Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

I/M/P Model

Security Evaluation Supported by Information Security Mechanisms

Jakub Breier

Physical Analysis and Cryptographic Engineering Temasek Laboratories@NTU Nanyang Technological University Singapore

25 June 2014

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

'Security is a business issue, not a technical issue.'1

¹Glaessner, T., Kellerman, T., and V. McNevin: Electronic Safety and Soundness: Securing Finance in a New Age. 2004. □ → (♂→ (≥→ (≥→ (≥→

Э

Information Security Risk Management

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

Goals of security evaluation:

- Determine which security mechanisms are implemented correctly.
- Periodically check the quality of the mechanisms.
- Find the most appropriate mechanisms with respect to price and effect evaluate the efficiency of security investments.

Security Evaluation

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

There are several security frameworks, which can be used to quantify the effectiveness of security controls in an organization:

- Control Objectives for Information Technology (COBIT).
- ISO/IEC 27002 (ISO/IEC 17799) Code of practice for information security management.
- Information Technology Infrastructure Library (ITIL).
- US NIST SP 800 Series.

ISO/IEC 27002:2005

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

ISO/IEC 27002 AHP

Factor Analysis

I/M/P Model

It provides best practice recommendations on information security management in order to initiation, implementation and maintaining Information Security Management Systems (ISMS). The main security clauses are:

- Security Policy
- Organizing Information Security
- Asset Management
- Human Resources Security
- Physical and Environmental Security
- Communications and Operations Management
- Access Control
- Information Systems Acquisition, Development and Maintenance
- Information Security Incident Management
- Business Continuity Management
- Compliance

ISO/IEC 27002 Structure

ISO/IEC 27002:2005 Standard structure:

- 11 Security clauses
- 39 Security categories
- 133 Control objectives

Security Evaluation and ISO/IEC 27002

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002

Factor Analysis

I/M/P Model

The process of security evaluation in accordance to the standard is following:

- Security analyst picks the right control objectives from the ISO/IEC 27002.
- He goes through all of them and checks whether they are implemented or not.
- If the implementation quality is insufficient or the security mechanisms required to fulfill the objective is not implemented at all, he constitutes recommendations based on his experience.

Problems with this Approach

- Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002
- AHP
- Factor Analysis
- I/M/P Model

- Qualitative measurement scale
 - Inexplicit values: low-medium-high risk.
- Subjectivity
 - Result is influenced by analyst's knowledge and experience.

Main Goals

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

I/M/P Model

Main motivation of our work was to:

- Examine the compliance with the ISO/IEC 27002 standard.
- Minimize the subjective influences usage of quantitative methods to determine the importance of particular security mechanisms.
- Ease of use the implementation quality can be easily assessed and the score should be viewable in different levels of detail.

The final result - security evaluation system based on the score of security mechanisms.

Contributions

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

AHP

Factor Analysis

I/M/P Model

To reach the goals we have made following:

- Mapping of security mechanisms to control objectives there are 357 mechanisms, representing the lowest level of hierarchy.
- Usage of methods that can determine importance of elements in the model.
- Usage of security statistics so that the evaluation model can reflect the current security issues in a real world.

Methods in Hierachy 1/3

Analytic Hierarchy Process

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

/M/P Model

Analytic Hierarchy Process (AHP) is a technique of organizing and analyzing complex decisions. Decision factors are arranged in a hierachic structure, splitted into overall goal, criteria, subcriteria and alternatives in successive levels.

- We make the judgements upon the lowest level elements of the hierarchy in the form of paired comparisons.
- Following the hierarchical structure, we compare them on a single property, without concern about other properties.
- The comparison is based on verbal judgements (equal, moderately more, strongly more, very strongly more, extremely more), expressed in discrete values from 1 to 9.

Availability Matrix

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis IM/P Model

Security

Availability	SP	OIS	AM	HRS	PES	СОМ	AC	ISADM	ISIM	ВСМ	CMP
SP	(1/1	2/1	1/5	9/1	1/5	1/3	5/1	5/1	7/1	1/7	3/1
OIS	1/2	1/1	1/7	9/1	1/7	1/6	2/1	3/1	7/1	1/7	2/1
AM	5/1	7/1	1/1	9/1	3/1	2/1	7/1	7/1	9/1	2/1	5/1
HRS	1/9	1/9	1/9	1/1	1/9	1/7	1/3	1/2	1/2	1/9	1/7
PES	5/1	7/1	1/3	9/1	1/1	2/1	5/1	5/1	9/1	2/1	5/1
СОМ	3/1	6/1	1/2	7/1	1/2	1/1	5/1	5/1	7/1	1/2	5/1
AC	1/5	1/2	1/7	3/1	1/5	1/5	1/1	1/3	2/1	1/8	2/1
ISADM	1/5	1/3	1/7	2/1	1/5	1/5	3/1	1/1	7/1	1/6	4/1
ISIM	1/7	1/7	1/9	2/1	1/9	1/7	1/2	1/7	1/1	1/8	1/3
BCM	7/1	7/1	1/2	9/1	1/2	2/1	8/1	6/1	8/1	1/1	8/1
CMP	1/3	1/2	1/5	7/1	1/5	1/5	1/2	1/4	3/1	1/8	1/1
	`										

SP OIS HRS PES COM AC ISADM ISIM AM BCM CMP $W_{ava}^{T} = (0.077)$ 0.052 0.236 0.012 0.195 0.129 0.026 0.043 0.020 0.192 0.029)

Asset Management

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP

Factor Analysis

I/M/P Model

Control objective	Security mechanism	ID
Inventory of assets	Identification of all assets with their level of impor-	M1
(IA)	tance and information about the asset	
	Identification of ownership and information classifi-	M2
	cation for each asset - with the level of protection	
	Ensuring the integrity of information - hashing	M3
	Ensuring the availability of information - backuping,	M4
	physical and environmental security, redundancy	
Ownership of assets	Implementation of access control policies (DAC,	M_{5}
(OA)	MAC, RBAC)	
	Implementation of non-repudiability mechanisms -	M6
	operating system level, digital signatures	
	Implementation of accounting mechanisms - operat-	M7
	ing system level, authentication servers (TACACS,	
	RADIUS), network logs	
	Implementation of authentication mechanisms - au-	M8
	thentication servers (TACACS, RADIUS), tokens,	
	biometrics, passwords	
Acceptable use of	Identification of rules for usage of electronic devices	M9
assets (AUA)	and computer networks	
Classification	Determination of classification levels and implemen-	M10
guidelines (CG)	tation of confidentiality mechanisms - cryptogra-	
	phy (securing data storages and data transmissions),	
	steganography	
Information labeling	Definition of policies for labeling classified informa-	M11
and handling (ILH)	tion - physical and electronic labels	

₹ 9Q@

Asset Management Matrix

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP

Factor Analysis I/M/P Model

l

Below is the Asset management weight matrix with the corresponding weight vector:

Asse	t manage	ement	IA	OA	AUA	CG	ILH
IA			(1/1	9/1	7/1	9/1	9/1
OA			1/9	1/1	1/3	1/1	1/1
AUA			1/7	3/1	1/1	3/1	3/1
CG			1/9	1/1	1/3	1/1	1/1
ILH		1	\ 1/9	1/1	1/3	1/1	1/1/
	IA	OA	AU	A (CG	ILH	
$V_{AM}^T =$	(0.664	0.060	0.15	56 0.	060	0.060)	

Methods in Hierachy 2/3

Methods in Hierachy 2/3

Factor Analysis

Security Evaluation Supported by Information Security Mechanisms Jakub Breier SO/IEC 27002

Factor Analysis

/M/P Model

Factor analysis (FA) is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors.

- The observed variables are modeled as linear combinations of the potential factors.
- FA can be used to reduce the redundant information contained in several correlated variables.
- We will use it to reveal the correlations among control objectives and to insert dependencies in our measurement model.

Control Objectives for Factor Analysis

Evaluation Supported by Information Security Mechanisms Jakub Breier

Security

Factor Analysis

I/M/P Model

Table: One control objective from each security clause.

Information security policy document	<i>CO</i> ₁
Confidentiality agreements	CO_2
Inventory of assets	CO_3
Information security awareness, education, and training	CO_4
Physical entry controls	CO_5
Disposal of media	CO_6
User password management	<i>CO</i> ₇
Input data validation	<i>CO</i> 8
Reporting information security events	CO_9
Business continuity and risk assessment	<i>CO</i> ₁₀
Protection of organizational records	<i>CO</i> ₁₁

Control Objectives and Security Threats

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

Factor Analysis

I/M/P Model

Table: Control objectives' protection against Top 10 security threats ².

	<i>CO</i> ₁	CO ₂	<i>CO</i> 3	CO ₄	<i>CO</i> 5	CO ₆	CO7	<i>CO</i> 8	CO ₉	CO11
Keylogger/Form- grabber/Spyware	7	1	1	7	3	1	5	5	5	3
Exploitation of default or guessable credentials	7	3	1	8	3	1	9	1	4	3
Use of stolen login cre- dentials	3	1	1	5	7	3	7	1	5	5
Send data to external site/entity	5	1	1	7	3	3	5	1	3	5
Brute force and dictio- nary attacks	7	1	3	9	5	3	9	1	5	5
Backdoor	5	3	1	7	5	1	5	5	5	3
Exploitation of backdoor or command and con- trol channel	5	1	1	5	3	1	5	3	5	7
Disable or interfere with security controls	7	3	1	7	8	1	5	2	5	5
Tampering	8	3	1	8	3	1	1	1	5	3
Exploitation of insuffi- cient authentication	7	3	1	8	7	1	5	1	3	5

²W. Baker, A. Hutton, D. Hylender, J. Pamula, Ch. Porter, and M. Spitler. Data Breach Investigations Report 2012. Technical report; Verizon, 2012.

Factor Analysis

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

AHP

Factor Analysis

I/M/P Mode

	CO_1	CO_2	CO_3	CO_4	CO_5	CO_6	CO_7	CO_8	CO_9	CO ₁₀	CO ₁₁
CO_1	(1	0.484	0.208	0.788	-0.171	-0.498	-0.208	-0.092	-0.043	-0.715	-0.400
CO_2	0.484	1	-0.333	0.410	0.263	-0.655	-0.273	-0.063	-0.124	-0.333	-0.469
CO_3	0.208	-0.333	1	0.519	0.053	0.509	0.515	-0.232	0.207	-0.111	0.156
CO_4	0.788	0.410	0.519	1	-0.073	-0.054	0.127	-0.265	-0.254	-0.573	-0.473
CO_5	-0.171	0.263	0.053	-0.073	1	0.103	0.139	-0.190	0.033	0.404	0.255
CO_6	-0.498	-0.655	0.509	-0.054	0.103	1	0.417	-0.456	-0.135	0.509	0.307
<i>CO</i> ₇	-0.208	-0.273	0.515	0.127	0.139	0.417	1	-0.190	-0.056	0.212	0.128
CO_8	-0.092	-0.063	-0.232	-0.265	-0.190	-0.456	-0.190	1	0.432	-0.232	-0.267
CO_9	-0.043	-0.124	0.207	-0.254	0.033	-0.135	-0.056	0.432	1	0.207	-0.097
CO_{10}	-0.715	-0.333	-0.111	-0.573	0.404	0.509	0.212	-0.232	0.207	1	0.156
CO11	0.400	-0.469	0.156	-0.473	0.255	0.307	0.128	-0.267	-0.097	0.156	1)

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨト

Factors 1/2

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

Factor Analysis

I/M/P Model

Table: Factors.

	F ₁	F ₂	F ₃
<i>CO</i> ₁	0.858	0.313	0.048
CO ₂	0.690	-0.145	-0.434
CO_3	-0.128	0.851	0.436
CO_4	0.693	0.720	-0.023
CO_5	-0.195	0.040	-0.303
CO_6	-0.727	0.540	-0.027
<i>CO</i> ₇	-0.317	0.432	0.082
<i>CO</i> ₈	0.176	-0.573	0.671
CO ₉	-0.081	-0.188	0.413
<i>CO</i> ₁₀	-0.720	-0.121	-0.218
<i>CO</i> ₁₁	-0.506	0.059	-0.073

Э

Factors 2/2

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

I/M/P Model

æ

Methods in Hierachy 3/3

Methods in Hierachy 3/3

I/M/P Model 1/3

Security Evaluation Supported by Information Security Mechanisms Jakub Breier

Factor Analysis

I/M/P Model

- Llanso³ introduces an approach for selecting and prioritizing security controls from NIST 800-30.
- He computes weights of the controls, using three component weights - prevention, detection and response (P/D/R) against an attack.
- We will use implementation, maintenance and policy (I/M/P) components.

³T. Llanso. Ciam: A data-driven approach for selecting and prioritizing security controls. In Systems Conference (SysCon), 2012 IEEE International **E I**

I/M/P Model 2/3

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis I/M/P Model

Raw weighting:

 $RawWeighting_i = wI_i.owI_i + wM_i.owM_i + wP_i.owP_i$ (1)

where overall weightings have values $owI_i = 0.6$, $owM_i = 0.20$, $owP_i = 0.20$.

Relative weighting:

$$Relative Weighting_i = \frac{RawWeighting_i}{\sum_{j=1}^{n} RawWeighting_j}$$
(2)

I/M/P Model 3/3

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

I/M/P Model

Table: Control objective: Controls against malicious code.

Security Mechanism	I	М	Р	RW
Implementing operating system policies pro-	9	5	7	0.244
hibiting the use of unauthorized software,				
downloading unsigned executable files and				
working with other than data files on work-				
stations without privileges.				
Implementing strong account policies with	7	3	9	0.206
separated privileges and clear accountabil-				
ity and non-repudiability.				
Deployment of antivirus software on each	9	9	2	0.238
system with the real-time check of unwanted				
code and periodical update of this software.				
Ensuring that installed programs are up to	3	9	7	0.156
date.				
Providing business continuity plan - backup-	3	7	9	0.156
ing and version management.				× =

Security Mechanisms' Score

Evaluation Supported by Information Security Mechanisms Jakub Breier SO/IEC 27002

Security

r actor Analys

I/M/P Model

Level	Score	Description
0	0.0	Not implemented
1	0.2	Implemented with serious limitations
2	0.4	Implemented with minor unknown limi-
		tations
3	0.6	Implemented with known limitations
4	0.8	Implemented well, not tested in a real
		environment
5	1.0	Implemented well, tested and verified in
		a real environment

Control Objective Evaluation 1/2

Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis

Security

I/M/P Model

$$S_{CO_i} = \sum_{j=1}^n S_{M_j} imes RW_{M_j}$$

Where:

- S_{M_i} is the security mechanism's score.
- *RW_{M_i}* is the security mechanism's weight.

30

Control Objective Evaluation 2/2

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP

I/M/P Model

$$FinalScore = RW_{CO_i} * \prod_{j=1}^{n} \left(S_{CO_i} + \frac{S_{CO_j} * COR_{ij}}{1 + COR_{ij}} \right)$$
(3)

- *RW_{COi}* is the weight of control objective *i*, obtained by using AHP.
- S_{CO_i} is the score of control objective *i*.
- S_{CO_i} is the score of control objective *j*, correlated with *i*.
- COR_{ij} is the correlation between *i* and *j*.

Conclusions

Security Evaluation Supported by Information Security Mechanisms Jakub Breier SO/IEC 27002 AHP

I/M/P Model

- The proposed model evaluates the security state in accordance to ISO/IEC 27002 standard with respect to the score of security mechanisms.
- The model implementation is easy to use and flexible.
- To test the methodology we conducted a study on a medium-sized IT company, using a prototype application implementing our methods.

Security Evaluation Supported by Information Security Mechanisms Jakub Breier ISO/IEC 27002 AHP Factor Analysis I/M/P Model

Thank you for your interest! Any questions?