
A Dynamic Rule Creation Based Anomaly

Detection Method for Identifying Security Breaches

in Log Records

Jakub Breier∗1 and Jana Branǐsová†2

1Physical Analysis and Cryptographic Engineering,
Nanyang Technological University,

Singapore
2Faculty of Informatics and Information Technologies,

Slovak University of Technology, Bratislava,
Slovakia

Abstract

Evidence of security breaches can be found in log files, created by
various network devices in order to provide information about their
operation. Huge amount of data contained within these files usually
prevents to analyze them manually, therefore it is necessary to utilize
automatic methods capable of revealing potential attacks.

In this paper we propose a method for anomaly detection in log
files, based on data mining techniques for dynamic rule creation. To
support parallel processing, we employ Apache Hadoop framework,
providing distributed storage and distributed processing of data. Out-
comes of our testing show potential to discover new types of breaches
and plausible error rates below 10%. Also, rule generation and anomaly
detection speeds are competitive to currently used algorithms, such as
FP-Growth and Apriori.

1 Introduction

Information systems and computer networks provide information about their
state and operation in the form of log records. These records are composed
of log entries containing information related to a specific event, which can
be related to security [6]. Potential security breaches can be revealed by
analyzing log files and looking for anomalies that occurred at a certain time

∗jakub.breier@gmail.com
†branisovaj@gmail.com

1

during the device operation. Organizations today utilize complex informa-
tion systems producing large amounts of log messages, making it infeasible
to analyze them manually. Automatized methods, if implemented correctly,
can help us to aim at important records, revealing malicious code, non-
privileged system access or resources usage, policy breaches and also identify
the source of these activities [13].

As stated in NIST SP800-92 [6], organizations should establish pro-
cesses for log management, incorporate these processes into their policies
and clearly define the goals and requirements for log management.

There can be various types of log messages, commonly inspected ones
usually originate from operating systems, network devices, web servers and
various applications using the network. SANS Institute published a report
stating six most critical report categories that should be collected and ana-
lyzed in order to identify possible breaches1:

1. Authentication and Authorization Reports

2. Systems and Data Change Reports

3. Network Activity Reports

4. Resource Access Reports

5. Malware Activity Reports

6. Failure and Critical Error Reports

In our work we focus on the third category, but the method can be easily
extended to other categories as well. Common types of security software
capable of capturing these log are antimalware software, IDS/IPS, remote
access software, web proxies, vulnerability management software, authen-
tication servers, routers, firewalls, and network quarantine servers[6]. To
test our method we use a set from IDS and a set of Snort logs created by
analyzing this set. We use anomaly detection, with the help of data mining
techniques.

Our approach utilizes a dynamic rule creation method for detecting pos-
sible breaches. A human intervention is minimized by detecting anomalies
from the normal system behavior and also, it is possible to discover new
types of breaches. A problem with large data sets is effectively handled by
Apache Hadoop framework, which we have implemented using its MapRe-
duce method. Hadoop-based algorithm processes data faster compared to
algorithm using tree-based structure and the framework makes it easy to
add several computing nodes for parallel log analysis.

The rest of the paper is organized as follows. Related work is stated in
Section 2. Section 3 describes possibilities of anomaly detection, providing

1http://www.sans.edu/research/security-laboratory/article/sixtoplogcategories

2

overview of current methods in this field. Section 4 presents the design of
our solution, followed by Section 5, where we state results of the testing.
Finally, Section 6 concludes this work.

2 Related Work

There are several works proposing usage of data mining methods in log file
analysis process or in detecting security threats in general.

One of the first approaches utilizing data mining techniques for intrusion
detection was proposed by Lee and Stolfo in 1998 [7]. They implemented
two algorithms for detecting algorithms, the association rules algorithm and
the frequent episodes algorithm. They showed that by analyzing audit data
it is possible to discover patterns of intrusions.

Schultz et al. [9] proposed a method for detecting malicious executables
using data mining algorithms. They have used several standard data mining
techniques in order to detect previously undetectable malicious executables.
They found out that some methods, like Multi-Label Naive Bayes Classifica-
tion can achieve very good results in comparison to standard signature-based
methods.

Grace, Maheswari and Nagamalai [5] used data mining methods for an-
alyzing web log files, for the purposes of getting more information about
users. In their work they described log file formats, types and contents and
provided an overview of web usage mining processes.

Frei and Rennhard [3] used a different approach to search for anoma-
lies in log files. They created the Histogram Matrix, a log file visualization
technique that helps security administrators to spot anomalies. Their ap-
proach works on every textual log file. It is based on a fact that human
brain is efficient in detecting patterns when inspecting images, so the log file
is visualized in a form that it is possible to observe deviations from normal
behavior.

Fu et al. [4] proposed a technique for anomaly detection in unstructured
system logs that does not require any application specific knowledge. They
also included a method to extract log keys from free text messages. Their
false positive rate using Hadoop was around 13% and using SILK around
24%.

Makanju, Zincir-Heywood and Milios [8] proposed a hybrid log alert de-
tection scheme, using both anomaly and signature-based detection methods.

3 Detection Methods

According to Siddiqui [10], there are three main detection methods that are
used for monitoring malicious activities: scanning, activity monitoring and
integrity check. Scanning is the most widely used detection method, based

3

on searching for pre-defined strings in files. Advanced version of scanning
includes heuristic scanning which searches for unusual commands or instruc-
tions in a program. Activity monitoring simply monitors a file execution and
observes its behavior. Usually, APIs, system calls and hybrid data sources
are monitored. Finally, integrity checking creates a cryptographic checksum
for chosen files and periodically checks for integrity changes.

According to OWASP2, there are four main types of information in every
log record: when, where, who and what. It is possible to further process the
log data and identify anomalies or correlations among different device logs
only if all the four attributes are present.

Data mining is relatively new approach for detecting malicious actions
in the system. It uses statistical and machine learning algorithms on a set
of features derived from standard and non-standard behavior. It consists
of two phases: data collection and application of detection method on col-
lected data. These two phases sometimes overlap in a way that selection of
particular detection method can affect a data collection.

Data can be analyzed either statically or dynamically. Dynamic analysis
observes a program or a system during the execution, therefore it is precise
but time consuming. Static analysis uses reverse-engineering techniques. It
determines behavior by observing program structure, functionality or types
of operation. This technique is faster and it does not need as much com-
putational power as dynamic analysis, but we get only approximation of
reality. We can also use hybrid analysis - first, a static analysis is used and
if it does not achieve correct results, dynamic analysis is applied as well.

3.1 Detection Strategies

Every detection method includes a record analysis based on selected criteria.
There are three categories of data detection:

• Anomaly detection - first, a system profile, functioning properly ac-
cording to specification, is created. Then the method compares gath-
ered data in order to check if a non-standard behavior can be labeled
as an attack [12].

• Misuse detection - when using this method, a system profile containing
samples of various malicious programs, is created. Then, an algorithm
tries to find a match with this profile. It can complement the anomaly
detection method, but it is unable to recognize new or unknown attack
types.

• Hybrid detection - is a combination of last two strategies. There is
no need of creating a profile, this detection strategy creates a data
classifiers based on data from both safe and unsafe sources.

2https://www.owasp.org

4

3.2 Knowledge Discovery in Databases

Data mining is the analysis step of the Knowledge Discovery in Databases
(KDD) [2]. The main goal of KDD is to discover information in large data
sets. KDD consists of following stages:

• Data cleaning

• Data integration - combines multiple data sources

• Data transformation - data is transformed or consolidated in a form
appropriate for data mining

• Data mining - applies data analysis and discovery algorithms that
produce patterns over the data

• Pattern evaluation - identifies important patterns representing certain
level of knowledge

• Knowledge interpretation - uses visualization and presentation tech-
niques for knowledge representation

3.3 Data Mining

Data mining is a process of (semi-)automatic knowledge extraction. It is
possible to apply this process on data in various forms, e. g. quantitative
form, text form or multimedia form. The main advantage of data mining is a
fast way of information gathering. When considering logging problem, data
mining is applied after standard log analysis in order to provide outcome of
better quality. In this work we use two main data mining algorithm types:

• Classification is a process of data mapping to previously defined cate-
gories. These categories have certain properties so that by examining
the data it can be identified with some degree of accuracy to which
category it belongs. The goal of text classification is to find an ap-
proximation of unknown function Φ : D×C → {true, false}, where D
is a set of text documents and C = {c1, c2, . . . , c|C|} is a set of prede-
fined categories. Function Φ holds true for < di, cj > if the document
di belongs to category cj . Function D × C → {true, false} which
approximates Φ is known as a classifier.

There are several algorithms that could be used for this purpose.
Tavallae et al. [11] made a comparative analysis of several algorithms
for the log file data mining. According to their results, decision tree
algorithms and Multi-Layer Perception method that makes a model
of artificial neural network for positive feedback gained success rate
of 90%. Naive Bayesian a posteriori classification had success rate of
80% and Support Vector Machine method achieved 60%.

5

• Clustering is a method that maps data into groups. These groups are
not defined in the beginning, therefore we do not know their properties.
A group, called the cluster, is defined by the data it contains. In the
end, instances belonging to one cluster are very similar. This data
mining algorithm can therefore help to reveal the natural structure of
the analyzed data.

If there are elements that do not belong to any cluster, we can usually
observe significant differences with comparison to other data belonging
to some cluster. These elements can reveal a non-standard system
behavior, an anomaly. Such elements are called the outliers. Thanks
to a capability of this algorithm to discover outliers, we can detect new
or modified attack behavior that cannot be recognized by standard
detection methods.

3.4 Evaluation of Data Mining Algorithms

In order to determine how well the result corresponds to reality, it is nec-
essary to evaluate the implemented data mining algorithm. For each type
of algorithm, a different evaluation method is used, because the properties
of algorithms differ greatly. For example one algorithm can be very efficient
in processing numerical data sets, other can be useful in sorting text docu-
ments into classes. This part provided an overview of an evaluation of two
previously described data mining algorithm types. These methods can be
also used for comparison of particular algorithms in the case of the same
data set usage:

• Classification evaluation: evaluation of these algorithms can be done in
several ways. Usually, an approach based on measuring true positives,
false positives, true negatives, and false negatives, is used. A Receiver
operating characteristic (ROC) can be used for this purpose, which
is a curve created by plotting the true positive rate against the false
positive rate. ROC for the ideal case and for a random guess is depicted
in Figure 1.

• Clustering evaluation: for clustering algorithms, there are two main
evaluation techniques. Internal evaluation means that the result is
evaluated based on the data that was clustered itself. As examples
of internal evaluation can be two methods – Davies-Bouldin index
and Dunn index. On the other hand, external evaluation is based on
the data that was not used for clustering, like class labels and external
benchmarks. Examples of such methods are Rand meaure, F-measure,
and Jaccard index.

6

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u

e
p

o
si

ti
ve

 r
at

e

False positive rate

ROC Curve

Ideal Random Guess

Figure 1: Receiver operating characteristic curve.

3.5 Parallel Processing

A huge amount of log data is generated every day and it is presumed that
this amount will grow over time. Therefore, it is necessary to improve the
process of the log analysis and make it more effective. We have chosen
Apache Hadoop3 technology for this purpose with the MapReduce [1] pro-
gramming model. MapReduce is used for processing large data sets by using
two functions. Map function processes the data and generates a list in the
key-value form. Reduce function can be then used by the user for joining all
the values with the same key. Hadoop architecture is based on distributing
the data on every node in the system. The resulting model is simple, because
MapReduce handles the parallelism, so the user does not have to take care
about load balancing, network performance or fault tolerance. Hadoop Dis-
tributed File System can then effectively store and use the data on multiple
nodes.

3.6 Static and Dynamic Rules

There are two general approaches for rule creation. A static rule-based cor-
relation is based on static rules, defined by a user before the analysis. An-
other approach is a dynamic rule creation, using an algorithmic data mining

3http://hadoop.apache.org/

7

techniques to define rules. We will briefly describe both approaches in this
subsection.

3.6.1 Static Rule-Based Correlation

First, we need to create a scenario of a situation we want to simulate. If,
for example, there is a process running on one device and another process
running on a different device at the same time and the combination of both
induces a security breach, we have to design rules that model this scenario.
On top of these rules we have to implement a correlation rules deciding
whether the situation we are dealing with is an attack, or not. Rules can
contain many parameters, e.g. time frame, pattern repeat, service type,
port. Algorithm then checks the data from log files and finds the attack
scenarios.

The main advantage of such approach is an ability to discover attacks by
analyzing correlations and therefore, to reveal breaches which could be hard
to detect. There are specific languages enabling creation of rules and also
tools that provide effective and easy-to-use rule creation. For companies, it
is easier to buy packages of predefined rules than employing many system
analysts capable of creating organization-specific rules.

The main disadvantage of this approach is its high price, especially for
the maintenance. Modelling of each attack scenario is a non-trivial task,
there are many possibilities of executing the same attack type and sometimes
those are non-deterministic. Also, attacks are evolving and new types are
being created every day. That means, it is necessary to create new rules
over time and even then there is still a chance there are some undiscovered
unspecified attacks that can easily happen without noticing. There are
companies providing Intrusion Detection Systems and Security Information
and Event Management systems, together with periodic maintenance.

3.6.2 Dynamic Rule Creation

This approach is being utilized for anomaly detection for less than twenty
years. Generated rules are usually in an if-then form. First, an algorithm
creates patterns that can be further processed into a set of rules specifying
which action should be taken.

Methods based on dynamic rule creation can solve the problem with
a necessity of continual breach patterns update by searching for potential
breaches that are not yet known. For example, in [9] authors implemented a
data mining algorithm based on a cross-validation technique, achieving more
than twice as better breach detection compared to current static pattern
based methods.

The main disadvantage is a complexity of analyzing a high dimensional
data, such as log files. There are algorithms capable of handling such data,

8

Table 1: Binary Transformation Example.

Session Time Type of Service

00:00:02 telnet

00:00:04 http

00:00:05 telnet

Session Time ST

Type of Service ToS

ST1 ST2 ST3 ToS1 ToS2

1 0 0 1 0

0 1 0 0 1

0 0 1 1 0

ST1 00:00:02

ST2 00:00:04

ST3 00:00:05

ToS1 telnet

ToS2 http

but usually the space and computational complexity is high. Therefore, it
is necessary to reduce data dimensions as much as possible.

4 Design

The main idea for the design of our solution is to minimize false positives
and false negatives and to make the anomaly identification process faster.

The steps of the algorithm are following. First, a testing phase is per-
formed and rules are made from the testing data set. The outcome of this
phase is an anomaly profile that will be used to detect anomalies in network
devices log files. For creating rules, log file is divided into blocks instead of
rows. A block is identified by the starting time, session duration and type
of a service. We will use a term ’transaction’ for particular block. This
approach allows us to create a rule based on several log files from different
devices or systems, so that one transaction can contain information from
various sources. For creating uniform data sets, which can be processed by
different algorithms, each transaction is transformed in a binary string form.
For a spatial recognition of a log record in transaction, each record in the
original log file will be given a new attribute - transaction ID. Creation of
transactions and rules are depicted in Fig. 2.

For the detection program it is necessary to be able to process various
log file formats, therefore we decided to use configuration files which will
help to determine each attribute position.

4.1 Data Transformation

Data transformation includes creation of a new data set that contains the
binary data only. The advantage of such data representation is ability to
process it with various algorithms for association rules creation. Example
of such a transformation is depicted in Table 1.

9

Loop

Not all records
were processed

All records were
processed

Satisfies conditions
for anomaly profile

Transform the
transaction

Create a rule

Does not satisfy conditions
for anomaly profile

Does not belong to
transaction

Belongs to transaction

Store the record

Load file from
training data set

Load configuration

Figure 2: Transaction and Rule Creation.

To avoid a problem with large dimension number by using binary rep-
resentation of log records, we propose a data reduction. This reduction is
achieved by inserting values into categories and using an interval represen-
tative instead of a scalar or time value. Binary string contains a numerical
value of 1 for values which are present in the record and a numerical value
of 0 otherwise. However, some of the values are unable to reduce, such as
IP addresses or ports.

4.2 Transaction and Rule Creation

Transaction and rule creation algorithm works as follows. It loads each
record from log files line by line and stores them in the same block if they
were created in the same time division, within the same session and if the
IP addresses and ports are identical. If they can be identified as related, a
transaction is created. Then it is decided whether this transaction fulfills
conditions to be included in the anomaly profile. If yes, a new rule is created,
if no, this transaction is ignored for the further rule creation process.

A rule contains attributes in a binary form that are defined in config-

10

uration file. It always contains some basic attributes related to time and
session parameters and also a device ID, from which particular log record
originates.

The anomaly finding algorithm first loads a set of previously created rules
from the database. Then it sequentially processes the log files intended for
analysis and creates transactions from these files. This transaction is then
compared with the set of rules and if it is identified as an anomaly, it is
stored for further observations.

4.3 Processing of Large Data Sets

As stated in Section 3.5, we decided to use Hadoop technology with MapRe-
duce programming model to process large data sets. Hadoop enables us
to easily add processing nodes of independent device types. After program
starts, JobTracker and TaskTracker processes are started, which are respon-
sible for Job coordination and for execution of Map and Reduce methods.
JobTracker is a coordinator process, there exists only one instance of this
process and it manages TaskTracker processes which are instantiated on ev-
ery node. MapReduce model is depicted in Fig. 3, however in our case, only
one Reduce method instance is used. First, a file is loaded from Hadoop Dis-
tributed File System (HDFS) and it is divided into several parts. Each Map
method accepts data from particular part line by line. It then processes the
line and stores them until a rule is created (if all the conditions are met).
The rule is then further processed by the Reduce method, which identifies
redundant rules and if the rule is unique, it is written into the HDFS.

sort/merge

sort/merge

copy

Output HDFS
Input HDFS

Part 2

Part 1

reduce

reduce

map

map

map

Split 0
Split 1
Split 2
Split 3
Split 4

Figure 3: MapReduce Algorithm.

To allow nodes to access same files in the same time, but without loading
them onto the each node separately, a Hadoop library for distributed cache
is used4.

4https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/filecache/DistributedCache.html

11

5 Testing

Our anomaly detection method was implemented in Java programming lan-
guage. For testing, a following setup was used:

• CPU: Intel Core i7-4500U (1.8-3.0 GHz, 4MB cache, 2 cores, 4 threads)

• RAM: 8 GB

• Operating system: Ubuntu 12.04

For testing purposes, two data sets were used: 1998 DARPA Intrusion
Detection Evaluation Set5, that was created by monitoring a system for two
weeks, and Snort logs, created by analyzing the DARPA data set6. Snort
logs contain information, if the attack was performed, or not. Based on
that, we were able to determine if our anomaly detection method was able
to successfully identify an intrusion, or not.

Testing was performed on a log records set of a size of 442 181 records.
This set was made by merging DARPA and Snort data sets. We have
split this data set into ten subsets for cross-validation purposes. In cross-
validation, set is divided into subsets with similar sizes and each subset is
used as many times as is the number of subsets. In each testing, one subset
is used as a test set and the other subsets are used as training sets. For our
validation, we split the main data set in a way that each subset contained
log records from every day when monitoring was performed.

5.1 Data Transformation

After data sets merging, it was necessary to determine how many unique
values are present in each table column. These values are stated in Table 2.

As we have already stated, high-dimensional data increases memory re-
quirements of anomaly detection algorithm. It is possible to reduce some
of the attribute values so that it can still be able to detect anomalies on a
reduced set. We can analyze the ’Session Time’ attribute and a process of
reducing its values into intervals. These intervals are stated in Table 3.

Since the majority of records has a session time value 00:00:01, it was
decided to take this value as a standalone interval. The same holds for value
00:00:02. Two other intervals cover longer time sessions, but since there are
not many values present in each of these intervals, it was possible to make
the reduction. Therefore, after reduction it was possible to change the range
of values from 884 to 4 in this case, which enables significantly faster data
processing.

5http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
6https://www.snort.org

12

Table 2: Occurrence of Unique Values in Merged Data Set.

Attribute Unique Values Min Max

Date 10 07/20/1998 07/31/1998

Time 63 299 00:00:00 23:59:59

Session Time 884 00:00:01 17:50:36

Service 4664 n/a n/a

Source Port 38 637 - 65 404

Destination Port 7887 - 33 442

Source IP 1 565 000.000.000.000 209.154.098.104

Destination IP 2 640 012.005.231.198 212.053.065.245

Attack Occurred 2 0 1

Attack Type 47 n/a n/a

Alert 61 n/a n/a

Table 3: Intervals with Highest Number of Occurences.

Session Time 00:00:01 00:00:02 (00:00:02,01:00:00> (01:00:00,18:00:00)

Occurrences 795 421 13 873 7 987 759

5.2 True Positive and False Positive Rates

After applying generated rules and observing anomalies among transactions,
we have to check how many anomalies have been identified correctly. It is
desirable to identify all the real anomalies and not to label normal commu-
nication as an anomaly at the same time. Therefore, we have checked our
results using true positive rate (TPR) and false positive rate (FPR) formulas
to get outcomes of our algorithms implemented in Java and Hadoop. These
formulas are stated in Equations 1 and 2, where FP = false positives, FN
= false negatives, TP = true positives, TN = true negatives.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

Table 4 shows TPR and FPR for Java and Hadoop implementations after
cross-validation for ten testing sets. Results show that Hadoop MapReduce
technology helps to reduce false positives by 1% and increases true positives
by 3%.

13

Table 4: True Positive and False Positive Rates for Java and Hadoop Im-
plementations.

Java Hadoop

TPR FPR TPR FPR

Set 1 0.846989 0.083069 0.855534 0.073358
Set 2 0.840526 0.072856 0.843952 0.06012
Set 3 0.616683 0.080336 0.843952 0.060124
Set 4 0.788934 0.068232 0.843952 0.060124
Set 5 0.866599 0.084820 0.869818 0.073270
Set 6 0.861434 0.080436 0.863636 0.072067
Set 7 0.834294 0.076534 0.838545 0.063471
Set 8 0.856624 0.074708 0.859672 0.063386
Set 9 0.840459 0.073108 0.841219 0.058621
Set 10 0.677185 0.078954 0.675759 0.068844

Overall 0.802972 0.077305 0.833604 0.065339

5.3 Error Rate

Overall error rate of the algorithm can be determined by Equation 3.

Error rate =
FP + FN

TP + FP + FN + TN
(3)

The anomaly detection algorithm was implemented both in Java and in
Hadoop. Table 5 shows values for both implementations. The table shows
us that Hadoop implementation has around 1% lower error rate than Java
implementation. Table results are also depicted in Figure 4.

5.4 Processing Speed

Important factor in anomaly detection is both speed of rules generation
and speed of data processing. We compared our algorithm with two other
anomaly detection algorithms, Apriori and FP-Growth. Apriori algorithm
serves as a base for several rule-creation methods. Its disadvantage is that
it needs to process the data set several times. FP-Growth algorithm uses
tree-based storages for storing intermediate values. We used Weka libraries7

for these algorithms implementations. Testing results are stated in Table 6.
We can see that Hadoop implementation was the fastest among the tested
algorithms. Therefore we can conclude that parallelization can bring very
good results in terms of speed into the rule generation process.

Speed of data set processing for anomaly detection is stated in Table 7.
We were comparing standard implementation in Java and implementation

7http://www.cs.waikato.ac.nz/ml/weka/

14

Table 5: Error Rate for Each Subset Using Java and Hadoop Implementa-
tions.

Java Hadoop

Set 1 0.095 0.087
Set 2 0.087 0.077
Set 3 0.144 0.142
Set 4 0.091 0.083
Set 5 0.093 0.083
Set 6 0.090 0.083
Set 7 0.090 0.080
Set 8 0.086 0.077
Set 9 0.087 0.077
Set 10 0.123 0.121

Overall 0.098576 0.091465

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

Error Rate (%)

Java Hadoop

Figure 4: Error Rate for Different Subsets Using Java and Hadoop Imple-
mentations.

in Hadoop. Tests were performed on three data sets of sizes 10, 50, and
500 GB. As we can see, Hadoop can speed up this process more than ten
times, even by using a single node. The Hadoop configuration was set to
pseudo-distributed operation, which allowed it to run on a single-node. It

15

Table 6: Comparison of Rule Generation Speed.

Algorithm Java Implementation Hadoop Implementation Apriori FP-Growth

Time (s) 163.1 15.6 226 93

Table 7: Comparison of Anomaly Detection Speed.
Data Size 10 GB 50 GB 500 GB

Number of Records (in millions) 84 423 851

Java Implementation Time (s) 32 622 164 050 330 152

Hadoop Implementation Time (s) 3 164 13 531 29 042

is, of course, possible to add more nodes in order to improve throughput.
We have tested a 10 GB data set on a three-node cluster, one node was
configured as a master+slave, the other two nodes were configured as slaves
only. Running time was 2040s, which gives us approximately 1.55 times
better throughput than using a single-node.

6 Conclusion

In this work we have analyzed data mining methods for anomaly detection
and proposed an approach for discovering security breaches in log records.
Such approach generates rules dynamically from certain patterns in sample
files and is able to learn new types of attacks, while minimizing the need of
human actions.

Our implementation utilizes Apache Hadoop framework for distributed
storage and distributed processing of data, allowing computations to run
in parallel on several nodes and therefore, speeding up the whole process.
Compared to our Java implementation, single-node cluster Hadoop imple-
mentation performs more than ten times faster. Another optimization was
done in transformation of data into binary form, making it more efficient to
analyze particular transactions.

For the future work, we would like to investigate possibilities of identify-
ing correlations among several network devices with automatized methods.

Acknowledgement. This work was supported by VEGA 1/0722/12
grant entitled “Security in distributed computer systems and mobile com-
puter networks.”

16

References

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113, January 2008.

[2] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Advances in Knowl-
edge Discovery and Data Mining. chapter From Data Mining to Knowl-
edge Discovery: An Overview, pages 1–34. American Association for
Artificial Intelligence, Menlo Park, CA, USA, 1996.

[3] A Frei and M. Rennhard. Histogram matrix: Log file visualization
for anomaly detection. In Availability, Reliability and Security, 2008.
ARES 08. Third International Conference on, pages 610–617, March
2008.

[4] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly detection
in distributed systems through unstructured log analysis. In Proceed-
ings of the 2009 Ninth IEEE International Conference on Data Mining,
ICDM ’09, pages 149–158, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[5] L.K.J. Grace, V. Maheswari, and D. Nagamalai. Web log data analysis
and mining. In Natarajan Meghanathan, BrajeshKumar Kaushik, and
Dhinaharan Nagamalai, editors, Advanced Computing, volume 133 of
Communications in Computer and Information Science, pages 459–469.
Springer Berlin Heidelberg, 2011.

[6] Karen Kent and Murugiah P. Souppaya. Sp 800-92. guide to computer
security log management. Technical report, Gaithersburg, MD, United
States, 2006.

[7] Wenke Lee and Salvatore J Stolfo. Data mining approaches for intrusion
detection. In Usenix Security, 1998.

[8] A Makanju, A.N. Zincir-Heywood, and E.E. Milios. Investigating event
log analysis with minimum apriori information. In Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium
on, pages 962–968, May 2013.

[9] M.G. Schultz, E. Eskin, E. Zadok, and S.J. Stolfo. Data mining methods
for detection of new malicious executables. In Security and Privacy,
2001. S P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49,
2001.

[10] M. A. Siddiqui. Data mining methods for malware detection. ProQuest,
2011.

17

[11] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed anal-
ysis of the kdd cup 99 data set. In Proceedings of the Second IEEE In-
ternational Conference on Computational Intelligence for Security and
Defense Applications, CISDA’09, pages 53–58, Piscataway, NJ, USA,
2009. IEEE Press.

[12] R. Venkatesan. A Survey on Intrusion Detection using Data Mining
Techniques. International Journal of Computers & Distributed Systems,
2(1), 2012.

[13] R. Winding, T. Wright, and M. Chapple. System Anomaly Detection:
Mining Firewall Logs. In Securecomm and Workshops, 2006, pages 1–5,
Aug 2006.

18

