. In conclusion, the attacker needs to brute force all possible values for
m̃

′r mod n in Zn.

In summary, the Bellcore attack assumes one of sp and sq is faulty, but not both. For the infective
countermeasure, we have shown

• When p < q, if sp is faulty, sq will also be faulty.

• When p > q, if sp is faulty, then sq has a high probability to be faulty.

• If sq is faulty and sp is not faulty, the attacker cannot repeat the attack without brute force.

Example 5.4.5. Let p = 3, q = 5 and m = 3. Then n = 15, φ(n) = 8. As discussed in Example 3.5.5,
yp = 2, yq = 2. Suppose d = 5.

To compute the signature with the infective countermeasure, choose r = 2, and we have

dr = d− r = 5− 2 = 3. er = 3−1 mod 8 = 3.

kp =

⌊
m

p

⌋
=

⌊
3

3

⌋
= 1, kq =

⌊
m

q

⌋
=

⌊
3

5

⌋
= 0.

And

sp = mdr mod p = 33 mod 3 = 0,

m̂ = ((serp mod p) + kpp) mod q = 0 + 3 mod 5 = 3,

sq = m̂dr mod q = 33 mod 5 = 27 mod 5 = 2,

sdr = spyqq + sqypp mod n = 0 + 2× 2× 3 mod 15 = 12,

m̃ = (serq mod q) + kqq = 23 mod 5 + 0 = 8 mod 5 = 3,

s = sdrm̃
r mod n = 12× 32 mod 15 = 108 mod 15 = 3.

We can verify that
s = md mod n = 35 mod 15 = 243 mod 15 = 3.

If sp is faulty and s′p = 1, then

m̂′ = ((s
′er
p mod p) + kpp) mod q = (1 + 3) mod 5 = 4,

s′q = m̂
′dr mod q = 43 mod 5 = 64 mod 5 = 4.

Thus sq is also faulty, as has been shown in Proposition 5.4.1.
If sq is faulty with s′q = 1 and sp is computed correctly, then

s′dr = spyqq + s′qypp mod n = 0 + 1× 2× 3 mod 15 = 6.

We note that
p = gcd(s

′er
dr −m,n) = gcd(63 − 3, 15) = gcd(213, 15). (5.42)

290

By the Euclidean algorithm

213 = 15× 14 + 3, gcd(213, 15) = gcd(15, 3),
15 = 3× 5, p = gcd(15, 3) = 3.

However, the attacker does not have the knowledge of m̃
′r to get the value of s′dr from s′. Thus

from their point of view, any value in Zn = Z15 might be m̃
′r. And they cannot compute p as in

Equation 5.42.

Example 5.4.6. Let us compute the signature from Example 5.3.2 with the infective countermeasure.
We have

p = 11, q = 13, n = 143, m = 2, φ(n) = 120, d = 11, yp = 6, yq = 6.

Choose r = 4, then
dr = d− r = 11− 4 = 7.

By the extended Euclidean algorithm,

120 = 7× 17 + 1 =⇒ 1 = 120− 7× 17,

hence
er = d−1

r mod φ(n) = −17 mod 120 = 103.

We also have

kp =

⌊
m

p

⌋
=

⌊
2

11

⌋
= 0, kq =

⌊
m

q

⌋
=

⌊
2

13

⌋
= 0.

And

sp = mdr mod p = 27 mod 11 = 128 mod 11 = 7,

m̂ = ((serp mod p) + kpp) mod q = (7103 mod 11 + 0) mod 13 = (7103 mod 10 mod 11) mod 13

= (73 mod 11) mod 13 = (343 mod 11) mod 13 = 2,

sq = m̂dr mod q = 27 mod 13 = 128 mod 13 = 11,

sdr = spyqq + sqypp mod n = 7× 6× 13 + 11× 6× 11 mod 143 = 128,

m̃ = (serq mod q) + kqq = 11103 mod 13 + 0 = 11103 mod 12 mod 13 = 117 mod 13 = 2,

s = sdrm̃
r mod n = 128× 24 mod 143 = 2048 mod 143 = 46.

Suppose sp is faulty and s′p = 2. Then

m̂′ = ((s
′er
p mod p) + kpp) mod q = (2103 mod 11 + 0) mod 13 = 23 mod 11 = 8,

s′q = m̂
′dr mod q = 87 mod 13 = 5.

Thus s′q is also faulty, as has been shown in Proposition 5.4.1.

Example 5.4.7. Now let us assume p = 13, q = 11. Let d = 11 and r = 4 as in Example 5.4.6. We have

n = 143, φ(n) = 120, yp = 6, yq = 6, dr = 7, er = 103, kp = 0, kq = 0.

Suppose m = 12, then

sp = mdr mod p = 127 mod 13 = 12,

m̂ = ((serp mod p) + kpp) mod q = (12103 mod 13 + 0) mod 11 = (127 mod 13) mod 11 = 12 mod 11 = 1,

sq = m̂dr mod q = 17 mod 11 = 1,

sdr = spyqq + sqypp mod n = 12× 6× 11 + 1× 6× 13 mod 143 = 12,

m̃ = (serq mod q) + kqq = 1103 mod 11 + 0 = 1,

s = sdrm̃
r mod n = 12× 1 mod 143 = 12.

291

We can check that
s = md mod n = 1211 mod 143 = 12.

Suppose sp is faulty and s′p = 2. Then

m̂′ = ((s
′er
p mod p) + kpp) mod q = (2103 mod 13 + 0) mod 13 = 27 mod 13 = 11,

s′q = m̂
′dr mod q = 117 mod 13 = 2.

Thus s′q is also faulty.
By Lemma 5.4.2,

E = 2(p mod q)

⌊
p

q

⌋
+ q

⌊
p

q

⌋(⌊
p

q

⌋
− 1

)
= 2× 2 + 0 = 4.

By Proposition 5.4.2, the probability for sp to be faulty and sq to be computed correctly is given by

E

p(p− 1)
=

4

13× (13− 1)
=

1

39
≈ 0.0256.

5.4.3 Countermeasure for Attacks on the Square and Multiply Algorithm

In this subsection, we discuss a simple countermeasure proposed in [JPY01] for the attacks discussed
in Section 5.3.2. It follows a similar idea as Shamir’s countermeasure (Section 5.4.1) for the Bellcore
attack.

First, we choose a small random number r. Compute

y = md mod r, z = md mod nr.

If z ̸≡ y mod r, we conclude that an error has occurred, otherwise, the signature is given by

s = z mod n.

By Lemma 1.1.1 (6)

y = md mod r, z = md mod nr =⇒ r|(y −md), nr|(z −md) =⇒ r|(y − z).

If there is no error during the computation, we have z ≡ y mod r.
Furthermore, we note that the probability of an undetected fault is the probability of

z′ ≡ y′ mod r, (5.43)

where z′ and y′ denote the values of z and y when fault is present during the computation. If we
assume the fault is random then the probability of achieving Equation 5.43 can be approximated by
the probability that two random numbers are congruent modulo r, which is 1/r. If r is an integer of
bit length 20, the probability is less than 10−6.

Example 5.4.8. Let us consider the computation from Example 5.3.3. We have

p = 3, q = 5, n = 15, d = 3 = d1d0 = 11, m = 2.

Following the above countermeasure, suppose r = 3, we have

y = md mod r = 23 mod 3 = 2, z = md mod nr = 23 mod 45 = 8.

We can check that
z ≡ y ≡ 2 mod r.

And the signature is given by
s = z mod n = 8 mod 15 = 8.

Now if there is a bit flip on the least significant bit of d, d0, resulting in d′ = 2. Then

y′ = md′ mod r = 22 mod 3 = 1, z′ = md′ mod nr = 22 mod 45 = 4.

292

We have
y′ ̸≡ z′ mod r.

On the other hand, if the bit flip is on d1 and we get d′ = 1, then

y′ = md′ mod r = 21 mod 3 = 2, z′ = md′ mod nr = 21 mod 45 = 2.

We have
y′ ≡ z′ ≡ 2 mod r.

And
s′ = z′ mod n = 2 mod 15 = 2.

In this case, the attack described in Section 5.3.2 can be repeated. In particular, the attacker computes

s′

s
=

2

8
mod 15 = 2−2 mod 15, m2i = 22 mod 15 =⇒ s′

s
≡ m−2i mod n.

By Equation 5.21, d1 = 1.

5.4.4 Countermeasures Against the Safe Error Attack

We note that a simple countermeasure exists for the safe error attack presented in Section 5.3.4.
We first consider protecting the simple algorithm in Algorithm 5.9. Recall that a, b ∈ Zn. ℓn is the

bit length of n, and the bit lengths of a, b are at most ℓn.

κ = ⌈ℓn/ω⌉,

where ω is the word size of the computer We can store a in κ registers, each containing one ai and

a =

κ−1∑

i=0

ai(2
ω)i.

Similarly, we can write b as

b =
κ−1∑

i=0

bi(2
ω)i,

where each bi is stored in one register. Then we can modify Algorithm 5.9 to Algorithm 5.11. Suppose
c = 1 and the fault is in bi0 when i < i0, for some i0 that satisfies 0 ≤ i0 ≤ κ − 1. Since bi0 is used
before the fault happens, the final result will not be affected. Suppose c = 0, then a fault in bi0 at
any time will not change the final output either. If a fault is injected in a, the output will be faulty no
matter what value c takes. Thus, Algorithm 5.11 is not vulnerable to the safe error attack discussed
in Section 5.3.4.

Algorithm 5.11: Modified Algorithm 5.9 to counter the safe error attack.
Input: n, a, b, c// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn; c = 0, 1

Output: ab mod n if c = 1 and a otherwise
1 if c = 1 then
2 R = 0

// κ = ⌈ℓn/ω⌉, where ω is the computer’s word size

3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ bia
5 R = R mod n

6 a = R

7 return a

Similarly, we can change line 18 of Algorithm 5.8 to

R = 2ωR+R1iR0.

293

Algorithm 5.12: RSA signature computation with Montgomery powering ladder and
Blakely’s method (Algorithm 5.8), protected against the safe error attack from Section 5.3.4.

Input: n, m, d// n is the RSA modulus of bit length ℓn; m is the hash value of the

message; d is the private key of bit length ℓd

Output: md mod n
1 R0 = 1
2 R1 = m
3 for j = ℓd − 1, j ≥ 0, j −− do
4 if dj = 0 then

// lines 5 -- 9 implement R1 = R0R1 mod n

5 R = 0
6 for i = κ− 1, i ≥ 0, i−− do

// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

7 R = 2ωR+R0iR1

8 R = R mod n

9 R1 = R
// lines 10 -- 14 implement R0 = R2

0 mod n

10 R = 0
11 for i = κ− 1, i ≥ 0, i−− do
12 R = 2ωR+R0iR0

13 R = R mod n

14 R0 = R

15 else
// lines 16 -- 20 implement R0 = R0R1 mod n

16 R = 0
17 for i = κ− 1, i ≥ 0, i−− do
18 R = 2ωR+R1iR0

19 R = R mod n

20 R0 = R
// lines 21 -- 25 implement R1 = R2

1 mod n

21 R = 0
22 for i = κ− 1, i ≥ 0, i−− do
23 R = 2ωR+R1iR1

24 R = R mod n

25 R1 = R

26 return R0

We get Algorithm 5.12. In this case, suppose dj = 0 and a fault is injected in the variable R0i0 , during
the jth iteration of the outer loop and at the time i < i0 in the loop starting from line 6, where
0 ≤ i0 ≤ κ− 1. The final output will be faulty because the faulty R0i0 will be used in line 12. If a fault
is injected in R0i0 in the loop starting from line 11, since the value in the whole variable R0 is used in
line 12, the fault will propagate to the output.

On the other hand, if dj = 1 and a fault is injected in R0i0 during the jth iteration of the outer
loop, specifically at the time i < i0 in the loop starting from line 17, where 0 ≤ i0 ≤ κ − 1, the final
output will also be faulty because the faulty R0i0 will be used in line 18. If the fault is injected in the
jth iteration of the outer loop in R0i0 in the loop starting from line 22, the fault will stay till the next
iteration of the outer loop and affect the output.

If a fault is injected in R1i0 for some i0, by a similar argument, the signature will always be faulty
whether dj = 0 or dj = 1.

Thus Algorithm 5.12 is resistant to the safe error attack discussed in Section 5.3.4.1.
In the same manner, to protect Algorithm 5.10 against the safe error attack, we can just change

294

Algorithm 5.13: RSA signature signing computation with the right-to-left square and multi-
ply algorithm and Blakely’s method (Algorithm 5.10), protected against the safe error attack
from Section 5.3.4.2.

Input: n, m, d// n is the RSA modulus of bit length ℓn; m is the hash value of the

message; d is the private key of bit length ℓd

Output: md mod n
1 s = 1
2 t = m
3 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

4 if di = 1 then
// lines 5 -- 9 implement s = s ∗ t mod n

5 R = 0
// κ = ⌈ℓn/ω⌉, where ω is the computer’s word size

6 for j = κ− 1, j ≥ 0, j −− do
7 R = 2ωR+ tjs
8 R = R mod n

9 s = R

// lines 10 -- 14 implement t = t ∗ t mod n

10 R = 0
11 for j = κ− 1, j ≥ 0, j −− do
12 R = 2ωR+ tjt
13 R = R mod n

14 t = R

15 return s

line 7 to
R = 2ωR+ tjs.

We get Algorithm 5.13. If di = 1, a fault during the ith iteration in sj0 (0 ≤ j0 ≤ κ− 1) will affect the
result since the faulty sj0 will be used in line 7. If di = 0, s is not used in the ith iteration, but the faulty
sj0 will be used in the next iteration and affect the final output. On the other hand, a fault in t will
always propagate to the output since the faulty value will be used in line 12. Thus Algorithm 5.13 is
resistant to the safe error attack discussed in Section 5.3.4.2.

295

5.5 Further Reading

Differential fault analysis. We have seen the diagonal DFA attack on AES in Section 5.1.1.2. Tunstall
et. al [TMA11] demonstrated that using this attack and by exploiting the relation between K10 (the
last round key) and K9 (the second last round key), the key guesses for K10 can be further reduced to
212. Piret and Quisquater [PQ03] discussed another DFA attack on AES that injects fault to the input
of MixColumns in round 9. Phan et al. [PY06] proposed to combine cryptanalysis techniques with
DFA to recover the secret key of AES.

DFA attacks on PRESENT implementations can be found in e.g. [BEG13, WW10, BH15]. A gener-
alization of DFA to SPN ciphers is given in [KHN+19].

Persistent fault analysis (PFA). We discussed PFA attack on AES in Section5.1.3. PFA can also be ap-
plied to other block ciphers, e.g. PRESENT [ZZJ+20], feistel cipher [CB19]. In [ZZY+19], the authors
demonstrated a practical fault injection in the AES Sbox lookup table. In 2020, Xu et. al [XZY+20]
discussed PFA attacks in earlier rounds of AES and other SPN ciphers. Notably, AI has also been
adopted for PFA to recover the key for AES [COZZ23].

Other fault attack methodologies on symmetric block ciphers. There are many other fault attack
methods. Here we give more information on a few of them.

Ineffective fault analysis (IFA) was first introduced in [Cla07], where the faults that do not change
the intermediate values are exploited. Those faults are called ineffective faults. Normally a particular
fault model is assumed, e.g. a stuck-at-0 fault model. We note that IFA is dependent on the effect a
fault has on the corrupted data. In comparison, the safe error attack (Section 5.3.4) does not require
a specific fault model, an intermediate value is changed and the knowledge of whether the faulty
value is used or not is exploited.

Statistical ineffective fault attack (SIFA) [DEK+18] combines both SFA (Section 5.1.2) and IFA. A
non-uniform fault model is assumed and the attack exploits ineffective faults. More precisely, the
dependency between the fault induction being ineffective and the data that is processed is exploited.
Different from SFA, SIFA does not require each fault to be successful, but the attack requires repeated
plaintext, and knowledge of the correct ciphertext (or whether each ciphertext is correct or not). The
fault injection is the same as described in Section 5.1.2.2. After the attacker obtains a set of ciphertexts,
they filters out the correct ones. With each hypothesis of four bytes of K10, the attacker can compute
a hypothesis of the original byte value s00. Then statistical methods, such as maximum likelihood
as discussed in Section 5.1.2.1, can be applied to find the correct key hypothesis. In [DEK+18], the
authors provide a detailed theoretical analysis of the number of ciphertexts needed and extensive
experimental results.

Collision fault analysis [BK06] injects fault in the earlier rounds of a block cipher implementation.
Then the attacker records the faulty ciphertext and finds plaintext that produces the same ciphertext,
but without fault. Further analysis using those plaintexts can recover the secret key. If the fault only
changes one bit or one byte of the intermediate value, the attacker can try different plaintexts that
only differ at one bit or one byte.

Algebraic fault analysis (AFA) [CJW10] is similar to DFA. It also exploits differences between cor-
rect and faulty ciphertexts. But DFA relies on manual analysis and AFA expresses cryptographic
algorithm in the form of algebraic equations and utilizes SAT solver1 to recover the key.

Fault sensitivity analysis [LSG+10] exploits the sensitivity of a device to faults. The attack analyzes
when a faulty output begins to exhibit some detectable characteristics and utilizes the information to
recover the secret key. No knowledge of faulty ciphertext is required for the attack.

Fault attacks on RSA and RSA signatures. Shamir’s countermeasure (Section 5.4.1) for the Bellcore
attack (Section 5.3.1) was broken in 2002 [ABF+03]. Infective countermeasure (Section 5.4.2) for the
Bellcore attack was broken in 2006 [YKM06]. There are also various other countermeasures, such as
BOS algorithm [BOS03] and Vigilant’s algorithm [Vig08].

As mentioned in Section 5.3.1, the very first fault attack on cryptographic implementations was

1An SAT solver solves Boolean satisfiability problems. It takes a Boolean logic formula and checks if there is a solution
satisfying the formula.

296

proposed in [BDL97] for attacking RSA signatures. In this paper, the authors also discussed an attack
aiming at the intermediate values of the square and multiply algorithm to recover the private key.
More attacks on the square and multiply algorithm are proposed in e.g. [Bor06], [SH08].

The first attack on RSA modulus n was proposed in [Sei05], where the goal of the attacker is to
corrupt RSA signature verification in a way that there is a high probability that the verification will
be successful for signatures created by the attacker using their own private key and message. In
more detail, the attack requires the faulty n′ to be a prime number known to the attacker such that
gcd(e, n′ − 1) = 1, where e is the public key of RSA. Then the attacker can compute their private key
d′ = e−1 mod n′ − 1 using the extended Euclidean algorithm and sign their chosen message with
their private key. The authors proved that there is a high probability to produce a faulty n′ with the
above property. Another attack on RSA modulus can be seen in [BCMCC06].

As mentioned in Section 5.3, even though no systematic methodologies exist for fault attacks on
public key ciphers, the general attack concept can be applied to a different cipher based on a similar
intractable problem. For example, the attack on the square and multiply algorithm described in Sec-
tion 5.3.2 can be applied to attack discrete logarithm-based ciphers [BDH+97].

Fault countermeasures for symmetric block ciphers. In Section 5.2, we have seen two countermea-
sures for symmetric block ciphers.

Detection-based countermeasures. In Section 5.2.1, we have discussed encoding-based countermea-
sures and we have seen a proposal to use anticodes for the implementation. Similar to the reasoning
mentioned in Remark 5.2.1, fault attacks based on knowledge of faulty ciphertext and certain bit-flip
fault models can be prevented by encoding-based countermeasures, e.g. IFA, SIFA, and AFA.

There are also other proposals for different code designs. For example, in [KKT04], the authors
proposed a special type of code for hardware countermeasures. The code is defined by

C =
{
(x,w)

∣∣∣ x ∈ Fk
2,w = (Px)3 ∈ Fr

2

}
,

where H = (P |I) is a parity-check matrix for a binary [n, k]−code, and r = n − k. Akdemir et
al. [AWKS12] considered robust codes. A binary code of length n is said to be R−robust if

max
e̸=0
|C ∩ C + e| = R,

where
C + e = { c+ e | c ∈ C, e ∈ Fn

2 } .
In [GGP09], the authors proposed to use a digest value for the cipher state and update it after each

operation. The fault can be detected through the digest values. See also [MSY06] for a comparative
study on a few detection-based countermeasures for symmetric block ciphers.

Infective countermeasure. Infective countermeasure was first introduced for RSA [SMKLM02] (see
Section 5.4.2). Then it was adopted for symmetric block cipher in 2012 [GST12], where the authors
discussed the implementation for both SPN and Feistel ciphers. In 2014, Tupsamudre et. al broke
this countermeasure for AES and proposed an improved version [TBM14] for AES implementations.

As we have seen in Section 5.2.2, the infective countermeasure returns a ciphertext in a way that
if the attacker does not know the correct ciphertext will not be able to tell if the fault injection was
successful or not. However, as shown in [DEK+18], for SIFA, even though the attacker does not
know whether the ineffective fault occurred in the target AES round or anywhere else, they can pre-
calculate the probability of faulting the target round and analyze the obtained ciphertext utilizing
this probability.

Generally-applicable fault countermeasures. For fault attack countermeasures, except for those
introduced in this chapter, there are also many other techniques. Similarly to SCA countermeasures
(Section 4.6), we can divide them according to the levels of protection.

Protocol level countermeasure involves designing the usage of cryptographic primitives in a way
that certain fault attacks are not possible anymore, e.g. rekeying [MSGR10] or tweak-in-plaintext
strategy [BBB+18].

Cryptographic primitive level approaches provide some sort of fault protection directly in the cipher
design [BLMR19, BBB+21]. The main advantage is to unburden the implementer from the need to

297

apply additional countermeasures. However, at this point, the fault models covered directly in the
design are limited.

Implementation level countermeasures were the focus of this chapter. We have seen that one com-
mon technique is the infective countermeasure, which was discussed in Section 5.2.2 for symmetric
block ciphers and in Section 5.4.2 for RSA. Another common implementation-level countermeasure
for both symmetric and asymmetric ciphers is to introduce redundancy. For example, by repeating
the computation, e.g. deploying the circuit more than once, single fault attacks can be detected. Or
parity-check-based countermeasure that allows the detection of faults [KKG03, WKKG04]. Or by
using error-detecting/correcting codes, which was discussed in Section 5.2.1 for symmetric block
ciphers. Code-based countermeasures for public key cryptosystem can be found in e.g. [GSK06].

Hardware level countermeasure has been studied for a long time in the smart card industry. For
example, using light sensors to detect the chip’s opening and voltage/temperature sensors to detect
fault injections by voltage glitches or temperature variations [HS13]. A glitch detector can be used
against voltage/clock glitching [ZDT+14]. A ring oscillator-based sensor can be utilized for all of
these, including EM injection [HBB+16]. On the other hand, there are new ways to induce faults
proposed all the time. The main focus in academics is more on countermeasures that aim at managing
the effect of fault induction.

Chip package level techniques involve using a special package that prevents the attacker from ac-
cessing the chip. For example, packaging that is hard to remove without rendering the chip un-
usable, or packaging with random distribution of connection wires that would be cut during the
de-packaging process. Also, a layered chip with the memory attached on top of the computation
unit provides additional security against FA.

Combined attacks. Combined attacks were first proposed in the form of differential behavioral anal-
ysis (DBA) which combines DPA with a safe error attack [RM07]. The researchers then followed the
idea and proposed attacks on masked implementations of AES [CFGR10, RLK11]. PRESENT imple-
mentation was targeted by a combined DFA and a SCADPA-like side-channel method in [PBMB17].
Redundancy-based countermeasure on PRESENT and AES was broken in [SJB+18]. A similar direc-
tion was taken in [PNP+20] where different types of countermeasures were evaluated and attacked.
A “blind side-channel” (a method where the attacker does not need the value of the cipher output)
SIFA was proposed in [APZ21]. A “semi-blind” (no knowledge of the cipher input/output, but abil-
ity to repeat the encryption with the same input) combined attack on bit permutation-based ciphers
with application to AEAD (authenticated encryption with associated data) schemes was proposed
in [HBB22].

Combined countermeasures. We have seen encoding-based countermeasures for SCA in Section
4.5.1.1 and for FA in Section 5.2.1. A proposal of finding optimal codes against both attacks can
be found in [BH17]. Various combined countermeasures have also been studied. For example,
see [SMG16] for a combined hardware countermeasure based on masking and error-detecting code.
[BDF+09] designs a logic design-based solution, And [RDMB+18] discusses both hardware and soft-
ware countermeasures based on multiparty computation [CD+15]. A sensor-based countermeasure
utilizing a ring oscillator with a phase-locked loop was proposed in [RBBC18].

Attacks on post-quantum cryptographic implementations. The first practical fault attack on lattice-
based key encapsulation schemes was proposed in [RRB+19], targeting the usage of nonce. In [RBRC20]
the authors propose several types of attacks, including SCA, fault attacks, and combined attacks on
lattice-based schemes. A message-recovery attack on the code-based McEliece algorithm was pro-
posed in [CCD+21]. The attack works by changing the syndrome computation from F2 to N, making
it easy to break the security guarantee of the scheme. In [XIU+21] the authors investigate all the NIST
PQC Round 3 KEM candidates w.r.t. fault attacks.

Attacks on neural networks. Fault attack techniques have been adopted for attacking neural net-
work implementations recently, with a wide variety of attacker’s goals. The very first work, pub-
lished in 2017, proposes misclassification by bit flips [LWLX17]. Several works followed in this direc-
tion [HFK+19, RHF19, RHL+21], proposing more efficient and powerful attacks, mostly utilizing the
Rowhammer technique (see Section 6.2.1). The same goal was shown to be achievable by instruction

298

skips during the activation function execution [BHJ+18, HBJ+21]. Backdoor/trojan insertion to do
targeted misclassification (a powerful method where the attacker can choose the output class of the
model) was proposed in [RHF20, CFZK21, BHOS22]. A model extraction by faults was proposed
in [RCYF22, BJH+21]. In such an attack, the adversary tries to learn the model parameters (weights
and biases), of a proprietary model.

Chapter 6

Practical Aspects of Physical Attacks

Abstract

As physical attacks focus on implementations running on real-world devices, there
are many practical aspects one needs to consider. When developing attacks and
countermeasures, we often work with simplified models of those devices. However,
once we move from theoretical assumptions to practice, there might appear devi-
ations stemming from process variations, measurement errors, and various noise
sources that are not easy to determine. Apart from that, this chapter will also focus
on industrial standards that relate to hardware security.
Keywords: practical fault attacks, practical side-channel attacks

As physical attacks focus on implementations running on real-world devices, there are many prac-
tical aspects one needs to consider. When developing attacks and countermeasures, we often work
with simplified models of those devices. However, once we move from theoretical assumptions to
practice, there might appear deviations stemming from process variations, measurement errors, and
various noise sources that are not easy to determine. In this chapter, we will detail practical aspects
of side-channel and fault attacks1 that might be useful when doing experimental evaluations. Apart
from that, this chapter will also focus on industrial standards that relate to hardware security.

6.1 Side-Channel Attacks

In the first part of this section, we will explain how information leakage is created by the operation of
integrated circuits. In the second part, we will detail the main components of a measurement setup
– oscilloscopes and probes.

6.1.1 Origins of Leakage

Current microchips are composed of solid-state metal-oxide-semiconductor field-effect transistors
(MOSFETs). There are arrays of positive (NMOS) and negative (PMOS) transistors in each chip,
that enable processing digital data composed of 0s and 1s. The reason to combine them in a single
circuit is to increase the immunity to noise and decrease the static power dissipation, compared
to implementing each of these types separately [Cal75]. A circuit consisting of NMOS and PMOS
transistors is called a complementary metal-oxide semiconductor (CMOS).

The side-channel leakage that comes in the form of electromagnetic leakage or power consump-
tion originates from the physical characteristics of data processing by CMOS-based circuits. Based
on these characteristics, leakage models were developed to recover the processed information (see
Section 4.2.1, part Leakage Models). There are two types of power dissipation in CMOS gates: static
and dynamic (see Figure 6.1). Static power is consumed even if there is no circuit activity. It is pri-
marily caused by leakage currents that flow when the transistor is in the off-state. While this type of

1While we use the term “fault attacks” throughout the book, one can also find the term “fault injection attacks” in the
literature, which refers to the same.

299

300

CMOS power
consumption

Dynamic Static

Switching
power

Short-circuit
power

Leakage power

Figure 6.1: Power consumption types in CMOS circuits. The main type considered for SCA is the
switching power.

power dissipation is not as investigated in the world of SCA as the dynamic one, some works focus
on exploiting it [MMR19]. Dynamic power dissipation comes in two forms: short-circuit currents (a
short time during the switching of a gate when PMOS and NMOS are conducting simultaneously);
and switching power consumption (charge and discharge of the load capacitance).

When considering side channels, the switching power is the most relevant as it directly correlates
the processed data with the observable changes in power consumption [Sta10]. This behavior of the
CMOS circuit is depicted in Figure 6.2. Generally, the energy delivery to a CMOS is split into two
parts – the charging and the discharging of the load capacitance CL. During the charging phase, the
input gate signal makes a 1→ 0 switch, resulting in switching the PMOS transistor on, and its NMOS
counterpart off. As shown in Figure 6.2 (a), in this scenario, the load capacitance CL is connected to
the supply voltage (VDD) via the PMOS transistor, thus allowing the current I(t) to charge CL. There
are two important equations defining the transition from the energy point of view [JAB+03]:

Ed = CLV
2
DD,

Ec =

∫ ∞

0
I(t)V (t)dt =

1

2
CLV

2
DD.

where Ed is the delivered energy and Ec is the energy stored in the CL. From these equations, it
can be seen that only half of the delivered energy is stored in the capacitor – the PMOS transistor
dissipates the other half. Therefore, this power loss during the logic transition can be measured and
correlated with the switching activity, resulting in SCA leakage. When the gate signal changes from
0 to 1, the opposite scenario happens – the PMOS transistor is switched off, and NMOS is switched
on. The energy Ed stored in CL is drained to the ground via the NMOS transistor, as can be seen
in Figure 6.2 (b), thus causing SCA leakage. For more details regarding the power consumption of
CMOS circuits, we refer the interested reader to [NYGD22], for example.

It is important to note that there is usually more than one switch during one clock cycle. This is
because the input signals to the (multi-input) gate normally do not arrive at the same time, resulting
in several switches before the correct output is generated. The output transitions before the stable
state are called glitches. They are unnecessary for the correct functioning of the circuit and consume
a non-negligible amount of dynamic power, ranging between 20% − 70% [SM12]. Glitches are the
reason why boolean masking in hardware, although theoretically secure, can be broken [MPG05].
An approach called threshold implementation [NRS11] solves the problem of secure Boolean masking
by utilizing multiparty computation and secret sharing.

6.1.2 Measurement Setup

The core of the measurement setup for SCA is the oscilloscope. It can either be connected to the
power supply of the DUT for power measurements or can measure electromagnetic (EM) signals
through an EM probe.

301

VDD

CL

input signal
1→ 0

output signal
0→ 1

charging

VDD

CL

input signal
0→ 1

output signal
1→ 0

discharging

PMOS

NMOS

(a) (b)

Figure 6.2: Switching of the CMOS circuit, showing: (a) the charging path from VDD to CL; (b) the
discharging path CL to GND of the capacitive load.

6.1.2.1 Oscilloscopes

The measurement is normally done with a digital sampling oscilloscope – a device that takes samples
of the measured voltage signal over time. The core of such an instrument is an analog-to-digital
(ADC) converter, which takes the analog value of the measured signal (voltage, in our case) at the
specified sampling rate, and changes it into a digital value. The precision of this value is generally
between 8−12 bits for mid-range oscilloscopes, and the sampling rate ranges from hundreds of mega
samples per second (MS/s) to several giga samples per second (GS/s).

When measuring analog signals, such as voltage, with digital devices, it is important to note that
we are measuring a continuous value with equipment that samples such a value at periodic intervals
(that is why we call it a time sample) and stores it in a binary format with limited precision. Therefore,
discretization is applied twice – first in the time domain, and then to the value itself. According
to the Nyquist-Shannon sampling theorem [Vai01], the sampling rate of the measurement device
should be at least twice the highest frequency component of the measured signal. It is a good rule
of thumb to have the oscilloscope sampling rate at least 4× the target device frequency when doing
measurements for power analysis attacks. Figure 6.3 shows this phenomenon. The red curve denotes
the original analog signal, while the black lines show a sampling of this signal with 10 samples over
the given time interval. While we can easily reconstruct the original signal if the frequency is low
(Figure 6.3 (a)), it becomes much harder with a high-frequency signal (Figure 6.3 (b)). The precision
of the oscilloscope specifies how many values can the sampled output value take, e.g., an 8-bit ADC
would give a range of 256 values, which is sufficient for an SCA attack in most cases.

Another important parameter of the oscilloscope is the analog bandwidth. It is defined as the
frequency at which the amplitude measured by the oscilloscope has reduced by 3dB. To avoid the
unnecessary modification of the measured signal, the bandwidth should be at least 3× the target
device frequency.

An important task during the acquisition is capturing the correct time window corresponding to
the operations we want to measure. In laboratory conditions, it is common to use an artificial trigger
signal that indicates the start/end of the encryption. In real-world settings, it is necessary to identify
the correct position by examining the captured signal – this is usually done based on the evaluator’s
expertise.

6.1.2.2 Probes

Near-field electric and magnetic probes are an essential part of the setup when doing electromag-
netic side-channel analysis. They can be connected to the oscilloscope in a passive way or with an
amplifier. Optionally, a bandpass filter can be used to only pass the relevant frequencies and discard
the rest. Several established companies, such as Riscure and Langer, provide probes suitable for EM
SCA. Due to the simplicity of the probe design, researchers have also been building their own probes

302

time

signal

time

signal

(a) (b)

Figure 6.3: Digital sampling of a continuous signal with 10 samples of (a) low-frequency signal, (b)
high-frequency signal.

since the early days of SCA [GMO01]. Generally, a coiled copper wire is sufficient, with a coil diame-
ter of at most a few hundred microns. More details on designing near-field probes can be found, for
example, in [Siv17].

6.2 Fault Attacks

An interesting aspect of fault attacks is that, unlike with side-channel attacks, the adversary can break
the cryptographic security even without the knowledge of the underlying algorithm. For example,
by skipping the entire encryption routine by injecting faults in the conditional branches [SWM18].

In this section, we will look into the practical aspects of fault attacks (FAs), such as sample prepa-
ration, fault injection techniques and devices, and mechanisms to trigger faults in integrated circuits.

6.2.1 Fault Injection Techniques

In this subsection, we will outline the most popular techniques for fault attack (FA) testing of inte-
grated circuits [BH22].

Clock/Voltage Glitching

Clock and voltage glitching techniques are the most accessible in terms of cost as they do not need
sophisticated equipment. Initially, they were only performed locally with a device at hand, but with
power management techniques such as dynamic voltage and frequency scaling (DVFS), they can also
be performed remotely on chips that utilize that technology.

In the case of a voltage glitch, the faults are caused by precise high variations in power supply,
or by underpowering the device. Power supply variations, or spikes, modify the state of latches of
flip-flops, influencing the control and data path logic of the circuit [KJP14]. For example, if the volt-
age spike happens during memory reading, wrong data may be retrieved. It was also shown that
different shape of the glitch waveform affects the success of the attack [BFP19]. Underpowering, on
the other hand, affects the algorithm continuously and might cause faults throughout the computa-
tion. Single faults are possible when the insufficient power supply causes small enough stress so that
dysfunctions do not occur immediately after the computation starts and multiple faults do not hap-
pen [SGD08]. When the attacker can physically access the target device, voltage glitching is generally
easy to implement. It is also the most inexpensive fault injection method as the necessary equipment
are wires for connecting to the device, and a power source. A local voltage glitch on a smart card
is depicted in Figure 6.4. Voltage glitching attacks were shown to be effective even against security
enclaves of Intel [CVM+21] and AMD [BJKS21]. An inexpensive Teensy 4.0 board (≈ 30 USD) was
used for the abovementioned attacks, making them highly practical in terms of equipment cost.

Clock glitch is another technique that can be performed with low-cost equipment. For digital
computing devices, it is necessary to synchronize the calculations with either an internal or an ex-

303

Figure 6.4: Depiction of a voltage glitch on a smart card.

ternal clock. If the clock signal changes, the resulting computation might have a wrong instruction
executed or data corrupted. Devices that require an external clock generator can be faulted by sup-
plying a bad clock signal – containing fewer pulses than the normal one [KSV13]. On the other hand,
devices that are configured to use an internal clock signal cannot be easily faulted. Clock glitches
are generally considered the simplest fault injection method as the attack devices are easy to operate
with. For example, clock glitches can be achieved by using low-end field-programmable gate array
(FPGA) boards [BGV11, ESH+11].

A relatively new direction in clock/voltage glitching are remote attacks that take advantage of
power management systems of modern processors. The security aspects of these systems are rarely
considered due to the complexity of devices from the hardware point of view as well as software
executed, cost, and time-to-market constraints [PS19]. CLKSCREW is the first attack in this direc-
tion, targeting frequency and voltage manipulation of the Nexus 6 phone, forcing the processor to
operate beyond recommended limits [TSS17]. The researchers experimentally injected a one-byte
random fault. CLKSCREW can be achieved just by utilizing software control of energy management
hardware regulators in the target devices. Similar attacks were also proposed for ARM-based Krait
processor [QWLQ19] and Intel SGX [QWL+20]. The main advantage of these attacks is that they are
software-based, therefore allowing the threat model to shift from local to remote.

Optical Fault Injection

The ionization effect on transistors is a well-known phenomenon, and nowadays it is common to
perform failure tolerance testing of integrated circuits. For example, testing robustness and reliability
with lasers dates more than half a century back [Hab65]. While there might not be any unexpected
effects in standard conditions, there are environments where ionization effects are common and cause
unintentional faults, such as Earth’s orbit where satellites are deployed and conditioned to cosmic
rays [BSH75]. The first usage of optical fault injection against cryptographic circuits dates back to
2002 when researchers used a flash gun and a laser pointer to set and reset bits in an SRAM [SA02].

The variety of techniques within optical fault injection is vast – from camera flashes to lasers, to
X-ray beams. It was also shown that with the usage of lasers, one can probe the memory without
changing it to check its content [CCT+18], shifting the use case to the realm of side channels.

For security evaluation and certification labs, the method of choice is normally a laser fault in-
jection (LFI), depicted in Figure 6.5 (a). Off-the-shelf setups for performing LFI are readily available
from companies selling testing equipment. A standard LFI setup consists of the following parts: a
laser source, an objective lens, a motorized positioning table, and a controlling device. One can also
utilize an infrared ring that allows taking images of the chip from the backside, making the silicon
substrate transparent to the camera lens. An example of such an image is in Figure 6.5 (b). It is also
common to include a digital oscilloscope to precisely check the timing of the laser activation with
respect to the cipher execution. While the cost of off-the-shelf LFI testing equipment starts around
100k USD, it was shown that a low-cost setup can be built for around 500 USD [KM20]. Naturally,

304

(a) (b)

Figure 6.5: Depiction of (a) laser fault injection on an AVR microcontroller mounted on Arduino UNO
board and (b) zoomed infrared image of the chip.

specialized expertise is required to design and assemble such a setup.
Optical fault injection requires direct access to the chip – from either the front or the backside.

That means, in most cases, it is necessary to remove the chip package, by using either mechanical or
chemical techniques. There is also an option to use a focused ion beam (FIB), but these techniques
are generally outside of the budget of a standard testing laboratory, so in this part, we will focus on
the two abovementioned methods.

Mechanical techniques are relatively straightforward. They are mostly used for backside decap-
sulation as the front side of the chip is too sensitive to any physical tampering. They can, for example,
involve using inexpensive manual rotary milling machines that grind down the epoxy package. This
is recommended mostly for low-cost chips as there is a high risk of overheating or mechanically
damaging the die. Another way is to use specialized tools for decapsulation, thinning, and polishing
(e.g., Ultra Tec ASAP-1). These tools work in an automated way by slowly milling down the package
layers to avoid any damage. Naturally, the main drawback is the cost which typically ranges in tens
of thousands of dollars.

Chemical techniques are recommended when the front side of the chip needs to be accessed. In
some cases, such as smart cards, acetone is enough to remove the protective plastic (after the outer
hard plastic case is removed, e.g., by using a scalpel). When removing the black epoxy package, one
might need to use strong acids, such as fuming nitric acid (HNO3 with a concentration of at least
86%). This typically involves operation in a safe laboratory environment equipped with a fume hood
and a proper acid disposal facility. A depiction of such a setup is shown in Figure 6.6. When using
such aggressive acids, there is also a risk of removing the bonding wires using this technique, unless
they are either golden or at least gold-plated. More details on decapsulation techniques can be found
in [BC16].

When using optical fault injection techniques, it is important to know the absorption depth in
silicon as a function of wavelength. This is depicted in Figure 6.7. The green laser (532 nm) has an
absorption depth of ≈ 1.3 µm, therefore, it can be utilized either for front-side injection (where it
can directly access the components) or for almost fully removed silicon substrate from the backside.
As the latter might damage the chip, it makes sense to use lasers with deeper absorption depth,
such as 808 nm or 1064 nm, both from the near-infrared light spectrum. The 1064 nm laser allows a
penetration depth up to 1 mm which can often be used even for non-thinned substrate.

There are other fault injection techniques that are related to optical techniques in the way they
work. In the area of failure analysis, electron and ion beams have been successfully used to test
the reliability of circuits [SA93]. X-ray beams were used to tamper with memories of a microcon-
troller [ABC+17].

All in all, optical fault injection offers precision and repeatability at a relatively high cost (consid-
ering commercial off-the-shelf setups). With specific expertise, it is possible to construct a DIY setup

305

Figure 6.6: Depiction of a chemical decapsulation by using fuming nitric acid.

200 400 600 800 1,000 1,200 1,400

10−7

10−5

10−3

10−1

101

103

105

107

532 nm

1.3 µm
808 nm

12.7 µm

1064 nm

1 mm

Wavelength (nm)

A
b
so
rp
ti
on

d
ep
th

(c
m
)

Figure 6.7: Absorption depth in silicon. The most common laser wavelengths for testing integrated
circuits are highlighted – 532 nm (green), 808 nm (near-infrared), and 1064 (near-infrared).

306

Figure 6.8: Depiction of a pulsed electromagnetic fault injection on an AVR microcontroller mounted
on Arduino UNO board.

for a much lower price. The main drawback of this technique is the necessity to “see” the chip, which
normally requires depackaging and delayering of the chip, making it often impractical outside of
laboratory environments. As it is a powerful technique, it is a de facto standard for security testing
and certification labs which need to consider strong attacker models.

Electromagnetic Fault Injection

The electromagnetic fault injection (EMFI) technique is a versatile way to attack chips, allowing tar-
geting both analog and digital blocks. The working principle of EMFI is to generate a changing
magnetic field that induces a voltage into the structures of IC surface [DLM20]. In cryptographic cir-
cuits, digital logic is used for the algorithm itself, while analog logic controls the clock and random
number generators. Below, we discuss the EMFI approaches that can be used to target each of those.

Analog blocks can be targeted by powerful harmonic EM waves. A stable sinusoidal signal can
be generated by the attacker at a given frequency that injects a harmonic wave creating a parasitic
signal [HHS+11]. This signal can be used to bias the clock behavior or to inject additional power
directly and locally into the chip. Harmonic EMFI equipment includes normally a motorized posi-
tioning table, a signal generation module, and an oscilloscope.

As digital blocks are clocked, the method of choice is an EM pulse injection during a specified
clock cycle [SH07]. When a sharp and sudden EM pulse is injected into the integrated circuit, it can
create intense transient currents that change the behavior of logic cells, ultimately causing faults.
Standard equipment includes a high-voltage pulse generator and a coil with a ferrite core, serving as
an injection probe. Such equipment is depicted in Figure 6.8.

As the fault analysis methods targeting cryptographic implementation mostly use data faults
(bit flips, bit sets/resets, random byte faults, etc.), most of the research is dedicated to pulse fault
injection. It is possible to build low-cost EMFI equipment for as low as 50 USD [O’F23]. A more
comprehensive ready-to-use device can be bought, for example, from NewAE for≈ 3.3k USD (Chip-
SHOUTER2). While an injector device itself is not enough for a proper testing setup, in [KBJ+22]
the authors show how to incorporate ChipSHOUTER in a testbench including XYZ stage and a con-
troller for ≈ 7k EUR.3 If one needs more powerful and precise equipment, Avtech pulse generators
can be purchased in a price range between 10k - 20k USD.4 In that case, a near-field injection probe is
needed, which can either be bought for a few hundred USD or manufactured from very inexpensive

2https://www.newae.com/chipshouter
3We use currencies stated in original papers, that is why some prices are in USD and some in EUR.
4https://www.avtechpulse.com/medium/

307

Figure 6.9: A depiction of a generic design of an electromagnetic fault injection probe.

components. Many resources can be found in the literature on designing and building custom EMFI
probes [ORJ+13, Sau13, BKH+19]. The basic building blocks are a ferrite core, a copper wire, and a
connector. A generic design of an EMFI probe is depicted in Figure 6.9.

Recently, several interesting low-cost custom-built setups were proposed in the literature, capable
of performing various attack models:

• Defeating secure boot on a multicore 1GHz+ ARM was shown to be practically feasible with just
a 350 USD EMFI platform named BADFET [CH17].

• Bypassing firmware security protection in various configurations was done by a device called Sili-
conToaster, a USB-powered EM injector capable of generating 1.2kV of voltage [AH20].

• Privilege escalation using a malicious field-replaceable unit (FRU) with a modified mosquito
killer spark gap generator was described in [DO22].

From the above, it is evident that EMFI is a popular fault injection technique that is easily ac-
cessible due to low cost, but at the same time offers a localized and powerful way to defeat secure
components on modern chips. Compared to optical fault injection, it does not need direct visibility
over the chip, and therefore, leaves out the necessity of cumbersome decapsulation. Moreover, en-
thusiasts can find many publicly available instructions on how to build a working EMFI setup from
easily available off-the-shelf components.

Rowhammer Attacks

Rowhammer is a remote fault injection technique that exploits the physical characteristics of DRAM
(dynamic random access memory) technology. This attack works by aggressive reading/writing to
memory cells adjacent to the target cell, where it causes bit flips [KDK+14]. The attack is made possi-
ble by advancing technology which allows shrinking the cells and placing them closer to each other.
A smaller cell uses less capacity for charge and therefore provides less tolerance to noise and greater
vulnerability to errors [MDB+02]. High cell density further extends this vulnerability by creating
electromagnetic coupling effects between them, producing unwanted interactions [KKY+89]. The
Rowhammer access patterns are depicted in Figure 6.10. The aggressor row refers to a row that is
being hammered by the attacker to flip the bits in the victim row. According to [JVDVF+22], three
common patterns were shown effective in flipping bits. The single-sided pattern uses one aggressor
row next to the victim row and the other one far apart. The double-sided pattern tightly surrounds
the victim row with aggressor rows, increasing the chance of bit flips. Finally, there is an n-sided pat-
tern where n refers to n− 1 victim rows being hammered by n aggressor rows. The figure shows an
example for n = 4.

As DRAM is the most prevalent technology for nonvolatile memories in modern devices, it is no
surprise that the Rowhammer attack was demonstrated on a plethora of targets, ranging from smart-
phones [VDVFL+16] to cloud environment [ORBG17] to browsers [BRBG16]. Aside from obvious
targets such as privilege escalation or cryptanalytic fault attacks, Rowhammer also became popular
in the area of hardware attacks on neural networks [TIA+23, YRF20].

There is no need for specialized equipment to perform this attack – it is normally triggered
through a software program. While the standard modus operandi is a code execution on the target
machine, it was shown that Rowhammer can be realized by sending network packets to the target
machine over RDMA-enabled networks [TKA+18].

308

(a) Single-sided (b) Double-sided (c) 4-sided

Figure 6.10: Different ways of spatial arrangement of aggressor rows (black) and target/victim rows
(red/pink) in DRAM.

6.3 Industry Standards

Hardware vulnerability assessment of cryptographic implementations has made its way to industrial
standardization. Some products, such as credit cards, need to be evaluated and certified to show they
are sufficiently resistant against SCA and FIA. There are two main evaluation frameworks used in
the industry: Common Criteria and NIST FIPS 140. We will outline each of them below.

Note

A good overview of cybersecurity standards in various industries is maintained by
the European Cyber Security Organisation (ECSO) in their Overview of existing Cy-
bersecurity standards and certification schemes report [Org17].

A more detailed review of side-channel evaluation standards and methods is
given in [ABB+20].

6.3.1 Common Criteria

The Common Criteria for Information Technology Security Evaluation (colloquially known as Com-
mon Criteria or CC) is an international standard published in ISO/IEC 15408 [2709] document. It
is a general security evaluation framework where users specify their security functional and assur-
ance requirements in a document called Security Target (ST). ST is defined as an “implementation-
dependent statement of security needs for a specific identified Target of Evaluation (TOE),” where
TOE is the product that is being certified. ST can conform with one or more Protection Profiles (PPs)
– generic documents written by a user or a community for a family of products, such as smart cards,
tokens, or firewalls.

The level of security of the evaluated TOE is divided into 7 categories – Evaluation Assurance Lev-
els (EALs). While EAL 1 mostly focuses on functional testing with minimum emphasis on security,
EAL 7 requires formally verified design and tests. Higher EALs are typically used for military-grade
products and require lengthy and expensive evaluation. The CC website5 lists the accredited labs
capable of certifying to a certain EAL and also provides the list of certified products.

The generic steps to be taken before the evaluation can start are as follows:

1. Choosing the National Scheme. CC Certificate Authorizing Schemes were established by 17
countries. Each of them developed their own legislation and norms.

2. Choosing the Target of Evaluation. The TOE and its boundary need to be defined. The TOE can
be a part of an IT product, an IT product, a set of an IT product, a technology, or a combination
of those.

5https://www.commoncriteriaportal.org

https://www.commoncriteriaportal.org

309

3. Picking an Evaluation Assurance Level. The evaluation requirements will be based on the EAL.
Also, the CC Test Laboratory needs to be certified to evaluate TOEs with the chosen EAL.

4. Choosing the Protection Profile (optional). A suitable PP serves as a guiding document, en-
suring that the security features of the TOE align well with the requirements tailored to the
category of products to which TOE belongs.

5. Preparing the Security Target. The ST is an implementation-dependent declaration of security
needs for the given TOE.

6. Preparing the Evaluation Work Plan. This plan is prepared by the CC Test Laboratory and
approved by the Certification Body.

When it comes to SCA, the main area of interest within CC are smart cards. In this context,
two documents are used as guidelines for the evaluation, both of them produced through the Inter-
national Security Certification Initiative (ISCI) and the Joint Interpretation Library (JIL) Hardware
Attacks Subgroup (JHAS):

• Application of Attack Potential to Smart Cards [SI20a]: The document specifies on how to express
the effort required by the attacker to mount a successful attack. It is related to risk analysis
methods and considers the following rating factors: Elapsed time, Expertise, Knowledge of
TOE, Access to TOE, Used equipment, and Open samples.

• Attack Methods for Smart Cards and Similar Devices [SI20b]: This is a companion document, under
limited distribution. It describes the attacks themselves.

The rating method from the listed documents is also adopted in the security evaluation specified
by EMVCo, an organization managed by the major payment security players (American Express,
Discover, JCB, MasterCard, UnionPay, and Visa). Their aim is to maintain the standardized security
level of contact and contactless payment system by managing and evolving the security requirements
and related testing processes.

6.3.2 FIPS 140-3

The Federal Information Processing Standard (FIPS) 140-3, Security Requirements for Cryptographic
Modules [NIS19] is a document released by the US National Institute of Standards and Technology
(NIST). It is applicable to Federal agencies that use cryptographic-based systems. Unlike CC, which
specifies an evaluation method and is independent of the underlying algorithms, FIPS 140-3 lists the
approved algorithms allowed for usage. The standard specifies six security levels related to physical
security, with level 1 stating requirements for protective coating, and level 6 requiring countermea-
sures against differential power/electromagnetic analysis. The product certification is done through
the Cryptographic Module Validation Program (CMVP), which is a joint effort between the NIST and
the Canadian Centre for Cyber Security.

The FIPS-140 links side-channel evaluation test metrics to the ISO/IEC 17825:2016 standard (with
the new version coming in 2024), and the tools and methods to the ISO/IEC 20085-1 and 20085-2
standards.

Chapter A

Proofs

A.1 Matrices

Let R be a commutative ring in this section.
In Definition 1.3.4, we have defined the determinant of a matrix A with coefficients from a com-

mutative ring R. Here we show that the value of det(A) in Equation 1.6 does not depend on the
choice of i0 .

Lemma A.1.1. For any 0 < i0 ≤ n− 1

det(A) =
n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =
n−1∑

j=0

(−1)ja0j det(A0j).

Proof. We prove by induction. For n = 1, it is trivially true. For n = 2, we can write A =

(
a00 a01
a10 a11

)
.

Take i0 = 0,
n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =

1∑

j=0

(−1)ja0j det(A0j) = a00a11 − a01a10.

Take i0 = 1,

n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =
1∑

j=0

(−1)1+ja1j det(A1j) = −a10a01 + a11a00.

Since R is a commutative ring, a00a11 − a01a10 = −a10a01 + a11a00, the lemma is true for n = 2.
Now suppose the lemma is true for n = k, where k ≥ 2. In particular, for any 0 ≤ j < k and

i0 ̸= 0, we have

det(A0j) =
k−1∑

ℓ=0

(−1)ℓa0j det(A00,jℓ) =

k−1∑

ℓ=0

(−1)i0+ℓai0j det(A0i0,jℓ), (A.1)

where A0i,jℓ is obtained from A0j by deleting the ith row and ℓth column. We will show that the
lemma is true for n = k + 1. Take i0 = 0, we have

n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =
k∑

j=0

(−1)ja0j det(A0j).

310

311

Take i0 ̸= 0, we have

n−1∑

j=0

(−1)i0+jai0j det(Ai0j) =

k∑

j=0

(−1)i0+jai0j

(
k−1∑

ℓ=0

(−1)ℓa0ℓ det(Ai00,jℓ)

)

=

k∑

j=0

k−1∑

ℓ=0

(−1)i0+jai0j(−1)ℓa0j det(Ai00,jℓ)

=

k∑

j=0

(−1)ja0j
(

k−1∑

ℓ=0

(−1)i0+ℓai0j det(Ai00,jℓ)

)

=

k∑

j=0

(−1)ja0j det(A0j),

where the last equality follows from Equation A.1.
By mathematical induction, we have proved the lemma.

A.2 Invertible Matrices for the Stochastic Leakage Model

In this section, we will focus on matrices with coefficients from the field of real numbers R. Let n,m
be two positive integers.

Definition A.2.1. For any vector u = (u0, u1, . . . , un−1) ∈ Rn, the Euclidean norm of u, denoted ∥u∥2
is defined to be

∥u∥2 =
(

n−1∑

i=0

u2i

)1/2

.

In other words, the Euclidean norm of u is the square root of the scalar product (see Defini-
tion 1.3.2) between u and u⊤:

∥u∥2 =
(
u · u⊤

)1/2
. (A.2)

Remark A.2.1. It is easy to see that if ∥u∥2 = 0, then u = 0.

Example A.2.1. Let u = (1, 2, 5), then

∥u∥2 =
√

1 + 22 + 52 =
√
1 + 4 + 25 =

√
30.

Definition A.2.2. For any two vectors u,v ∈ Rn, the Euclidean distance, denoted d(u,v), is defined to
be the Euclidean norm of the vector u− v

d(u,v) = ∥u− v∥2.

Definition A.2.3. The row rank (resp. column rank) of a matrix A, denoted rank(A) over R is the
maximum number of rows (resp. columns) in A that constitute a set of independent vectors.

The following result is very useful for us. For a proof, see e.g. [Ber09, Section2.4].

Theorem A.2.1. The column rank of a matrix A is equal to its row rank.

Definition A.2.4. The rank of a matrix A, denoted rank(A) is the row rank of A. An n ×m matrix A
is said to have full column rank if rank(A) = m. It is said to have full row rank if rank(A) = n.

Example A.2.2. Let

A =



1 0 1 1
0 1 0 1
1 0 0 1


 .

We can see that the vectors {(1, 0, 1), (0, 1, 0), (1, 0, 0)} are independent but

(1, 1, 1) = (1, 0, 1) + (0, 1, 0).

Thus A has rank 3. And A has full row rank.

312

Let A be an n ×m matrix. Take any row vector u ∈ Rn, we note that uA is a linear combination
(see Definition 1.3.9) of rows of A. By Definition 1.3.11, the rows of A are linearly independent if and
only if there does not exist a nonzero vector u such that uA = 0. Similar results hold for the columns
of A. We have proved

Lemma A.2.1. An n×m matrix A has full row rank if and only if there does not exist a nonzero vector
u ∈ Rn such that uA = 0. A has full column rank if and only if there does not exist a nonzero vector
u ∈ Rm such that Au⊤ = 0.

Theorem A.2.2. An n× n square matrix A is invertible if and only if rank(A) = n.

Proof. We will provide the proof for the necessity. We refer the readers to [Goc11, Section 3.6] for the
proof of the sufficiency.

By Definition 1.3.3, A is invertible if and only if there exists an n × n matrix B such that AB =
BA = In, where In is the n−dimensional identity matrix. Suppose A is invertible and rank(A) ̸= n.
Then by Lemma A.2.1, there exists a nonzero vector u ∈ Rn such that uA = 0. Then we have

uAB = 0B = 0 = 0In,

a contradiction.

Lemma A.2.2. Let M be an n × m matrix. The matrix M⊤M is invertible if and only if M has full
column rank.

Proof. Let
A = M⊤M.

Then A is a square matrix of size m×m.
=⇒ Suppose A is invertible and rank(M) ̸= m. By Lemma A.2.1, there exists a nonzero vector

u ∈ Rm such that Mu⊤ = 0. We have

Au⊤ = M⊤Mu⊤ = 0.

By Lemma A.2.1 again, we know that rank(A) ̸= n and according to Theorem A.2.2, A is not invert-
ible. A contradiction.
⇐= Suppose rank(M) = m and A is not invertible. By Theorem A.2.2 and Lemma A.2.1, there

exists a nonzero vector u ∈ Rm such that Au⊤ = 0, which gives (see Equation A.2 and Remark A.2.1)

0 = uM⊤Mu⊤ = (Mu⊤)⊤(Mu⊤) = ∥Mu⊤∥2 =⇒Mu⊤ = 0.

By Lemma A.2.1, M does not have full column rank. A contradiction.

Let us consider the matrix Mv from Section 4.3.2.2. Suppose we take a collection of mv different
values of v such that the rows of Mv are linearly independent, then Mv has row rank equal to mv. By
Theorem A.2.1, Mv also has column rank mv. Since Mv has mv columns, by definition, Mv has full
column rank. It follows from Lemma A.2.2 that the matrix M⊤

v Mv is invertible.
In particular, with all possible values of v appearing in the rows of Mv, we will have mv linear

independent rows in Mv given by those with Hamming weight 1:

(1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 0, 1).

Then Mv has row rank equal to mv and M⊤
v Mv will be an invertible matrix.

Chapter B

Long Division

In primary school, we learned to do long division for calculating the quotient and remainder of
dividing one integer by another integer. For example, to compute

1346 = 25× q + r,

we can write

25 1346
53

125

96
75

21

and we get q = 53, r = 21.
Similarly, let us take two polynomials f(x), g(x) ∈ F [x], where F is a field. We can also compute

f(x) divided by g(x) using long division. Let F = F2. Take

f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x],

and
g(x) = x+ 1 ∈ F2[x].

We have
x7 + x6 + x5 + x4 + x2 + x + 1

x+ 1))x8 + x4 + x3 + x + 1

x8 + x7

x7 + x4 + x3 + x + 1

x7 + x6

x6 + x4 + x3 + x + 1

x6 + x5

x5 + x4 + x3 + x+1

x5 + x4

x3 + x + 1

x3 + x2

x2 + x+1

x2 + x

1

Thus (see Example 1.5.21)

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x+ 1) + 1.

313

Chapter C

DES Sbox

314

315

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

(a) SB2
DES

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

(b) SB3
DES

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

(c) SB4
DES

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

(d) SB5
DES

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

(e) SB6
DES

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

(f) SB7
DES

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

(g) SB8
DES

Table C.1: Sboxes in DES (Section 3.1.1) round function.

Chapter D

Algebraic Normal Forms for PRESENT Sbox
Output Bits

For i = 1, 2, 3, define

φi : F4
2 → F2

x 7→ SBPRESENT(x)i,

where SBPRESENT(x)i is the ith bit of SBPRESENT(x), the PRESENT Sbox output corresponding to x. In
this section, we will compute the algebraic normal forms for φi. Similarly to Table 3.13, we construct
the table for each φi – see Tables D.1, D.2, and D.3.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
φ1(x) 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1
λx 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0

Table D.1: The Boolean function φ1 takes input x and outputs the 1st bit of SBPRESENT(x). The second
last row lists the output of φ1 for different input values. The last row lists the coefficients (Equa-
tion 3.10) for the algebraic normal form of φ1.

The coefficients λ are calculated based on Equation 3.10 and the following equations:

λ0000 = φi(0000),
λ0001 = φi(0000) + φi(0001),
λ0010 = φi(0000) + φi(0010),

λ0011 = φi(0000) + φi(0010) + φi(0001) + φi(0011),

λ0100 = φi(0000) + φi(0100),

λ0101 = φi(0000) + φi(0001) + φi(0100) + φi(0101),

λ0110 = φi(0000) + φi(0010) + φi(0100) + φi(0110),

λ0111 =
7∑

x=0

φi(x),

λ1000 = φi(0000) + φi(1000),

λ1001 = φi(0000) + φi(0001) + φi(1000) + φi(1001),

λ1010 = φi(0000) + φi(0010) + φi(1000) + φi(1010),

λ1011 = φi(0) + φi(1) + φi(2) + φi(3) + φi(8) + φi(9) + φi(A) + φi(B),

316

317

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
φ2(x) 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0
λx 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0

Table D.2: The Boolean function φ2 takes input x and outputs the 2nd bit of SBPRESENT(x). The
second last row lists the output of φ2 for different input values. The last row lists the coefficients
(Equation 3.10) for the algebraic normal form of φ2.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
φ3(x) 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0
λx 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

Table D.3: The Boolean function φ3 takes input x and outputs the 3rd bit of SBPRESENT(x). The
second last row lists the output of φ3 for different input values. The last row lists the coefficients
(Equation 3.10) for the algebraic normal form of φ3.

λ1100 = φi(0000) + φi(0100) + φi(1000) + φi(1100),

λ1101 = φi(0) + φi(1) + φi(4) + φi(5) + φi(8) + φi(9) + φi(C) + φi(D),

λ1110 = φi(0) + φi(2) + φi(4) + φi(6) + φi(8) + φi(A) + φi(C) + φi(E),

λ1111 =
F∑

x=0

φi(x).

By Equation 3.9, we have

φ1(x) = λ0010x1 + λ0111x2x1x0 + λ1000x3 + λ1010x3x1

+λ1011x3x1x0 + λ1100x3x2 + λ1101x3x2x0

= x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3,

φ2(x) = λ0000 + λ0011x1x0 + λ0100x2 + λ1000x3 + λ1001x3x0

+λ1010x3x1 + λ1011x3x1x0 + λ1101x3x2x0

= 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3

φ3(x) = λ0000 + λ0001x0 + λ0010x1 + λ0110x2x1 + λ0111x2x1x0

+λ1000x3 + λ1011x3x1x0 + λ1101x3x2x0

= 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3.

Chapter E

Encoding-based Countermeasure for Symmetric
Block Ciphers

In Table E.1, we list values in TSG, which are signals for each integer between 00 and 3F with Ham-
ming weight 6, computed with the stochastic leakage model obtained in Code-SCA Step 6 from
Section 4.5.1.1. The sorted version of TSG is shown in Table E.2, where the signals are in ascending
order and the words from F6

2 with Hamming weight 6 are recorded accordingly.

3F 00111111 −0.00980
5F 01011111 −0.00976
6F 01101111 −0.01058
77 01110111 −0.01066
7B 01111011 −0.01053
7D 01111101 −0.01059
7E 01111110 −0.00943
9F 10011111 −0.00987
AF 10101111 −0.01069
B7 10110111 −0.01078
BB 10111011 −0.01065
BD 10111101 −0.01071
BE 10111110 −0.00955
CF 11001111 −0.01066
D7 11010111 −0.01074
DB 11011011 −0.01061
DD 11011101 −0.01067
DE 11011110 −0.00951
E7 11100111 −0.01156
EB 11101011 −0.01143
ED 11101101 −0.01149
EE 11101110 −0.01033
F3 11110011 −0.01152
F5 11110101 −0.01158
F6 11110110 −0.01042
F9 11111001 −0.01145
FA 11111010 −0.01029
FC 11111100 −0.01035

Table E.1: Table TSG, estimated signals for each integer between 00 and FF with Hamming weight 6,
computed with the stochastic leakage model obtained in Code-SCA Step 6 from Section 4.5.1.1. The
first (resp. second) column contains the hexadecimal (resp. binary) representations of the integers.
The last column lists the corresponding estimated signals.

318

319

F5 11110101 −0.01158
E7 11100111 −0.01156
F3 11110011 −0.01152
ED 11101101 −0.01149
F9 11111001 −0.01145
EB 11101011 −0.01143
B7 10110111 −0.01078
D7 11010111 −0.01074
BD 10111101 −0.01071
AF 10101111 −0.01069
DD 11011101 −0.01067
77 01110111 −0.01066
CF 11001111 −0.01066
BB 10111011 −0.01065
DB 11011011 −0.01061
7D 01111101 −0.01059
6F 01101111 −0.01058
7B 01111011 −0.01053
F6 11110110 −0.01042
FC 11111100 −0.01035
EE 11101110 −0.01033
FA 11111010 −0.01029
9F 10011111 −0.00987
3F 00111111 −0.00980
5F 01011111 −0.00976
BE 10111110 −0.00955
DE 11011110 −0.00951
7E 01111110 −0.00943

Table E.2: Sorted version of TSG from Table E.1 such that the estimated signals (values in the last
column) are in ascending order. The hexadecimal (resp. binary) representations of the corresponding
integers are in the first (resp. second) column. Words highlighted in blue constitute the chosen binary
code with Algorithm 4.5.

Bibliography

[2709] ISO/IEC JTC 1/SC 27. ISO/IEC 15408-1: Information technology – Security techniques
– Evaluation criteria for IT security – Part 1: Introduction and general model, Interna-
tional Organization for Standardization, 2009.

[ABB+20] Melissa Azouaoui, Davide Bellizia, Ileana Buhan, Nicolas Debande, Sébastien Du-
val, Christophe Giraud, Éliane Jaulmes, François Koeune, Elisabeth Oswald, François-
Xavier Standaert, et al. A systematic appraisal of side channel evaluation strategies.
In Security Standardisation Research: 6th International Conference, SSR 2020, London, UK,
November 30–December 1, 2020, Proceedings 6, pages 46–66. Springer, 2020.

[ABC+17] Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Laurent Maingault, Jean-luc Rainard,
and Rémi Tucoulou. Nanofocused x-ray beam to reprogram secure circuits. In In-
ternational Conference on Cryptographic Hardware and Embedded Systems, pages 175–188.
Springer, 2017.

[ABF+03] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and J-P Seifert. Fault
attacks on RSA with crt: Concrete results and practical countermeasures. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pages 260–275.
Springer, 2003.

[AFV07] Frederic Amiel, Benoit Feix, and Karine Villegas. Power analysis for secret recovering
and reverse engineering of public key algorithms. In Selected Areas in Cryptography: 14th
International Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected
Papers 14, pages 110–125. Springer, 2007.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and aes,
secure against some attacks. In Cryptographic Hardware and Embedded Systems—CHES
2001: Third International Workshop Paris, France, May 14–16, 2001 Proceedings 3, pages
309–318. Springer, 2001.

[Age15] National Security Agency. Commercial National Security Algorithm Suite. https://
apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm,
2015.

[AGF21] Rabin Yu Acharya, Fatemeh Ganji, and Domenic Forte. Infoneat: Information theory-
based neuroevolution of augmenting topologies for side-channel analysis. arXiv
preprint arXiv:2105.00117, 2021.

[AH20] Karim M Abdellatif and Olivier Hériveaux. Silicontoaster: a cheap and programmable
em injector for extracting secrets. In 2020 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC), pages 35–40. IEEE, 2020.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance-a cautionary note. In Proceedings
of the second Usenix workshop on electronic commerce, volume 2, pages 1–11, 1996.

320

https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

321

[ANP20] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: a new gift rep-
resentation: fast constant-time implementations of gift and gift-cofb on arm cortex-
m. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 402–427,
2020.

[AP20] Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers: New bitsliced
aes speed records on arm-cortex m and risc-v. Cryptology ePrint Archive, 2020.

[APZ21] Melissa Azouaoui, Kostas Papagiannopoulos, and Dominik Zürner. Blind side-channel
sifa. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
555–560. IEEE, 2021.

[Atm16] Atmel. AVR Instruction Set Manual. http://ww1.microchip.com/downloads/
en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf, 2016.

[AV13] Kostas Papagiannopoulos Aram Verstegen. Present speed implementation. https:
//github.com/kostaspap88/PRESENT_speed_implementation, 2013.

[AWKS12] Kahraman D Akdemir, Zhen Wang, Mark Karpovsky, and Berk Sunar. Design of cryp-
tographic devices resilient to fault injection attacks using nonlinear robust codes. Fault
analysis in cryptography, pages 171–199, 2012.

[BBB+07] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. NIST spe-
cial publication 800-57. NIST Special publication, 2007.

[BBB+18] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, and Thomas Peyrin.
Protecting block ciphers against differential fault attacks without re-keying. In 2018
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages
191–194. IEEE, 2018.

[BBB+21] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, Thomas Peyrin,
Sumanta Sarkar, and Siang Meng Sim. DEFAULT: Cipher Level Resistance Against
Differential Fault Attack. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2021, pages 124–156, Cham, 2021. Springer International
Publishing.

[BBB+22] Lejla Batina, Shivam Bhasin, Jakub Breier, Xiaolu Hou, and Dirmanto Jap. On
implementation-level security of edge-based machine learning models. In Security and
Artificial Intelligence: A Crossdisciplinary Approach, pages 335–359. Springer, 2022.

[BBH+20] Shivam Bhasin, Jakub Breier, Xiaolu Hou, Dirmanto Jap, Romain Poussier, and
Siang Meng Sim. Sitm: See-in-the-middle side-channel assisted middle round differ-
ential cryptanalysis on spn block ciphers. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 95–122, 2020.

[BBJP19] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. {CSI}{NN}: Reverse
engineering of neural network architectures through electromagnetic side channel. In
28th USENIX Security Symposium (USENIX Security 19), pages 515–532, 2019.

[BC16] Jakub Breier and Chien-Ning Chen. On determining optimal parameters for testing
devices against laser fault attacks. In 2016 International Symposium on Integrated Circuits
(ISIC), pages 1–4. IEEE, 2016.

[BCDG10] Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin. Public key perturbation
of randomized rsa implementations. In Cryptographic Hardware and Embedded Systems,
CHES 2010: 12th International Workshop, Santa Barbara, USA, August 17-20, 2010. Pro-
ceedings 12, pages 306–319. Springer, 2010.

[BCG08] Alexandre Berzati, Cécile Canovas, and Louis Goubin. Perturbating rsa public keys:
An improved attack. In Cryptographic Hardware and Embedded Systems–CHES 2008: 10th
International Workshop, Washington, DC, USA, August 10-13, 2008. Proceedings 10, pages
380–395. Springer, 2008.

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://github.com/kostaspap88/PRESENT_speed_implementation
https://github.com/kostaspap88/PRESENT_speed_implementation

322

[BCMCC06] Eric Brier, Benoı̂t Chevallier-Mames, Mathieu Ciet, and Christophe Clavier. Why one
should also secure rsa public key elements. In Cryptographic Hardware and Embedded
Systems-CHES 2006: 8th International Workshop, Yokohama, Japan, October 10-13, 2006.
Proceedings 8, pages 324–338. Springer, 2006.

[BD00] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less than n/sup
0.292. IEEE transactions on Information Theory, 46(4):1339–1349, 2000.

[BD16] Elaine Barker and Quynh Dang. NIST special publication 800-57 part 1, revision 4.
NIST Special publication, 2016.

[BDF98] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on RSA given a small fraction of
the private key bits. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 25–34. Springer, 1998.

[BDF+09] Shivam Bhasin, Jean-Luc Danger, Florent Flament, Tarik Graba, Sylvain Guilley, Yves
Mathieu, Maxime Nassar, Laurent Sauvage, and Nidhal Selmane. Combined sca and
dfa countermeasures integrable in a fpga design flow. In 2009 International Conference
on Reconfigurable Computing and FPGAs, pages 213–218. IEEE, 2009.

[BDH+97] Feng Bao, Robert H Deng, Yongfei Han, A Jeng, A Desai Narasimhalu, and T Ngair.
Breaking public key cryptosystems on tamper resistant devices in the presence of tran-
sient faults. In International Workshop on Security Protocols, pages 115–124. Springer,
1997.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of checking
cryptographic protocols for faults. In International conference on the theory and applica-
tions of cryptographic techniques, pages 37–51. Springer, 1997.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Annual international conference on the theory and applications of cryptographic techniques,
pages 313–314. Springer, 2013.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge func-
tions. In ECRYPT hash workshop, 2007.

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
The sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382,
2006.

[BEG13] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential fault analysis
on present. EURASIP Journal on Advances in Signal Processing, 2013:1–10, 2013.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In International conference on coding
and cryptology, pages 11–46. Springer, 2011.

[Ber09] Dennis S Bernstein. Matrix mathematics: theory, facts, and formulas. Princeton university
press, 2009.

[BFGV12] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede. The-
ory and practice of a leakage resilient masking scheme. In Advances in Cryptology–
ASIACRYPT 2012: 18th International Conference on the Theory and Application of Cryp-
tology and Information Security, Beijing, China, December 2-6, 2012. Proceedings 18, pages
758–775. Springer, 2012.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the glitch: opti-
mizing voltage fault injection attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 199–224, 2019.

323

[BGE+17] Jan Burchard, Manl Gay, Ange-Salomé Messeng Ekossono, Jan Horáček, Bernd Becker,
Tobias Schubert, Martin Kreuzer, and Ilia Polian. Autofault: towards automatic con-
struction of algebraic fault attacks. In 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 65–72. IEEE, 2017.

[BGK04] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking of
aes. In International workshop on selected areas in cryptography, pages 69–83. Springer,
2004.

[BGLP13] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
lightweight block ciphers on x86 architectures. In International Conference on Selected
Areas in Cryptography, pages 324–351. Springer, 2013.

[BGLT04] Marco Bucci, Michele Guglielmo, Raimondo Luzzi, and Alessandro Trifiletti. A power
consumption randomization countermeasure for dpa-resistant cryptographic proces-
sors. In Integrated Circuit and System Design. Power and Timing Modeling, Optimization
and Simulation: 14th International Workshop, PATMOS 2004, Santorini, Greece, September
15-17, 2004. Proceedings 14, pages 481–490. Springer, 2004.

[BGM+03] Luca Benini, Angelo Galati, Alberto Macii, Enrico Macii, and Massimo Poncino.
Energy-efficient data scrambling on memory-processor interfaces. In Proceedings of the
2003 international symposium on Low power electronics and design, pages 26–29, 2003.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rij-
men. Trade-offs for threshold implementations illustrated on aes. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(7):1188–1200, 2015.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus. In 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pages 105–114. IEEE, 2011.

[BH15] Jakub Breier and Wei He. Multiple fault attack on PRESENT with a hardware trojan
implementation in FPGA. In Gabriel Ghinita and Pedro Peris-Lopez, editors, 2015
International Workshop on Secure Internet of Things, SIoT 2015, Vienna, Austria, September
21-25, 2015, pages 58–64. IEEE Computer Society, 2015.

[BH17] Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On designing a fault
and side-channel resistant software encoding scheme. In Topics in Cryptology–CT-RSA
2017: The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA,
February 14–17, 2017, Proceedings, pages 77–94. Springer, 2017.

[BH22] Jakub Breier and Xiaolu Hou. How practical are fault injection attacks, really? IEEE
Access, 10:113122–113130, 2022.

[BHJ+18] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu. Prac-
tical fault attack on deep neural networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 2204–2206. ACM, 2018.

[BHL18] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differential fault
analysis automation on assembly code. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 96–122, 2018.

[BHL19] Jakub Breier, Xiaolu Hou, and Yang Liu. On evaluating fault resilient encoding schemes
in software. IEEE Transactions on Dependable and Secure Computing, 18(3):1065–1079,
2019.

[BHOS22] Jakub Breier, Xiaolu Hou, Martı́n Ochoa, and Jesus Solano. Foobar: Fault fooling back-
door attack on neural network training. IEEE Transactions on Dependable and Secure
Computing, 2022.

324

[BHT01] Eric Brier, Helena Handschuh, and Christophe Tymen. Fast primitives for internal
data scrambling in tamper resistant hardware. In Cryptographic Hardware and Embed-
ded Systems—CHES 2001: Third International Workshop Paris, France, May 14–16, 2001
Proceedings 3, pages 16–27. Springer, 2001.

[BHvW12] Lejla Batina, Jip Hogenboom, and Jasper GJ van Woudenberg. Getting more from pca:
first results of using principal component analysis for extensive power analysis. In Top-
ics in Cryptology–CT-RSA 2012: The Cryptographers’ Track at the RSA Conference 2012, San
Francisco, CA, USA, February 27–March 2, 2012. Proceedings, pages 383–397. Springer,
2012.

[Bih97] Eli Biham. A fast new des implementation in software. In International Workshop on
Fast Software Encryption, pages 260–272. Springer, 1997.

[BILT04] Jean-Claude Bajard, Laurent Imbert, Pierre-Yvan Liardet, and Yannick Teglia. Leak
resistant arithmetic. In Cryptographic Hardware and Embedded Systems-CHES 2004: 6th
International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings 6, pages
62–75. Springer, 2004.

[BJB18] Jakub Breier, Dirmanto Jap, and Shivam Bhasin. SCADPA: side-channel assisted
differential-plaintext attack on bit permutation based ciphers. In Jan Madsen and
Ayse K. Coskun, editors, 2018 Design, Automation & Test in Europe Conference & Ex-
hibition, DATE 2018, Dresden, Germany, March 19-23, 2018, pages 1129–1134. IEEE, 2018.

[BJH+21] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu. Sniff: re-
verse engineering of neural networks with fault attacks. IEEE Transactions on Reliability,
71(4):1527–1539, 2021.

[BJHB19] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. On side channel vulner-
abilities of bit permutations in cryptographic algorithms. IEEE Transactions on Informa-
tion Forensics and Security, 15:1072–1085, 2019.

[BJHB23] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. A desynchronization-
based countermeasure against side-channel analysis of neural networks. In Interna-
tional Symposium on Cyber Security, Cryptology, and Machine Learning, pages 296–306.
Springer, 2023.

[BJKS21] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert. One
glitch to rule them all: Fault injection attacks against amd’s secure encrypted virtual-
ization. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2875–2889, 2021.

[BJP20] Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. AES HD dataset - 50 000 traces. AI-
SyLab repository, 2020. https://github.com/AISyLab/AES_HD.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on aes. In In-
ternational Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 106–120.
Springer, 2006.

[BKH+19] Arthur Beckers, Masahiro Kinugawa, Yuichi Hayashi, Daisuke Fujimoto, Josep Bal-
asch, Benedikt Gierlichs, and Ingrid Verbauwhede. Design considerations for em pulse
fault injection. In International Conference on Smart Card Research and Advanced Applica-
tions, pages 176–192. Springer, 2019.

[BKHL20] Jakub Breier, Mustafa Khairallah, Xiaolu Hou, and Yang Liu. A countermeasure against
statistical ineffective fault analysis. IEEE Transactions on Circuits and Systems II: Express
Briefs, 67(12):3322–3326, 2020.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-
lightweight block cipher. In International workshop on cryptographic hardware and embed-
ded systems, pages 450–466. Springer, 2007.

https://github.com/AISyLab/AES_HD

325

[Bla83] George R Blakely. A computer algorithm for calculating the product ab modulo m.
IEEE Transactions on Computers, 100(5):497–500, 1983.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. Craft:
lightweight tweakable block cipher with efficient protection against dfa attacks. IACR
Transactions on Symmetric Cryptology, 2019(1):5–45, 2019.

[BMV07] Sanjay Burman, Debdeep Mukhopadhyay, and Kamakoti Veezhinathan. Lfsr based
stream ciphers are vulnerable to power attacks. In International Conference on Cryptology
in India, pages 384–392. Springer, 2007.

[Bor06] Michele Boreale. Attacking right-to-left modular exponentiation with timely random
faults. In Fault Diagnosis and Tolerance in Cryptography: Third International Workshop,
FDTC 2006, Yokohama, Japan, October 10, 2006. Proceedings, pages 24–35. Springer, 2006.

[BOS03] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. A new CRT-RSA algorithm
secure against bellcore attacks. In Proceedings of the 10th ACM conference on Computer
and communications security, pages 311–320, 2003.

[BP82] HJ Beker and FC Piper. Communications security: a survey of cryptography. IEE
Proceedings A (Physical Science, Measurement and Instrumentation, Management and Edu-
cation, Reviews), 129(6):357–376, 1982.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Deep learning for side-channel analysis and introduction to ascad database. Journal of
Cryptographic Engineering, 10(2):163–188, 2020.

[BPS+21] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Ascad sca database. https://github.com/ANSSI-FR/ASCAD.git, 2021.

[BRBG16] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est machina:
Memory deduplication as an advanced exploitation vector. In 2016 IEEE symposium on
security and privacy (SP), pages 987–1004. IEEE, 2016.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology—CRYPTO’97: 17th Annual International Cryptology Confer-
ence Santa Barbara, California, USA August 17–21, 1997 Proceedings 17, pages 513–525.
Springer, 1997.

[BS08] Bhaskar Biswas and Nicolas Sendrier. Mceliece cryptosystem implementation: Theory
and practice. In International Workshop on Post-Quantum Cryptography, pages 47–62.
Springer, 2008.

[BS12] Eli Biham and Adi Shamir. Differential cryptanalysis of the data encryption standard.
Springer Science & Business Media, 2012.

[BSH75] Daniel Binder, Edward C Smith, and AB Holman. Satellite anomalies from galactic
cosmic rays. IEEE Transactions on Nuclear Science, 22(6):2675–2680, 1975.

[BT12] Alessandro Barenghi and Elena Trichina. Fault attacks on stream ciphers. In Fault
Analysis in Cryptography, pages 239–255. Springer, 2012.

[Buc04] Johannes Buchmann. Introduction to cryptography, volume 335. Springer, 2004.

[Cal75] Stephen Calebotta. Cmos, the ideal logic family. National Semiconductor CMOS Data-
book, Rev, 1:2–3, 1975.

[CB19] Andrea Caforio and Subhadeep Banik. A study of persistent fault analysis. In Security,
Privacy, and Applied Cryptography Engineering: 9th International Conference, SPACE 2019,
Gandhinagar, India, December 3–7, 2019, Proceedings 9, pages 13–33. Springer, 2019.

https://github.com/ANSSI-FR/ASCAD.git

326

[CCD+21] Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Drăgoi, Alexandre Menu, and Lilian
Bossuet. Message-recovery laser fault injection attack on the classic mceliece cryptosys-
tem. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 438–467. Springer, 2021.

[CCT+18] Samuel Chef, Chung Tah Chua, Jing Yun Tay, Yu Wen Siah, Shivam Bhasin, J Breier,
and Chee Lip Gan. Descrambling of embedded sram using a laser probe. In 2018 IEEE
International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA),
pages 1–6. IEEE, 2018.

[CD+15] Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cambridge
University Press, 2015.

[CFGR10] Christophe Clavier, Benoit Feix, Georges Gagnerot, and Mylene Roussellet. Passive
and active combined attacks on aes combining fault attacks and side channel analysis.
In 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 10–19. IEEE,
2010.

[CFZK21] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip: Targeted trojan
attack with progressive bit flips. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7718–7727, 2021.

[CG16] Claude Carlet and Sylvain Guilley. Complementary dual codes for counter-measures
to side-channel attacks. Adv. Math. Commun., 10(1):131–150, 2016.

[CH17] Ang Cui and Rick Housley. BADFET: Defeating Modern Secure Boot Using Second-
Order Pulsed Electromagnetic Fault Injection. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), 2017.

[Cho22] Charles Q. Choi. IBM Unveils 433-Qubit Osprey Chip. IEEE Spectrum, November 2022.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards sound ap-
proaches to counteract power-analysis attacks. In Advances in Cryptology—CRYPTO’99:
19th Annual International Cryptology Conference Santa Barbara, California, USA, August
15–19, 1999 Proceedings 19, pages 398–412. Springer, 1999.

[CJW10] Nicolas T Courtois, Keith Jackson, and David Ware. Fault-algebraic attacks on inner
rounds of des. In E-Smart’10 Proceedings: The Future of Digital Security Technologies.
Strategies Telecom and Multimedia, 2010.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay gen-
eration in embedded software. In Cryptographic Hardware and Embedded Systems-CHES
2009: 11th International Workshop Lausanne, Switzerland, September 6-9, 2009 Proceedings,
pages 156–170. Springer, 2009.

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the random
delay countermeasure of ches 2009. In Cryptographic Hardware and Embedded Systems,
CHES 2010: 12th International Workshop, Santa Barbara, USA, August 17-20, 2010. Pro-
ceedings 12, pages 95–109. Springer, 2010.

[CK18] Jean-Sébastien Coron and Ilya Kizhvatov. Trace sets with random delays. https:
//github.com/ikizhvatov/randomdelays-traces.git, 2018.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault analysis.
In Cryptographic Hardware and Embedded Systems-CHES 2007: 9th International Workshop,
Vienna, Austria, September 10-13, 2007. Proceedings 9, pages 181–194. Springer, 2007.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In Cryptographic Hardware and Embedded Systems: First International-
Workshop, CHES’99 Worcester, MA, USA, August 12–13, 1999 Proceedings 1, pages 292–
302. Springer, 1999.

https://github.com/ikizhvatov/randomdelays-traces.git
https://github.com/ikizhvatov/randomdelays-traces.git

327

[COZZ23] Yukun Cheng, Changhai Ou, Fan Zhang, and Shihui Zheng. Dlpfa: Deep learning
based persistent fault analysis against block ciphers. Cryptology ePrint Archive, 2023.

[CRR03] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Cryptographic
Hardware and Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13–15, 2002 Revised Papers 4, pages 13–28. Springer, 2003.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching from arith-
metic to boolean masking. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 89–97. Springer, 2003.

[CVM+21] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio D Garcia. VoltPillager: Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface. In 30th USENIX Security Symposium
(USENIX Security 21), pages 699–716, 2021.

[DAP+22] Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota, and Aydin
Aysu. Modulonet: Neural networks meet modular arithmetic for efficient hardware
masking. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
506–556, 2022.

[dBLW03] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A dpa attack against the modular
reduction within a crt implementation of rsa. In Cryptographic Hardware and Embedded
Systems-CHES 2002: 4th International Workshop Redwood Shores, CA, USA, August 13–15,
2002 Revised Papers 4, pages 228–243. Springer, 2003.

[DCA20] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first hardware in-
ference engine aiming power side-channel protection. In 2020 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), pages 197–208. IEEE, 2020.

[DCRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. Masking aes with shares in hardware. In International Conference
on Cryptographic Hardware and Embedded Systems, pages 194–212. Springer, 2016.

[DCSA22] Anuj Dubey, Rosario Cammarota, Vikram Suresh, and Aydin Aysu. Guarding machine
learning hardware against physical side-channel attacks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 18(3):1–31, 2022.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian
Mendel, and Robert Primas. Sifa: exploiting ineffective fault inductions on symmet-
ric cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 547–572, 2018.

[DLM20] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Modeling and simulating
electromagnetic fault injection. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 40(4):680–693, 2020.

[DO22] Shaked Delarea and Yossi Oren. Practical, low-cost fault injection attacks on personal
smart devices. Applied Sciences, 12(1):417, 2022.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Standaert. Uni-
variate side channel attacks and leakage modeling. Journal of Cryptographic Engineering,
1:123–144, 2011.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael, volume 2. Springer, 2002.

[Dud14] Richard M Dudley. Uniform central limit theorems, volume 142. Cambridge university
press, 2014.

[Dur19] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press,
2019.

328

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, 2015-08-04 2015.

[DZD+18] A Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and Yunsi
Fei. Towards sound and optimal leakage detection procedure. In Smart Card Research
and Advanced Applications: 16th International Conference, CARDIS 2017, Lugano, Switzer-
land, November 13–15, 2017, Revised Selected Papers, pages 105–122. Springer, 2018.

[EJ96] Artur Ekert and Richard Jozsa. Quantum computation and shor’s factoring algorithm.
Reviews of Modern Physics, 68(3):733, 1996.

[ESH+11] Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi Satoh.
An on-chip glitchy-clock generator for testing fault injection attacks. Journal of Crypto-
graphic Engineering, 1(4):265–270, 2011.

[Far70] PG Farrell. Linear binary anticodes. Electronics Letters, 13(6):419–421, 1970.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault attacks on
aes with faulty ciphertexts only. In 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 108–118. IEEE, 2013.

[FMP03] Pierre-Alain Fouque, Gwenaëlle Martinet, and Guillaume Poupard. Attacking unbal-
anced rsa-crt using spa. In Cryptographic Hardware and Embedded Systems-CHES 2003:
5th International Workshop, Cologne, Germany, September 8–10, 2003. Proceedings 5, pages
254–268. Springer, 2003.

[Fou98] Electronic Frontier Foundation. Cracking DES: Secrets of encryption research, wire-
tap politics and chip design. https://cryptome.org/jya/cracking-des/
cracking-des.htm, 1998.

[FRVD08] Pierre-Alain Fouque, Denis Réal, Frédéric Valette, and Mhamed Drissi. The carry leak-
age on the randomized exponent countermeasure. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 198–213. Springer, 2008.

[FV03] Pierre-Alain Fouque and Frédéric Valette. The doubling attack–why upwards is better
than downwards. In Cryptographic Hardware and Embedded Systems-CHES 2003: 5th
International Workshop, Cologne, Germany, September 8–10, 2003. Proceedings 5, pages 269–
280. Springer, 2003.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information anal-
ysis: A generic side-channel distinguisher. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 426–442. Springer, 2008.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using
20 million noisy qubits. Quantum, 5:433, 2021.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing methodol-
ogy for side-channel resistance validation. In NIST non-invasive attack testing workshop,
volume 7, pages 115–136, 2011.

[GGP09] Laurie Genelle, Christophe Giraud, and Emmanuel Prouff. Securing aes implementa-
tion against fault attacks. In 2009 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), pages 51–62. IEEE, 2009.

[GHNZ09] Zheng Gong, Pieter H Hartel, Svetla Nikova, and Bo Zhu. Towards secure and practical
macs for body sensor networks. In INDOCRYPT, pages 182–198. Springer, 2009.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack on
a masked implementation of aes. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

https://cryptome.org/jya/cracking-des/cracking-des.htm
https://cryptome.org/jya/cracking-des/cracking-des.htm

329

[GHP04] Sylvain Guilley, Philippe Hoogvorst, and Renaud Pacalet. Differential power analysis
model and some results. In Smart Card Research and Advanced Applications VI: IFIP 18th
World Computer Congress TC8/WG8. 8 & TC11/WG11. 2 Sixth International Conference on
Smart Card Research and Advanced Applications (CARDIS) 22–27 August 2004 Toulouse,
France, pages 127–142. Springer, 2004.

[GJJ22] Qian Guo, Andreas Johansson, and Thomas Johansson. A key-recovery side-channel
attack on classic mceliece implementations. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 800–827, 2022.

[GM11] Louis Goubin and Ange Martinelli. Protecting aes with shamir’s secret sharing scheme.
In Cryptographic Hardware and Embedded Systems–CHES 2011: 13th International Work-
shop, Nara, Japan, September 28–October 1, 2011. Proceedings 13, pages 79–94. Springer,
2011.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analy-
sis: Concrete results. In Cryptographic Hardware and Embedded Systems—CHES 2001:
Third International Workshop Paris, France, May 14–16, 2001 Proceedings 3, pages 251–261.
Springer, 2001.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+ flush:
a fast and stealthy cache attack. In Detection of Intrusions and Malware, and Vulnerability
Assessment: 13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8,
2016, Proceedings 13, pages 279–299. Springer, 2016.

[Goc11] Mark S Gockenbach. Finite-dimensional linear algebra. CRC Press, 2011.

[Gou01] Louis Goubin. A sound method for switching between boolean and arithmetic mask-
ing. In Cryptographic Hardware and Embedded Systems—CHES 2001: Third International
Workshop Paris, France, May 14–16, 2001 Proceedings 3, pages 3–15. Springer, 2001.

[GP99] Louis Goubin and Jacques Patarin. Des and differential power analysis the “duplica-
tion” method. In Cryptographic Hardware and Embedded Systems: First InternationalWork-
shop, CHES’99 Worcester, MA, USA, August 12–13, 1999 Proceedings 1, pages 158–172.
Springer, 1999.

[GSK06] Gunnar Gaubatz, Berk Sunar, and Mark G Karpovsky. Non-linear residue codes for
robust public-key arithmetic. In Fault Diagnosis and Tolerance in Cryptography: Third
International Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006. Proceedings, pages
173–184. Springer, 2006.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective computation
and dummy rounds: Fault protection for block ciphers without check-before-output.
In Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology
and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings
2, pages 305–321. Springer, 2012.

[Hab65] Donald H Habing. The use of lasers to simulate radiation-induced transients in semi-
conductor devices and circuits. IEEE Transactions on Nuclear Science, 12(5):91–100, 1965.

[HBB+16] Wei He, Jakub Breier, Shivam Bhasin, Noriyuki Miura, and Makoto Nagata. Ring oscil-
lator under laser: Potential of pll-based countermeasure against laser fault injection. In
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016 Workshop on, pages 102–113.
IEEE, 2016.

[HBB21] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Dnfa: Differential no-fault analysis of
bit permutation based ciphers assisted by side-channel. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 182–187. IEEE, 2021.

330

[HBB22] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Sbcma: Semi-blind combined middle-
round attack on bit-permutation ciphers with application to aead schemes. IEEE Trans-
actions on Information Forensics and Security, 17:3677–3690, 2022.

[HBJ+21] Xiaolu Hou, Jakub Breier, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu. Phys-
ical security of deep learning on edge devices: Comprehensive evaluation of fault in-
jection attack vectors. Microelectronics Reliability, 120:114116, 2021.

[HBK23] Xiaolu Hou, Jakub Breier, and Mladen Kovacevic. Another look at side-channel resis-
tant encoding schemes. IACR Cryptol. ePrint Arch., page 1698, 2023.

[HBZL19] Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu. Fully automated differen-
tial fault analysis on software implementations of block ciphers. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 1–29, 2019.

[HDD11] Philippe Hoogvorst, Guillaume Duc, and Jean-Luc Danger. Software implementation
of dual-rail representation. COSADE, February, pages 24–25, 2011.

[Her96] Israel N Herstein. Abstract algebra. Prentice Hall, 1996.

[HFK+19] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor Dumitras, .
Terminal brain damage: Exposing the graceless degradation in deep neural networks
under hardware fault attacks. In 28th USENIX Security Symposium (USENIX Security
19), pages 497–514, 2019.

[HH11] Ludger Hemme and Lars Hoffmann. Differential fault analysis on the sha1 compres-
sion function. In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages
54–62. IEEE, 2011.

[HHS+11] Yu-ichi Hayashi, Naofumi Homma, Takeshi Sugawara, Takaaki Mizuki, Takafumi
Aoki, and Hideaki Sone. Non-invasive emi-based fault injection attack against crypto-
graphic modules. In 2011 IEEE International Symposium on Electromagnetic Compatibility,
pages 763–767. IEEE, 2011.

[HLMS14] Ronglin Hao, Bao Li, Bingke Ma, and Ling Song. Algebraic fault attack on the sha-256
compression function. International Journal of Research in Computer Science, 4(2):1, 2014.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card imple-
mentation resistant to power analysis attacks. In International conference on applied cryp-
tography and network security, pages 239–252. Springer, 2006.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In International algorithmic number theory symposium, pages 267–288.
Springer, 1998.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and heating
fault attacks. In International Conference on Smart Card Research and Advanced Applica-
tions, pages 219–235. Springer, 2013.

[HSP20] Max Hoffmann, Falk Schellenberg, and Christof Paar. Armory: fully automated and
exhaustive fault simulation on arm-m binaries. IEEE Transactions on Information Foren-
sics and Security, 16:1058–1073, 2020.

[Hun12] Thomas W Hungerford. Algebra, volume 73. Springer Science & Business Media, 2012.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide: Breaking crypto-
graphic devices using support vector machines. In Constructive Side-Channel Analysis
and Secure Design: Third International Workshop, COSADE 2012, Darmstadt, Germany,
May 3-4, 2012. Proceedings 3, pages 249–264. Springer, 2012.

[JAB+03] M Rabaey Jan, Chandrakasan Anantha, Nikolic Borivoje, et al. Digital integrated cir-
cuits: a design perspective. Prentice Hall, 2003.

331

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/,
2016.

[JP04] Jean Jacod and Philip Protter. Probability essentials. Springer Science & Business Media,
2004.

[JPY01] Marc Joye, Pascal Paillier, and Sung-Ming Yen. Secure evaluation of modular func-
tions. In 2001 International Workshop on Cryptology and Network Security, pages 227–229.
Citeseer, 2001.

[JQBD97] Marc Joye, Jean-Jacques Quisquater, Feng Bao, and Robert H Deng. RSA-type signa-
tures in the presence of transient faults. In IMA International Conference on Cryptography
and Coding, pages 155–160. Springer, 1997.

[JVDVF+22] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi. Black-
smith: Scalable rowhammering in the frequency domain. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 716–734. IEEE, 2022.

[JY03] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In Cryptographic
Hardware and Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13–15, 2002 Revised Papers, pages 291–302. Springer, 2003.

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé,
Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne
Osvik, et al. Factorization of a 768-bit RSA modulus. In Annual Cryptology Conference,
pages 333–350. Springer, 2010.

[KBJ+22] Niclas Kühnapfel, Robert Buhren, Hans Niklas Jacob, Thilo Krachenfels, Christian
Werling, and Jean-Pierre Seifert. Em-fault it yourself: Building a replicable emfi setup
for desktop and server hardware. In 2022 IEEE Physical Assurance and Inspection of Elec-
tronics (PAINE), pages 1–7. IEEE, 2022.

[KDB+22] Satyam Kumar, Vishnu Asutosh Dasu, Anubhab Baksi, Santanu Sarkar, Dirmanto Jap,
Jakub Breier, and Shivam Bhasin. Side channel attack on stream ciphers: A three-
step approach to state/key recovery. IACR Transactions Cryptographic Hardware and
Embedded. Systems, 2022(2):166–191, 2022.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. ACM SIGARCH Computer
Architecture News, 42(3):361–372, 2014.

[KHN+19] Mustafa Khairallah, Xiaolu Hou, Zakaria Najm, Jakub Breier, Shivam Bhasin, and
Thomas Peyrin. Sok: On DFA vulnerabilities of substitution-permutation networks. In
Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda,
and Zhenkai Liang, editors, Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019,
pages 403–414. ACM, 2019.

[KJ01] Paul C Kocher and Joshua M Jaffe. Secure modular exponentiation with leak mini-
mization for smartcards and other cryptosystems, October 2 2001. US Patent 6,298,442.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances in
Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference Santa Barbara,
California, USA, August 15–19, 1999 Proceedings 19, pages 388–397. Springer, 1999.

[KJJ10] Paul C Kocher, Joshua M Jaffe, and Benjamin C Jun. Cryptographic computation using
masking to prevent differential power analysis and other attacks, February 23 2010. US
Patent 7,668,310.

https://www.iacr.org/authors/tikz/

332

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differen-
tial power analysis. Journal of Cryptographic Engineering, 1:5–27, 2011.

[KJP14] Raghavan Kumar, Philipp Jovanovic, and Ilia Polian. Precise fault-injections using
voltage and temperature manipulation for differential cryptanalysis. In 2014 IEEE 20th
International On-Line Testing Symposium (IOLTS), pages 43–48. IEEE, 2014.

[KKG03] Ramesh Karri, Grigori Kuznetsov, and Michael Goessel. Parity-based concurrent error
detection of substitution-permutation network block ciphers. In Cryptographic Hard-
ware and Embedded Systems-CHES 2003: 5th International Workshop, Cologne, Germany,
September 8–10, 2003. Proceedings 5, pages 113–124. Springer, 2003.

[KKT04] Mark Karpovsky, Konrad J Kulikowski, and Alexander Taubin. Robust protection
against fault-injection attacks on smart cards implementing the advanced encryption
standard. In International Conference on Dependable Systems and Networks, 2004, pages
93–101. IEEE, 2004.

[KKY+89] Yasuhiro Konishi, Masaki Kumanoya, Hiroyuki Yamasaki, Katsumi Dosaka, and Tsu-
tomu Yoshihara. Analysis of coupling noise between adjacent bit lines in megabit
drams. IEEE Journal of Solid-State Circuits, 24(1):35–42, 1989.

[KM20] Martin S Kelly and Keith Mayes. High precision laser fault injection using low-cost
components. In 2020 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 219–228. IEEE, 2020.

[KMBM17] Fatma Kahri, Hassen Mestiri, Belgacem Bouallegue, and Mohsen Machhout. Fault
attacks resistant architecture for keccak hash function. International Journal of Advanced
Computer Science and Applications, 8(5), 2017.

[Koç94] CK Koç. High-speed RSA implementation technical report. RSA Laboratories, Redwood
City, 1994.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology—CRYPTO’96: 16th Annual International Cryptology
Conference Santa Barbara, California, USA August 18–22, 1996 Proceedings 16, pages 104–
113. Springer, 1996.

[Kos02] Thomas Koshy. Elementary number theory with applications. Academic press, 2002.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic. Make
some noise. unleashing the power of convolutional neural networks for profiled side-
channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 148–179, 2019.

[KPP+22] Alexandr Alexandrovich Kuznetsov, Oleksandr Volodymyrovych Potii, Niko-
lay Alexandrovich Poluyanenko, Yurii Ivanovich Gorbenko, and Natalia Kryvinska.
Stream Ciphers in Modern Real-time IT Systems. Springer, 2022.

[KQ07] Chong Hee Kim and Jean-Jacques Quisquater. Fault attacks for crt based RSA: New
attacks, new results, and new countermeasures. In IFIP International Workshop on Infor-
mation Security Theory and Practices, pages 215–228. Springer, 2007.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages 1–17.
Springer, 2009.

[KSV13] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware designer’s
guide to fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(12):2295–2306, 2013.

[Kwa00] Matthew Kwan. Reducing the gate count of bitslice des. IACR Cryptol. ePrint Arch.,
2000(51):51, 2000.

333

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learning ap-
proach against a masked aes: Reaching the limit of side-channel attacks with a learning
model. Journal of Cryptographic Engineering, 5:123–139, 2015.

[Len96] Arjen K Lenstra. Memo on RSA signature generation in the presence of faults. Techni-
cal report, EPFL, 1996.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi,
and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic Hardware and Embedded
Systems, CHES 2010: 12th International Workshop, Santa Barbara, USA, August 17-20,
2010. Proceedings 12, pages 320–334. Springer, 2010.

[LWLX17] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep neural
network. In Proceedings of the 36th International Conference on Computer-Aided Design,
pages 131–138. IEEE, 2017.

[LX04] San Ling and Chaoping Xing. Coding theory: a first course. Cambridge University Press,
2004.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw
traces: A deep learning architecture for end-to-end profiling attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 235–274, 2021.

[Mah45] Patrick Mahon. History of hut 8 to december 1941 (1945). B. Jack Copeland, page 265,
1945.

[Man03] Stefan Mangard. A simple power-analysis (spa) attack on implementations of the aes
key expansion. In Information Security and Cryptology—ICISC 2002: 5th International
Conference Seoul, Korea, November 28–29, 2002 Revised Papers 5, pages 343–358. Springer,
2003.

[May03] Alexander May. New RSA vulnerabilities using lattice reduction methods. PhD thesis,
Citeseer, 2003.

[MBFC22] Saurav Maji, Utsav Banerjee, Samuel H Fuller, and Anantha P Chandrakasan. A thresh-
old implementation-based neural network accelerator with power and electromagnetic
side-channel countermeasures. IEEE Journal of Solid-State Circuits, 2022.

[MDB+02] Jack A Mandelman, Robert H Dennard, Gary B Bronner, John K DeBrosse, Rama Di-
vakaruni, Yujun Li, and Carl J Radens. Challenges and future directions for the scaling
of dynamic random-access memory (DRAM). IBM Journal of Research and Development,
46(2.3):187–212, 2002.

[MDS99a] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Investigations of power
analysis attacks on smartcards. Smartcard, 99:151–161, 1999.

[MDS99b] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Power analysis attacks of
modular exponentiation in smartcards. In Cryptographic Hardware and Embedded Sys-
tems: First InternationalWorkshop, CHES’99 Worcester, MA, USA, August 12–13, 1999 Pro-
ceedings 1, pages 144–157. Springer, 1999.

[Mes00] Thomas S Messerges. Securing the aes finalists against power analysis attacks. In
International Workshop on Fast Software Encryption, pages 150–164. Springer, 2000.

[MMR19] Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-channel anal-
ysis—an investigation of measurement factors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(2):376–389, 2019.

[MMS01a] David May, Henk L Muller, and Nigel P Smart. Non-deterministic processors. In In-
formation Security and Privacy: 6th Australasian Conference, ACISP 2001 Sydney, Australia,
July 11–13, 2001 Proceedings 6, pages 115–129. Springer, 2001.

334

[MMS01b] David May, Henk L Muller, and Nigel P Smart. Random register renaming to foil
dpa. In Cryptographic Hardware and Embedded Systems—CHES 2001: Third International
Workshop Paris, France, May 14–16, 2001 Proceedings 3, pages 28–38. Springer, 2001.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathematics of
computation, 44(170):519–521, 1985.

[Mon87] Peter L Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing
the secrets of smart cards, volume 31. Springer Science & Business Media, 2008.

[MPC00] Lauren May, Lyta Penna, and Andrew Clark. An implementation of bitsliced des on
the pentium mmx tm processor. In Australasian Conference on Information Security and
Privacy, pages 112–122. Springer, 2000.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M Gammel. Side-channel leakage of
masked cmos gates. In Cryptographers’ Track at the RSA Conference, pages 351–365.
Springer, 2005.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking crypto-
graphic implementations using deep learning techniques. In Security, Privacy, and
Applied Cryptography Engineering: 6th International Conference, SPACE 2016, Hyderabad,
India, December 14-18, 2016, Proceedings 6, pages 3–26. Springer, 2016.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error cor-
recting codes, volume 16. Elsevier, 1977.

[MS00] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In International Workshop on Cryptographic Hardware and Embed-
ded Systems, pages 78–92. Springer, 2000.

[MSB16] Houssem Maghrebi, Victor Servant, and Julien Bringer. There is wisdom in harnessing
the strengths of your enemy: Customized encoding to thwart side-channel attacks.
In Fast Software Encryption: 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers 23, pages 223–243. Springer, 2016.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco Regaz-
zoni. Fresh re-keying: Security against side-channel and fault attacks for low-cost de-
vices. In International Conference on Cryptology in Africa, pages 279–296. Springer, 2010.

[MSY06] Tal G Malkin, François-Xavier Standaert, and Moti Yung. A comparative cost/security
analysis of fault attack countermeasures. In Fault Diagnosis and Tolerance in Cryptogra-
phy: Third International Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006. Proceed-
ings, pages 159–172. Springer, 2006.

[MVOV18] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 2018.

[MWK+22] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers, Jose
Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of lattice-based
post-quantum cryptography: Exploiting polynomial multiplication. ACM Transactions
on Embedded Computing Systems, 2022.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep learning leakage as-
sessment: A modern roadmap for sca evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 552–598, 2021.

[MZMM16] Zdenek Martinasek, Vaclav Zeman, Lukas Malina, and Josef Martinasek. K-nearest
neighbors algorithm in profiling power analysis attacks. Radioengineering, 25(2):365–
382, 2016.

335

[NIS01] NIST. Federal information processing standards publication (fips) 197. Advanced En-
cryption Standard (AES), 2001.

[NIS19] NIST. FIPS 140-3: Security Requirements for Cryptographic Modules, National Insti-
tute of Standards and Technology. Technical report, Federal Inf. Process. Stds. (NIST
FIPS), National Institute of Standards and Technology, Gaithersburg, MD, 2019.

[Nov02] Roman Novak. Spa-based adaptive chosen-ciphertext attack on rsa implementation.
In International Workshop on Public Key Cryptography, pages 252–262. Springer, 2002.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementation
of nonlinear functions in the presence of glitches. Journal of Cryptology, 24:292–321,
2011.

[NY21] Yusuke Nozaki and Masaya Yoshikawa. Shuffling countermeasure against power side-
channel attack for mlp with software implementation. In 2021 IEEE 4th International
Conference on Electronics and Communication Engineering (ICECE), pages 39–42. IEEE,
2021.

[NYGD22] Len Luet Ng, Kim Ho Yeap, Magdalene Wan Ching Goh, and Veerendra Dakulagi.
Power consumption in cmos circuits. In Electromagnetic Field in Advancing Science and
Technology. IntechOpen, 2022.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[O’F23] Colin O’Flynn. Picoemp: A low-cost emfi platform compared to bbi and voltage fault
injection using tdc and external vcc measurements. Cryptology ePrint Archive, 2023.

[Ogg] Frédérique Oggier. Lecture notes. https://feog.github.io/. Accessed: 2012-11-
30.

[ORBG17] Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Secure Page Fu-
sion with VUsion: https://www. vusec. net/projects/VUsion. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 531–545, 2017.

[Org17] European Cyber Security Organisation. Overview of existing cybersecurity standards
and certification schemes v2, wg1 – standardisation, certification, labelling and supply
chain management, 2017.

[ORJ+13] Rachid Omarouayache, Jérémy Raoult, Sylvie Jarrix, Laurent Chusseau, and Philippe
Maurine. Magnetic microprobe design for em fault attack. In 2013 International Sympo-
sium on Electromagnetic Compatibility, pages 949–954. IEEE, 2013.

[OS05] Elisabeth Oswald and Kai Schramm. An efficient masking scheme for aes software
implementations. In International Workshop on Information Security Applications, pages
292–305. Springer, 2005.

[Osw] David Oswald. Lecture notes: Hardware and embedded systems security. https:
//github.com/david-oswald/hwsec_lecture_notes. Accessed: 2012-12-03.

[PBMB17] Sikhar Patranabis, Jakub Breier, Debdeep Mukhopadhyay, and Shivam Bhasin. One
plus one is more than two: a practical combination of power and fault analysis attacks
on present and present-like block ciphers. In 2017 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 25–32. IEEE, 2017.

[PBP21] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to stop: a mutual
information approach to prevent overfitting in profiled side-channel analysis. In Con-
structive Side-Channel Analysis and Secure Design: 12th International Workshop, COSADE
2021, Lugano, Switzerland, October 25–27, 2021, Proceedings 12, pages 53–81. Springer,
2021.

https://feog.github.io/
https://github.com/david-oswald/hwsec_lecture_notes
https://github.com/david-oswald/hwsec_lecture_notes

336

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Strength in numbers:
Improving generalization with ensembles in machine learning-based profiled side-
channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 337–364, 2020.

[PGP+19] Ilia Polian, Mael Gay, Tobias Paxian, Matthias Sauer, and Bernd Becker. Automatic
construction of fault attacks on cryptographic hardware implementations. Automated
Methods in Cryptographic Fault Analysis, pages 151–170, 2019.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni.
The curse of class imbalance and conflicting metrics with machine learning for side-
channel evaluations. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2019(1):1–29, 2019.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-resistance
without routing constraints. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 172–186. Springer, 2005.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,
and San Ling. Side-channel resistant crypto for less than 2,300 ge. Journal of Cryptology,
24:322–345, 2011.

[PNP+20] Athanasios Papadimitriou, Konstantinos Nomikos, Mihalis Psarakis, Ehsan Aerabi,
and David Hely. You can detect but you cannot hide: Fault assisted side channel anal-
ysis on protected software-based block ciphers. In 2020 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE,
2020.

[PP09] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students and prac-
titioners. Springer Science & Business Media, 2009.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks on
masked lattice-based encryption. In Cryptographic Hardware and Embedded Systems–
CHES 2017: 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, pages 513–533. Springer, 2017.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against
spn structures, with application to the aes and khazad. In Cryptographic Hardware and
Embedded Systems-CHES 2003: 5th International Workshop, Cologne, Germany, September
8–10, 2003. Proceedings 5, pages 77–88. Springer, 2003.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A for-
mal security proof. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 142–159. Springer, 2013.

[Pro13] Emmanuel Prouff. Side channel attacks against block ciphers implementations and
countermeasures. Tutorial presented in CHES, 2013.

[PS19] Sandro Pinto and Nuno Santos. Demystifying ARM TrustZone: A Comprehensive
Survey. ACM Computing Surveys (CSUR), 51(6):1–36, 2019.

[PSKH18] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-channel at-
tacks on post-quantum signature schemes based on multivariate quadratic equations:-
rainbow and uov. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 500–523, 2018.

[PSQ07] Eric Peeters, François-Xavier Standaert, and Jean-Jacques Quisquater. Power and elec-
tromagnetic analysis: Improved model, consequences and comparisons. Integration,
40(1):52–60, 2007.

337

[PV13] Konstantinos Papagiannopoulos and Aram Verstegen. Speed and size-optimized im-
plementations of the present cipher for tiny avr devices. In Radio Frequency Identifica-
tion: Security and Privacy Issues 9th International Workshop, RFIDsec 2013, Graz, Austria,
July 9-11, 2013, Revised Selected Papers 9, pages 161–175. Springer, 2013.

[PY06] Raphael C W Phan and Sung-Ming Yen. Amplifying side-channel attacks with tech-
niques from block cipher cryptanalysis. In Smart Card Research and Advanced Applica-
tions: 7th IFIP WG 8.8/11.2 International Conference, CARDIS 2006, Tarragona, Spain, April
19-21, 2006. Proceedings 7, pages 135–150. Springer, 2006.

[QWL+20] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, Ruidong Tian, Chunlu Wang, and
Gang Qu. Voltjockey: A new dynamic voltage scaling-based fault injection attack on
intel sgx. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(6):1130–1143, 2020.

[QWLQ19] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. Voltjockey: Breaching
trustzone by software-controlled voltage manipulation over multi-core frequencies. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 195–209, 2019.

[RAL17] Tiago Reis, Diego F Aranha, and Julio López. Present runs fast. In International Confer-
ence on Cryptographic Hardware and Embedded Systems, pages 644–664. Springer, 2017.

[RBBC18] Prasanna Ravi, Shivam Bhasin, Jakub Breier, and Anupam Chattopadhyay. PPAP and
ippap: Pll-based protection against physical attacks. In 2018 IEEE Computer Society
Annual Symposium on VLSI, ISVLSI 2018, Hong Kong, China, July 8-11, 2018, pages 620–
625. IEEE Computer Society, 2018.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
Drop by drop you break the rock-exploiting generic vulnerabilities in lattice-based
pke/kems using em-based physical attacks. IACR Cryptol. ePrint Arch., 2020:549, 2020.

[RCDB22] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi.
Side-channel and fault-injection attacks over lattice-based post-quantum schemes (ky-
ber, dilithium): Survey and new results. ACM Transactions on Embedded Computing
Systems, 2022.

[RCYF22] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deep-
steal: Advanced model extractions leveraging efficient weight stealing in memories. In
2022 IEEE Symposium on Security and Privacy (SP), pages 1157–1174. IEEE, 2022.

[RDMB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,
Ventzislav Nikov, and Nigel Smart. Capa: the spirit of beaver against physical attacks.
In Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38, pages 121–151.
Springer, 2018.

[RGN13] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved security of assembly
code against leakage. IACR Cryptol. ePrint Arch., 2013:554, 2013.

[RHF19] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural net-
work with progressive bit search. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1211–1220, 2019.

[RHF20] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural network attack
with bit trojan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13198–13207, 2020.

[RHL+21] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang
Fan. T-bfa: Targeted bit-flip adversarial weight attack. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(11):7928–7939, 2021.

338

[Riv09] Matthieu Rivain. Differential fault analysis on des middle rounds. In CHES, volume
5747, pages 457–469. Springer, 2009.

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined fault and side-channel
attack on protected implementations of aes. In Smart Card Research and Advanced Ap-
plications: 10th IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven, Belgium,
September 14-16, 2011, Revised Selected Papers 10, pages 65–83. Springer, 2011.

[RM07] Bruno Robisson and Pascal Manet. Differential behavioral analysis. In Cryptographic
Hardware and Embedded Systems-CHES 2007: 9th International Workshop, Vienna, Austria,
September 10-13, 2007. Proceedings 9, pages 413–426. Springer, 2007.

[Ros20] Sheldon M Ross. Introduction to probability and statistics for engineers and scientists. Aca-
demic press, 2020.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of aes.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 413–
427. Springer, 2010.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. Number “not used” once-practical fault attack on pqm4
implementations of nist candidates. In Constructive Side-Channel Analysis and Secure
Design: 10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3–5, 2019,
Proceedings 10, pages 232–250. Springer, 2019.

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel attacks. In
International Conference on Information Security and Cryptology, pages 393–410. Springer,
2009.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement learn-
ing for hyperparameter tuning in deep learning-based side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 677–707, 2021.

[RZC+21] Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, and Amaury
Habrard. Online performance evaluation of deep learning networks for profiled side-
channel analysis. In Constructive Side-Channel Analysis and Secure Design: 11th Inter-
national Workshop, COSADE 2020, Lugano, Switzerland, April 1–3, 2020, Revised Selected
Papers 11, pages 200–218. Springer, 2021.

[SA93] Jerry M Soden and Richard E Anderson. Ic failure analysis: techniques and tools for
quality reliability improvement. Proceedings of the IEEE, 81(5):703–715, 1993.

[SA02] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In Inter-
national workshop on cryptographic hardware and embedded systems, pages 2–12. Springer,
2002.

[Sau13] Laurent Sauvage. Electric probes for fault injection attack. In 2013 Asia-Pacific Sympo-
sium on Electromagnetic Compatibility (APEMC), pages 1–4. IEEE, 2013.

[SBM18] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementation in software:
Case study of present. In Constructive Side-Channel Analysis and Secure Design: 9th In-
ternational Workshop, COSADE 2018, Singapore, April 23–24, 2018, Proceedings 9, pages
227–244. Springer, 2018.

[SC78] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE transactions on acoustics, speech, and signal processing,
26(1):43–49, 1978.

[Sch00] Bruce Schneier. A self-study course in block-cipher cryptanalysis. Cryptologia, 24(1):18–
33, 2000.

339

[Sei05] Jean-Pierre Seifert. On authenticated computing and rsa-based authentication. In Pro-
ceedings of the 12th ACM conference on Computer and communications security, pages 122–
127, 2005.

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup time violation
attacks on aes. In 2008 Seventh European Dependable Computing Conference, pages 91–96.
IEEE, 2008.

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and EM fault-attacks on CRT-based RSA:
Concrete results. 2007.

[SH08] Jörn-Marc Schmidt and Christoph Herbst. A practical fault attack on square and mul-
tiply. In 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 53–58.
IEEE, 2008.

[Sha45] Claude E Shannon. A mathematical theory of cryptography. Mathematical Theory of
Cryptography, 1945.

[Sha97] A Shamir. Method and apparatus for protecting public key schemes from timing and
fault attacks. In EUROCRYPT’97, 1997.

[Sha00] Adi Shamir. Protecting smart cards from passive power analysis with detached power
supplies. In Cryptographic Hardware and Embedded Systems—CHES 2000: Second Inter-
national Workshop Worcester, MA, USA, August 17–18, 2000 Proceedings 2, pages 71–77.
Springer, 2000.

[SHS16] Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on a dfa protected aes by si-
multaneous laser fault injections. In 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 36–46. IEEE, 2016.

[SI20a] SOG-IS. Application of attack potential to smartcards and similar devices, v3.1, 2020.

[SI20b] SOG-IS. Attack methods for smartcards and similar devices, 2020.

[Sie88] Waclaw Sierpinski. Elementary Theory of Numbers: Second English Edition (edited by A.
Schinzel). Elsevier, 1988.

[Siv17] Nimisha Sivaraman. Design of magnetic probes for near field measurements and the devel-
opment of algorithms for the prediction of EMC. PhD thesis, Université Grenoble Alpes,
2017.

[SJB+18] Sayandeep Saha, Dirmanto Jap, Jakub Breier, Shivam Bhasin, Debdeep Mukhopad-
hyay, and Pallab Dasgupta. Breaking redundancy-based countermeasures with ran-
dom faults and power side channel. In 2018 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 15–22. IEEE, 2018.

[SM12] Pushpa Saini and Rajesh Mehra. A novel technique for glitch and leakage power re-
duction in cmos vlsi circuits. International Journal of Advanced Computer Science and
Applications, 3(10), 2012.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology: A clear
roadmap for side-channel evaluations. In Cryptographic Hardware and Embedded
Systems–CHES 2015: 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings 17, pages 495–513. Springer, 2015.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti–towards combined hard-
ware countermeasures against side-channel and fault-injection attacks. In Advances
in Cryptology–CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II 36, pages 302–332. Springer, 2016.

340

[SMKLM02] Yen Sung-Ming, Seungjoo Kim, Seongan Lim, and Sangjae Moon. RSA speedup with
residue number system immune against hardware fault cryptanalysis. In international
conference on information security and cryptology, pages 397–413. Springer, 2002.

[SMR09] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita RoyChowdhury. A diagonal
fault attack on the advanced encryption standard. Cryptology ePrint Archive, 2009.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework for the
analysis of side-channel key recovery attacks. In Advances in Cryptology-EUROCRYPT
2009, pages 443–461. Springer, 2009.

[Sor84] Arthur Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22–42, 1984.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the aes. In Topics in
Cryptology–CT-RSA 2006: The Cryptographers’ Track at the RSA Conference 2006, San Jose,
CA, USA, February 13-17, 2005. Proceedings, pages 208–225. Springer, 2006.

[SS16] Peter Schwabe and Ko Stoffelen. All the aes you need on cortex-m3 and m4. In Inter-
national Conference on Selected Areas in Cryptography, pages 180–194. Springer, 2016.

[Sta10] François-Xavier Standaert. Introduction to side-channel attacks. Secure integrated cir-
cuits and systems, pages 27–42, 2010.

[Sti05] Douglas R Stinson. Cryptography: theory and practice. Chapman and Hall/CRC, 2005.

[SVK+03] H Saputra, N Vijaykrishnan, M Kandemir, MJ Irwin, and R Brooks. Masking the energy
behaviour of encryption algorithms. IEE Proceedings-Computers and Digital Techniques,
150(5):274–284, 2003.

[SWM18] Robert Schilling, Mario Werner, and Stefan Mangard. Securing conditional branches in
the presence of fault attacks. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1586–1591. IEEE, 2018.

[SWP03] Kai Schramm, Thomas Wollinger, and Christof Paar. A new class of collision attacks
and its application to des. In Fast Software Encryption: 10th International Workshop, FSE
2003, Lund, Sweden, February 24-26, 2003. Revised Papers 10, pages 206–222. Springer,
2003.

[TAV02] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differen-
tial cmos logic with signal independent power consumption to withstand differential
power analysis on smart cards. In Proceedings of the 28th European solid-state circuits
conference, pages 403–406. IEEE, 2002.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying fault
invariant with randomization: A countermeasure for aes against differential fault
attacks. In Cryptographic Hardware and Embedded Systems–CHES 2014: 16th Interna-
tional Workshop, Busan, South Korea, September 23-26, 2014. Proceedings 16, pages 93–111.
Springer, 2014.

[THM07] Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting aes software imple-
mentations on 32-bit processors against power analysis. In Applied Cryptography and
Network Security: 5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007.
Proceedings 5, pages 141–157. Springer, 2007.

[TIA+23] M Caner Tol, Saad Islam, Andrew J Adiletta, Berk Sunar, and Ziming Zhang. Don’t
knock! rowhammer at the backdoor of dnn models. In 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 109–122. IEEE,
2023.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with sensitiv-
ity analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
107–131, 2019.

341

[TKA+18] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks over the net-
work and defenses. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 213–226, 2018.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault analysis
of the advanced encryption standard using a single fault. In Information Security Theory
and Practice. Security and Privacy of Mobile Devices in Wireless Communication: 5th IFIP
WG 11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011.
Proceedings 5, pages 224–233. Springer, 2011.

[TSS+06] Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan Van Geloven, Nynke Verhaegh, and
Rob Wolters. Read-proof hardware from protective coatings. In Ches, volume 6, pages
369–383. Springer, 2006.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1057–1074, 2017.

[TV06] Kris Tiri and Ingrid Verbauwhede. A digital design flow for secure integrated cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(7):1197–1208, 2006.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi
Homma. Curse of re-encryption: A generic power/em analysis on post-quantum
kems. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 296–
322, 2022.

[Vai01] PP Vaidyanathan. Generalizations of the sampling theorem: Seven decades after
nyquist. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 48(9):1094–1109, 2001.

[VCGRS13] Nicolas Veyrat-Charvillon, Benoı̂t Gérard, Mathieu Renauld, and François-Xavier Stan-
daert. An optimal key enumeration algorithm and its application to side-channel at-
tacks. In Selected Areas in Cryptography: 19th International Conference, SAC 2012, Wind-
sor, ON, Canada, August 15-16, 2012, Revised Selected Papers 19, pages 390–406. Springer,
2013.

[VCGS14] Nicolas Veyrat-Charvillon, Benoı̂t Gérard, and François-Xavier Standaert. Soft analyti-
cal side-channel attacks. In Advances in Cryptology–ASIACRYPT 2014: 20th International
Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, ROC, December 7-11, 2014. Proceedings, Part I 20, pages 282–296. Springer, 2014.

[VDVFL+16] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Dram-
mer: Deterministic rowhammer attacks on mobile platforms. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security, pages 1675–1689,
2016.

[VEW12] Camille Vuillaume, Takashi Endo, and Paul Wooderson. Rsa key generation: new at-
tacks. In Constructive Side-Channel Analysis and Secure Design: Third International Work-
shop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings 3, pages 105–119.
Springer, 2012.

[Vig08] David Vigilant. RSA with crt: A new cost-effective solution to thwart fault attacks. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages 130–145.
Springer, 2008.

[VW01] Manfred Von Willich. A technique with an information-theoretic basis for protecting
secret data from differential power attacks. In IMA International Conference on Cryptog-
raphy and Coding, pages 44–62. Springer, 2001.

342

[vWWB11] Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker. Improving differ-
ential power analysis by elastic alignment. In Topics in Cryptology–CT-RSA 2011: The
Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18,
2011. Proceedings, pages 104–119. Springer, 2011.

[Wal02] Colin D Walter. Mist: An efficient, randomized exponentiation algorithm for resisting
power analysis. In Topics in Cryptology—CT-RSA 2002: The Cryptographers’ Track at the
RSA Conference 2002 San Jose, CA, USA, February 18–22, 2002 Proceedings, pages 53–66.
Springer, 2002.

[Wel47] Bernard L Welch. The generalization of ‘student’s’problem when several different pop-
ulation varlances are involved. Biometrika, 34(1-2):28–35, 1947.

[WHJ+21] Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and Shivam Bhasin. Back
to the basics: Seamless integration of side-channel pre-processing in deep neural net-
works. IEEE Transactions on Information Forensics and Security, 16:3215–3227, 2021.

[WJB20] Yoo-Seung Won, Dirmanto Jap, and Shivam Bhasin. Push for more: On comparison
of data augmentation and smote with optimised deep learning architecture for side-
channel. In Information Security Applications: 21st International Conference, WISA 2020,
Jeju Island, South Korea, August 26–28, 2020, Revised Selected Papers 21, pages 227–241.
Springer, 2020.

[WKKG04] Kaijie Wu, Ramesh Karri, Grigori Kuznetsov, and Michael Goessel. Low cost concur-
rent error detection for the advanced encryption standard. In 2004 International Conferce
on Test, pages 1242–1248. IEEE, 2004.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of side-channel
measurements with autoencoders. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 389–415, 2020.

[WPP22] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated hyperpa-
rameter tuning for deep learning-based side-channel analysis. IEEE Transactions on
Emerging Topics in Computing, 2022.

[WvWM11] Marc F Witteman, Jasper GJ van Woudenberg, and Federico Menarini. Defeating rsa
multiply-always and message blinding countermeasures. In Topics in Cryptology–CT-
RSA 2011: The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA,
February 14-18, 2011. Proceedings, pages 77–88. Springer, 2011.

[WW10] Gaoli Wang and Shaohui Wang. Differential fault analysis on present key schedule. In
2010 International Conference on Computational Intelligence and Security, pages 362–366.
IEEE, 2010.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. Fault-
injection attacks against nist’s post-quantum cryptography round 3 kem candidates.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 33–61. Springer, 2021.

[XLZ+18] Sen Xu, Xiangjun Lu, Kaiyu Zhang, Yang Li, Lei Wang, Weijia Wang, Haihua Gu, Zheng
Guo, Junrong Liu, and Dawu Gu. Similar operation template attack on rsa-crt as a case
study. Science China Information Sciences, 61:1–17, 2018.

[XZY+20] Guorui Xu, Fan Zhang, Bolin Yang, Xinjie Zhao, Wei He, and Kui Ren. Pushing the
limit of pfa: enhanced persistent fault analysis on block ciphers. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 40(6):1102–1116, 2020.

[Yeh14] James J Yeh. Real analysis: theory of measure and integration. World Scientific Publishing
Company, 2014.

343

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough against
fault-based cryptanalysis. IEEE Transactions on computers, 49(9):967–970, 2000.

[YKM06] Sung-Ming Yen, Dongryeol Kim, and SangJae Moon. Cryptanalysis of two protocols
for RSA with crt based on fault infection. In International Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 53–61. Springer, 2006.

[YMY+20] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. Deepem:
Deep neural networks model recovery through em side-channel information leakage.
In 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 209–218. IEEE, 2020.

[YRF20] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. {DeepHammer}: Depleting the intel-
ligence of deep neural networks through targeted chain of bit flips. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1463–1480, 2020.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology
for efficient cnn architectures in profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 1–36, 2020.

[ZDT+14] Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, Philippe Maurine,
Ludovic Guillaume-Sage, Jessy Clediere, and Assia Tria. Efficiency of a glitch detector
against electromagnetic fault injection. In 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE, 2014.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya
Qureshi, and Kui Ren. Persistent fault analysis on block ciphers. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 150–172, 2018.

[ZZJ+20] Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie Zhao, Zhe
Liu, Dawu Gu, and Kui Ren. Persistent fault attack in practice. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 172–195, 2020.

[ZZY+19] Yiran Zhang, Fan Zhang, Bolin Yang, Guorui Xu, Bin Shao, Xinjie Zhao, and Kui Ren.
Persistent fault injection in fpga via bram modification. In 2019 IEEE Conference on
Dependable and Secure Computing (DSC), pages 1–6. IEEE, 2019.

Index

Zn, 24
Z∗
n, 26

Mn×n(R), 16
Rd, 46
φ(n), 26
n-bit binary string, 19

AES, 96
AES T-tables, 109
affine cipher, 75

Bellcore attack, 270
binary code, 39

n−repetition code, 42
(minimum) distance, 40
anticode, 44
binary (n,M)−code, 39
binary (n,M, d)−code, 40
binary [n, k, d]−linear code, 41
codeword, 39
dimension, 41
dual code, 42
error correcting, 41
error-detecting, 40
generator matrix, 43
length, 39
linear, 41
maximum distance, 44
parity-check code, 42
parity-check matrix, 43
size, 39

bit, 14
bitwise AND, 19
bitwise OR, 19
bitwise XOR, 19
Blakely’s method, 124
Boolean function, 109

algebraic normal form, 110
indicator function, 110
truth table, 109

Borel set, 46
byte, 19

Caesar Cipher, 74

CBC mode, 86
Chinese Remainder Theorem, 31
correlation coefficient, 55
cryptographic primitives, 70
cryptosystem, 71

block cipher, 72
block length, 89
Feistel cipher, 91
key length, 89
key schedule, 89
master key, 89
round function, 89
Sbox, 91
SPN cipher, 92

computationally secure, 73
perfectly secure, 73, 84
secure in practice, 73
stream cipher, 72

DES, 92
difference distribution table, 191
differential fault analysis, 246
distribution, 49

χ2−distribution, 57
t−distribution, 57
Gaussian distribution, 55
multivariate normal distribution, 55
normal distribution, 53
standard normal distribution, 50
uniform, 50

ECB mode, 86
equivalence class, 23
equivalence relation, 23
Euler’s Theorem, 27
Euler’s totient function, 26
event, 45

independent, 47

fault mask, 245
fault model, 245
Fermat’s Little Theorem, 27
field, 13

Fpn , 14

344

345

characteristic, 13
finite field, 13
isomorphism, 14
subfield, 14

forgery, 115
existential forgery, 115
selective forgery, 115

frequency analysis, 80
function, 2

bijective, 3
codomain, 2
composition, 3
domain, 2
injective, 3
inverse, 3
surjective, 3

Garner’s algorithm, 120
Gauss’s algorithm, 120
group, 8

abelian, 9
cyclic, 11
order, 10
order of an element, 11
symmetric group of degree n, 10

guessing entropy, 187

Hamming distance, 39
Hamming weight, 42
hash function, 71
Hill cipher, 78

infective countermeasure, 267, 286
integer

Bézout’s identity, 5
base−b representation, 4
binary representation, 4
bit length, 4
composite (number), 8
congruence class modulo n, 23
congruent modulo n, 23
Euclid’s division, 6
Euclidean algorithm, 7
extended Euclidean algorithm, 7
Fundamental Theorem of Arithmetic, 8
greatest common divisor, 5
hexadecimal representation, 4
modulus, 23
prime (number), 8

integral domain, 12
interval estimator, 60

Kerckhoffs’ principle, 73

linear congruence, 29
logical AND, 12
logical XOR, 9

matrix, 15
addition, 15
adjoint matrix, 17
determinant, 17
diagonal, 15
identity matrix, 15
inverse, 16
multiplication, 16
rank, 311
scalar product, 16
square matrix, 15
transpose, 15

measurable space, 45
Montgomery powering ladder, 119
Montgomery product algorithm (MonPro),

131, 132

nibble, 19

OFB mode, 87
one-time pad, 84

permutation, 10
persistent fault analysis, 259
point estimator, 60
polynomial, 32

congruence class, 35
congruent modulo f(x), 35
degree, 32
Division Algorithm, 33
greatest common divisor, 36
polynomial ring, 33
reducible, 34

PRESENT, 102
probability measure, 46

Bayes’ Theorem, 48
conditional probability, 47
probability, 46
probability space, 46
uniform, 47

random variable, 49
continuous, 50

expectation, 51
covariance, 54
cumulative distribution function (CDF),

49
discrete, 49

expectation, 51
independent, 54
normal random variable, 53
probability density function (PDF), 50
probability mass function (PMF), 50
standard normal random variable, 51
uncorrelated, 54
variance, 52

random vector, 55

346

ring, 11
commutative, 11
unit, 12
zero divisor, 12

RSA, 113
RSA signatures, 115

safe error attack, 277
sample mean, 59
sample space, 45
sample variance, 59
set, 1

cardinality, 1
Cartesian product, 2
complement, 2
difference, 2
intersection, 2
power set, 1
union, 2

Shamir’s countermeasure, 283
shift cipher, 74
square and multiply algorithm, 117

left-to-right, 117
right-to-left, 117

statistical fault analysis, 255
student’s t−test, 67
substitution cipher, 76
success rate, 187
system of simultaneous congruences, 29

TVLA, 150

vector space, 18
basis, 21
dimension, 22
generating set, 20
linearly independent, 20
orthogonal complement, 22
scalar, 18
subspace, 19
vector, 18

Vigenère cipher, 77

Welch’s t−test, 67
word size of an architecture, 72

	Mathematical and Statistical Background
	Preliminaries
	Sets
	Functions
	Integers

	Abstract Algebra
	Groups
	Rings
	Fields

	Linear Algebra
	Matrices
	Vector Spaces

	Modular Arithmetic
	Solving Linear Congruences

	Polynomial Rings
	Bytes

	Coding Theory
	Probability Theory
	pdfalgebras
	Probabilities
	Random Variables

	Statistics
	Important Distributions
	Estimating Mean and Difference of Means of Normal Distributions
	Hypothesis Testing

	Further Reading

	Introduction to Cryptography
	Cryptographic Primitives
	Hash Functions
	Cryptosystems
	Security of Cryptosystems

	Classical Ciphers
	Shift Cipher
	Affine Cipher
	Substitution Cipher
	Vigenère Cipher
	Hill Cipher
	Cryptanalysis of Classical Ciphers
	One-time Pad

	Encryption Modes
	Further Reading

	Modern Cryptographic Algorithms and their Implementations
	Symmetric Block Ciphers
	DES
	AES
	PRESENT

	Implementations of Symmetric Block Ciphers
	Implementing Sboxes
	Implementing Permutations
	Bitsliced Implementations

	RSA
	RSA Signatures
	Implementations of RSA Cipher and RSA Signatures
	Implementing Modular Exponentiation
	Implementing Modular Multiplication

	Further Reading

	Side-Channel Analysis Attacks and Countermeasures
	Experimental Setting
	Attack Methods

	Side-channel Leakages
	Distribution of the Leakage
	Estimating Leakage Distributions
	Leakage Assessment
	Signal-to-Noise Ratio

	Side-Channel Analysis Attacks on Symmetric Block Ciphers
	Non-profiled Differential Power Analysis Attacks
	Profiled Differential Power Analysis
	Side-Channel Assisted Differential Plaintext Attack

	Side-Channel Analysis Attacks on RSA and RSA Signatures
	Simple Power Analysis
	Differential Power Analysis

	Countermeasures Against Side-channel Analysis Attacks
	Hiding
	Masking and Blinding

	Further Reading
	AI-assisted SCA

	Fault Attacks and Countermeasures
	Fault Attacks on Symmetric Block Ciphers
	Differential Fault Analysis
	Statistical Fault Analysis
	Persistent Fault Analysis
	Implementation Specific Fault Attack

	Fault Countermeasures for Symmetric Block Ciphers
	Encoding-based Countermeasure
	Infective Countermeasure

	Fault Attacks on RSA and RSA Signatures
	Bellcore Attack
	Attack on the Square and Multiply Algorithm
	Attack on the Public Key
	Safe Error Attack

	Fault Countermeasures for RSA and RSA Signatures
	Shamir's Countermeasure
	Infective Countermeasure
	Countermeasure for Attacks on the Square and Multiply Algorithm
	Countermeasures Against the Safe Error Attack

	Further Reading

	Practical Aspects of Physical Attacks
	Side-Channel Attacks
	Origins of Leakage
	Measurement Setup

	Fault Attacks
	Fault Injection Techniques

	Industry Standards
	Common Criteria
	FIPS 140-3

	Proofs
	Matrices
	Invertible Matrices for the Stochastic Leakage Model

	Long Division
	DES Sbox
	Algebraic Normal Forms for PRESENT Sbox Output Bits
	Encoding-based Countermeasure for Symmetric Block Ciphers

