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SNIFF: Reverse Engineering of Neural Networks
with Fault Attacks

Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin and Yang Liu

Abstract—Neural networks have been shown to be vulnerable
against fault injection attacks. These attacks change the physical
behavior of the device during the computation, resulting in a
change of value that is currently being computed. They can
be realized by various techniques, ranging from clock/voltage
glitching to application of lasers to rowhammer. Previous works
have mostly explored fault attacks for output misclassification,
thus affecting the reliability of neural networks. In this paper we
investigate the possibility to reverse engineer neural networks
with fault attacks. Sign bit flip fault (SNIFF) attack enables
the reverse engineering by changing the sign of intermediate
values. We develop the first exact extraction method on deep-layer
feature extractor networks that provably allows the recovery
of proprietary model parameters. Our experiments with Keras
library show that the precision error for the parameter recovery
for the tested networks is less than 10−13 with the usage of 64-bit
floats, which improves the current state of the art by 6 orders
of magnitude.

Index Terms—Neural networks, deep learning, reverse engi-
neering, fault attacks

I. INTRODUCTION

Neural networks form a basis for current artificial intel-
ligence applications. They were shown to be effective in
domains that can provide large amount of labeled data to be
able to learn the classification model with sufficient level of
accuracy. Because of this property, companies often protect
their models as the cost of obtaining the data used to train
them might be very high, while the availability of such
data is limited. Thus, having a classification model whose
internal parameters are secret gives companies a competitive
advantage. It is therefore necessary to know the ways that
enable reverse engineering of the models so that adequate
protection could be applied.

Model stealing attacks (also called model extraction at-
tacks) aim at retrieving the model parameters in a black-box
settings [1]. In this setting, the attacker sends inputs to the
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network and observes the outputs. Based on this information,
she tries to reconstruct the model that has accuracy close to the
original one. In a similar fashion, it is possible to recover the
hyperparameters of machine learning models in general [2].

There are certain similarities when it comes to comparing
the model stealing attacks with the key recovery attacks on
cryptography. Classical cryptanalysis works by querying the
cryptosystem with inputs and observing the outputs. This helps
in getting the information about the secret key. In the field
of cryptography, researchers started observing the physical
characteristics of the devices that perform the encryption to
find the secret key more efficiently. Similarly, it was shown
that by causing errors during the cryptographic computation,
the attacker can learn secret information [3]. We call these
implementation-level attacks physical attacks on cryptography.

Now, we can look into the emerging area concerned with
physical attacks against neural networks. It was shown earlier
that side-channel attacks can be applied to neural networks
to recover certain model parameters [4]. It was also shown
that neural networks are vulnerable to fault injection attacks
that change the intermediate values of the model during the
computation, enabling misbehavior of the activation functions
in the model [5]. As the fault might also be introduced
through external factors, the reliability of the neural network
implementations is becoming a growing concern. In some
cases, a single fault occurring in a GPU could reduce the
reliability of a CNN performance [6]. Thus, this could also
be exploited by the adversary. If we change the intermediate
values, the model output will change, potentially revealing
the information about the model parameters. We focus on
utilizing this behavior to fully recover the values of the internal
parameters of the neural network. More specifically, we utilize
a fault that changes the sign of the intermediate values to get
the information, hence the name SNIFF – sign bit flip fault.

Our contribution. In this paper, we present a way to
reverse engineer neural networks with the help of fault in-
jection attacks. More specifically, we target deep-layer feature
extractor networks produced by transfer learning, to recover
the parameters (weights and biases) of the last hidden layer.
Our work mainly focuses on neural network classifiers based
on the widely used softmax activation function in the output
layer. On top of that, we also show application to other activa-
tion functions. Our method provably allows exact extraction,
meaning that the exact values of parameters can be determined
after the fault attack. Thus, in case of a deep-layer feature
extractor, this allows to get the exact information on the entire
network. We note that this is the first work using fault injection
attack for the model extraction, and also the first work allowing
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exact extraction. In terms of accuracy and fidelity defined
recently in [7], our work achieves perfect scores in both, as
the extracted values are identical to the original network.

II. PRELIMINARIES

This section recalls general concepts used in the rest of
the paper. The target datasets and experimental setup are also
discussed.

A. Fault Injection Methods

Fault injection can be performed with a variety of equipment
based on the required precision, cost and impact.

Clock/voltage glitch methods offer limited precision and are
normally used to alter the control flow of the program rather
than disturbing the data directly. This is often referred to as
global fault injection.

Electromagnetic (EM) emanation is more localized method,
where the precision heavily depends on the resolution of the
injection probe. It was shown that precise bit sets and resets
in memory cells can be achieved [8].

Optical radiation includes methods with varying precision,
using equipment ranging from camera flashes to lasers. The
advantage is high reproducibility of faults and great precision
– precise bit flips were shown to be possible with lasers.

Rowhammer [9] and Voltpwn [10] are fault injection meth-
ods that do not require a dedicated injection device. Such
attacks exploit memory and microarchitectural properties for
fault injection, and allow bit flips and software controlled
faults.

Besides these, there are other less researched fault injec-
tion methods, such as X-rays/gamma rays [11], or hardware
trojans [12].

B. Fault Injection on Neural Networks

The seminal work in the field of adversarial fault injection
was published by Liu et al. in 2017 [13]. They introduced two
types of attacks: single bias attack changes the bias value in
either one of the hidden layers (in case of ReLU or similar
activation function) or output layer of the network to achieve
the misclassification; while gradient descent attack works in
a similar way as Fast Gradient Sign Method [14], but changes
the internal parameters instead of the input to the network.

Practical fault injection by using a laser technique was
shown by Breier et al. in 2018 [5]. They were able to
disturb the instruction execution inside the general-purpose
microcontroller to achieve the change of the neuron output.
In their paper, they focused on behavior of three activation
functions: in case of sigmoid and tanh, the fault resulted in an
inverted output, while in case of ReLU, the output was forced
to be always zero. The work was further extended in [15]
and [16] to show different attack strategies to improve the
misclassification efficiency.

A comprehensive evaluation of bitwise corruptions on var-
ious deep learning models was presented by Hong et al. in
2019 [17]. They showed that most models have at least one
parameter such that if there is a bit-flip introduced in its bitwise
representation, it will cause an accuracy loss of over 90%.

Malicious bit-flips were further investigated for various
misclassification/model degradation attacks in [18], [19], [20],
[21].

When it comes to fault and error tolerance of neural
networks, we would point interested reader to a survey written
by Torres-Huitzil and Girau in 2017 [22], which provides
exhaustive overview of this topic.

C. Transfer Learning

Transfer learning takes a pre-trained teacher model and
transfers the knowledge (model architecture and weights) to
a student model. The requirement is to have a similar task
for the newly trained student model compared to the teacher
model. Transfer learning is normally achieved by “freezing”
the first n − k layers of the teacher model out of the total
number of n layers – by fixing the values of the weights.
Then, the remaining k layers are removed and new layers are
added to the end of the student model. These layers are then
trained on the new data. There are 3 main approaches that are
used in transfer learning [23]:
• Deep-layer Feature Extractor: in this approach, the first
n−1 layers are frozen and only the last layer is updated,
as can be seen in Figure 1. It is normally used when
the student task is very similar to the teacher task. It
allows very efficient training. In the rest of the paper, we
will be focusing on the secret parameter recovery of this
approach.

• Mid-layer Feature Extractor: this approach freezes the
first n − k layers, where k < n − 1. It can be used in
case the student task is less similar to the teacher task
and there is enough data to train the Student.

• Full Model Fine-tuning: in this approach, all the layers
are unfrozen and updated during the student training.
It requires sufficient amount of data to fully train the
student, and is normally used for cases where student
task differs significantly from the teacher task.

Important observation when recovering the student model is
that the layers copied from the teacher are publicly known, and
therefore it is possible to derive the output values for all the
frozen layers for any input. This way, we know the inputs to
the layers trained by student, and the outputs from the model.
Based on this information, we are able to design a weight
recovery attack assisted by fault injection.

D. Model Extraction

If we consider O(·) to be the original neural network model
we want to extract, Ô(·) denotes the extracted model. Jagielski
et al. [7] developed a taxonomy for model extraction attacks
and differentiate four different extraction types:
• Exact Extraction: strongest type of extraction, where
Ô = O, that is, both the architecture and the weights of
the extracted model have the same values as the original
network. Exact extraction brings several advantages to
the adversary over other extraction types. Firstly, it aides
in computing perfect adversarial examples [24], which is
considered one of the most powerful and stealthy exploits
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Fig. 1. Transfer learning using deep-layer feature extractor and fault injection
into the student model for recovering the newly added layer.

against neural networks. Secondly, the knowledge of
exact model also reveals information on training data [25]
which can be highly sensitive and proprietary. It was
shown to be impossible to do such extraction for many
types of neural networks in black-box fault-free scenario,
and therefore [7] only focuses on the following three
attacks.

• Functionally Equivalent Extraction: slightly weaker as-
sumption is considered for functionally equivalent ex-
traction, where the attacker is capable of constructing
Ô such that ∀x ∈ X , Ô(x) = O(x). In such case, it
is not necessary to match the two models exactly, only
the output of both models has to be the same for all the
elements from the domain X of the dataset D.

• Fidelity Extraction: for a target distribution DF
over X , and goal similarity function S(p1, p2), fi-
delity extraction tries to construct Ô that minimizes
Prx∼DF

[
S(Ô(x),O(x))

]
. The adversary normally wants

to keep both the correct and incorrect classification be-
tween the two models. A functionally equivalent extrac-
tion achieves a fidelity of 1 on all distributions and all
distance functions.

• Task Accuracy Extraction: for a true task distribution DA
over X × Y , task accuracy extraction tries to construct
an Ô that maximizes Pr(x,y)∼DA

[
arg max(Ô(x)) = y

]
.

In this setting, the aim is to achieve the same or higher
accuracy than the original model. Therefore, it is the
easiest type of extraction attack to construct, as it does
not care about the original model’s mistakes.

III. METHODS

To be able to reverse engineer a neural network with
fault injection attack, we first need to know the erroneous
behavior of its elementary components – neurons. To study
this behavior, we first identify each part of a neuron that can
be faulted.

A. Possibilities to Fault a Neuron

Figure 2 shows a typical neuron computation in a neural
network. Inputs are multiplied with weights and then summed
together, adding a bias. Resulting value is fed to the activation
function, which produces the final output of the neuron.

x2 × w2 Σ f

Activation
function

y

Output

x1 × w1

1 2

..

.
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Inputs × Weights
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b 4

5 6

3

Fig. 2. Neuron computation of neural networks.

Below, we identify the points where a fault can be introduced
(numbers correspond to those in Figure 2):

1. Inputs: there are two possibilities to fault the input –
either at the output of a neuron from the previous layer
or at the input of the multiplication of the current neuron.
The first case affects the computation of all the neurons
in the current layer, while the second case only affects
the target neuron.

2.-3. Weights, Product: unlike faulting the input, weight or
product change only affects the target neuron. As we
explain later in this paper, attacks on these values can
give the attacker knowledge of the weights.

4.-5. Bias, Summation: attacks on bias can slightly change
the input to the activation function, while the attacks
on summation can change this greatly. Therefore, the
latter one can be considered as one of the means of
misclassification by faults.

6. Activation function: Fault attacks on activation function
were studied in [5] from instruction skipping perspective.
If attacked with a sufficient precision, they can cause
misclassification.

B. Experimental Setup

In this work, we consider different models which were
pretrained using transfer learning [23] on ImageNet dataset,
following deep-layer feature extractor approach. We use sev-
eral models which are available in public libraries, such as
Keras [26] and PyTorch [27], and for the experiments, the
last fully connected layers are removed and substituted with
single fully connected layer, and retrained. For the training
data, the visual dataset for object recognition task, CIFAR-
10 [28], is used. The CIFAR-10 dataset contains 50k training
data, and 10k test data, each of which is a 32 × 32 pixels
color image. First, the images are upscaled to be consistent
with the dimension used in the pretrained model, followed by
normalization. Next, we add a Dense layer with 10 neurons
at the output, corresponding to 10 classes in the dataset. The
activation function used for the output layer is softmax. Global
Average Pooling or Flatten is used before the dense layer
to reduce the number of neurons at the output of pretrained
networks.
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C. Adversary Model
We consider an adversary model, where the adversary

aims at IP theft for overproduction and illegal cloning of
ML proprietary models, running on edge/IoT devices. The
proprietary ML models are carefully derived through transfer
learning from popular and open ML models like AlexNet [29],
VGG-16 [30], ResNet-50 [31], Inception V3 [32], etc. While
the initial layers are publicly known, the adversary aims at
recovering the parameters of the re-trained fully connected
layers. To enable model recovery, adversary acquires few legal
copies of the target. Being a legal user, the adversary can
use the target devices with known data and inject faults into
the device. Fault injection is followed by secret parameters
recovery. This is a case of IP theft that allows adversary to
overproduce/clone the ML model on huge number of devices
without paying the legal licence fee.

D. SNIFF – Sign Bit Flip Fault
The attack model for our work is bit flip on the sign bit of

the intermediate values. In particular, we consider attack on
two intermediate values: SNIFF on the product of the weight
and the input, and SNIFF on the bias value.

SNIFF attack on the product can be achieved in the real
device by targeting either the input, the weight, or the final
product value (targets 1, 2, and 3 in Figure 2). In Section IV,
we use the bit flip fault on the weight to model this attack.
In case of SNIFF attack on the bias value, the attacker has to
target the bias itself (target 4 in Figure 2).

E. Finding the Correct Timing for Faults
Once the target step is identified, one needs to find precise

timing locations corresponding to the sensitive computation.
As already demonstrated in [4], it is possible to determine the
timing by using side-channel information, coming either from
the power consumption of the device or from electromagnetic
emanation (EM).

It can be shown in the example of 4 fully connected layer
with 50, 30, 20 and 50 neurons in each layer respectively from
the input layer, on ARM Cortex-M3 microcontroller mounted
on the Arduino Due. The electromagnetic emanation measured
through a near field probe (RF-U 5-2 H-field probe from
Langer) is shown in Fig. 3. In Fig 3 (a) each layer can be
easily identified. Next, Fig 3 (b) shows a zoom on computation
of the first neuron of the third layer. Given the (50, 30, 20, 50)
architecture, 20 multiplications are expected followed by the
activation function. Each multiplication can be easily identified
in Fig 3 (b) and thus precisely targeted with faults.

The process of finding the correct timing can be automated
by using pattern recognition techniques to locate the multi-
plication patterns within the neuron computations. Similarly,
position on the chip which leaks the information in the form
of an electromagnetic field can be automatically located. For
example, [33] shows both processes.

IV. RECOVERY OF SECRET PARAMETERS

In this section, we will explain the recovery of the weights
and biases of the last layer of deep-layer feature extractor
model, constructed by using transfer learning.

A. Attack Intuition

The intuition of the parameter recovery attack is as follows.
As shown in Figure 1, the attack works on the last layer of
the student network. The detail of this layer is illustrated in
Figure 4. The attacker first executes the model computation on
last layer input, denoted by I = (I1, I2, . . . , In), without fault
injection, and observes the outputs – classes and corresponding
probabilities from the last softmax layer.

Then, she injects fault into the last layer by performing
SNIFF on a single product of the weight and the input
(Ii × wij). Based on the original (non-faulty) output values
and the faulty ones, she can recover the unknown weight wij .
Similarly, by performing SNIFF on a single bias value (bS,i),
she can recover this value by comparing the faulty and original
network outputs.

B. Formalization

In this section we formally describe the attack. Suppose
there are k layers in the teacher neural net, and for an input x,
the output is given by Lk(Lk−1(. . .L1(x))), where Li denotes
the function at layer i, which takes the output of the previous
layer and gives input for the next layer. For example, k = 1
and L(x) = sigmoid(xTW + b) denotes a fully connected
one layer network with weight matrix W , bias vector b and
activation function sigmoid.

Let OθT,−1
denote the part of the teacher neural network

that was preserved by the student neural network, i.e.

OθT,−1
(x) := Lk−1(. . .L1(x)).

Here θT,−1 denotes the parameters of the first k− 1 layers of
the teacher neural network.

Let WS and bS denote the trained weight matrix and bias
vector for the last layer of student neural network. Suppose
the (k − 1)th layer of teacher network has n neurons and the
output layer of student network has m neurons. Then we have
WS is an n ×m matrix and bS is a vector of length m. For
an input x, the output of the student neural network is then
given by

Oθ(x) = Softmax(OθT,−1
(x)TWS + bS),

Let y(x) := OθT,−1
(x)TWS + bS , then we have for i =

1, 2, . . . ,m,

Oθ,i(x) =
exp yi(x)∑m

j=1 exp(yj(x))
.

By our assumption, the attacker knows the teacher neural
network and she can also observe the Softmax output, in
particular, she knows the number m and hence the dimensions
of WS and bS . Our goal of model extraction then consists of
recovering θ, the parameters for the student neural network.
Let θS := {WS , bS}, then θ = θS ∪ θT,−1. Note that θT,−1
are the parameters from the teacher network, which are public
information. Thus our goal is to recover θS , or equivalently,
WS and bS .

Definition 1. An input x is called a non-vanishing input for
i (i = 1, 2, . . . , n) if OθT,−1,i(x) 6= 0.
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(a) (b)
Fig. 3. Electromagnetic emanation measurement during the computation of 4 fully connected layers with 50, 30, 20, 50 neurons in each layer. In (a) each layer
can be uniquely identified by the measurement trace, while (b) shows execution of one neuron in third layer showing timing of each of the 20 multiplications.
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Fig. 4. Last two layers of the student model – nodes Ii are known, while
the weights wij and biases bS,j are the target for the recovery.

For simplicity, let I(x) denote OθT,−1
(x). As described in

Section III-D, we consider SNIFF on the product Iiwij and
on the bias bS,j .

We refer to the unknown weight wij as the target weight
parameter and the unknown bias bS,j as the target bias
parameter.

Theorem 1. For any j0 ∈ {1, 2, . . . ,m} and any input x.
Suppose a SNIFF on target bias parameter bS,j0 was carried
out. Let zj0 and z̃j0 denote the correct and faulted value of
Oθ,j0(x). Then the target weight bS,j0 can be recovered as:

bS,j0 =
1

2
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Proof. Let j0 be given and let x be any input. For simplicity,
we write I (resp. y) instead of I(x) (resp. y(x)). For any
j ∈ {1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij , zj =
exp(yj)∑m

j′=1 exp(yj′)

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 =
exp(yj0)∑m
j=1 exp(yj)

.

Let

A :=

n∑
i=1

Iiwij0 = yj0 − bS,j0 ,

B :=

m∑
j=1,j 6=j0

exp(yj).

We have

zj0 =
exp(bS,j0 +A)

exp(bS,j0 +A) +B
,

z̃j0 =
exp(−bS,j0 +A)

exp(−bS,j0 +A) +B
.

We note that by definition of Softmax, zi0 > 0 and z̃i0 > 0.

1

zj0
− 1 =

exp(bS,j0) exp(A) +B

exp(bS,j0) exp(A)
− 1

=
B

exp(bS,j0) exp(A)
= exp(−bS,j0)

B

exp(A)
.

Similarly,

1

z̃j0
− 1 =

exp(−bS,j0) exp(A) +B

exp(−bS,j0) exp(A)
− 1

=
B

exp(−bS,j0) exp(A)
= exp(bS,j0)

B

exp(A)
.
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By definition of Softmax, z−1j0 > 1,

z̃−1j0 − 1

z−1j0 − 1
= exp(2bS,j0) =⇒ bS,j0 =

1

2
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Corollary 1. The attacker can recover the bias vector bS with
m faults and 2m executions of the target neural network (the
student neural network).

Theorem 2. For any i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, . . . ,m} and
any x, a non-vanishing input for i0. Suppose a SNIFF on
target weight parameter wi0j0 was carried out. Let zj0 and
z̃j0 denote the correct and faulted value of Oθ,j0(x). Then
the target weight wi0j0 can be recovered as:

wi0j0 =
1

2Ii0
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Proof. Let i0, j0 be given, and let x be a non-vanishing input
for i0. For simplicity, we write I (resp. y) instead of I(x)
(resp. y(x)). We let wij denote the (i, j)th entry of the weight
matrix WS . And let bS,j denote the jth entry of the bias vector
bS . Then for any j ∈ {1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij , zj =
exp(yj)∑m

j′=1 exp(yj′)

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 =
exp(yj0)∑m
j=1 exp(yj)

.

Let

A := bS,j0 +

n∑
i=1,i6=i0

Iiwij = yj0 − Ii0wi0j0 ,

B :=

m∑
j=1,j 6=j0

exp(yj).

We have

zj0 =
exp(Ii0wi0j0 +A)

exp(Ii0wi0j0 +A) +B
,

z̃j0 =
exp(−Ii0wi0j0 +A)

exp(−Ii0wi0j0 +A) +B
.

We note that by definition of Softmax, zj0 > 0 and z̃j0 > 0.

1

zj0
− 1 =

exp(Ii0wi0j0) exp(A) +B

exp(Ii0wi0j0) exp(A)
− 1

=
B

exp(Ii0wi0j0) exp(A)
= exp(−Ii0wi0j0)

B

exp(A)
.

Similarly,

1

z̃j0
− 1 =

exp(−Ii0wi0j0) exp(A) +B

exp(−Ii0wi0j0) exp(A)
− 1

=
B

exp(−Ii0wi0j0) exp(A)
= exp(Ii0wi0j0)

B

exp(A)
.

Since x is a non-vanishing input for i0, we have Ii0 6= 0.
Also by definition of Softmax, z−1i0 > 1. Together with the
above equations,

z̃−1j0 − 1

z−1j0 − 1
= exp(2Ii0wi0j0) =⇒ wi0j0 =

1

2Ii0
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Thus the attacker can recover an i0, j0 entry of the weight
matrix WS , by first running an offline phase to find a non-
vanishing input x for i0, then with two executions of the
student neural network - one without fault and one with fault.

Corollary 2. The attacker can recover the weight matrix WS

with mn faults and 2mn executions of the targeted neural
network (the student neural network).

In practice, during the inference, Softmax might be omitted
to save the computation time. We remark that in this case,
Corollaries 1 and 2 still hold and the computations needed
will be even easier. Keeping notations in Theorem 1 and the
proof, we have

zj0 = yj0 = bS,j0 +A, z̃j0 = ỹj0 = −bS,j0 +A,

then, the target bias can be recovered using

bS,j0 =
1

2
(zj0 − z̃j0).

The target weight can be recovered in a similar manner.

V. RESULTS AND DISCUSSION

Bit-flip attacks have been shown to be practical on embed-
ded devices [34]. Similar results can be obtained by using a
Rowhammer in DRAM memories [9]. In this part we first
simulate the bit-flip attack in the code and then use the
formulas from the previous section to reverse engineer the
model parameters. Then, we compare our results to previous
works. Finally, we discuss selection of the model extraction
method based on the attack purpose.

A. Experimental Results

Experimental results for reverse engineering with bit-flips
are stated in Table I. We targeted deep-layer feature extractor
networks that were based on publicly available networks, being
able to reverse engineer the weights in the last layer. When
it comes to recovery of weights, the weight precision for all
except 3 networks was 10−14, for the remaining cases it was
10−13. In case of bias recovery, the precision was always
10−14.

We would like to highlight that the method from Section III
allows the recovery of the exact weight value if we have
arbitrary precision of floating point numbers. In practice, this
depends on the used library, computer architecture, and set-
tings. For our experiments we used Python with Keras library
(version 2.3.1) for deep learning. This library uses numpy
for floating point number representation, offering different
precision ranging from 16 to 64 bits1. In our setting we set

1Numpy supports up to 128-bit floats, but those are not compatible with
Keras.
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Fig. 5. Functionally equivalent model extraction: The difference in test
accuracy between the actual model and recovered model against the parameter
precision up to certain floating point digit. If the parameter values are the same
up to the second decimal point, the test accuracy of the recovered model is
the same as the original one for all the evaluated networks.

the float64 to be the default representation to get the most
precise results.

B. Comparison to Prior Work

The seminal work of Lowd and Meek [42] enabled full
model functionally equivalent extraction for linear models.
Further, full model functionally equivalent extraction for a
2-layer non-linear neural network was proposed by Milli et
al [43] in a theoretical setting. When considering extraction
of fully implemented neural networks, only two works have
come to light. Batina et al. [4] relied on side-channel leakage
on electromagnetic measurements to extract the functionally
equivalent model in a known input setting. They reported an
error on recovered weight of 2.5 × 10−3, and full network
recovery. Later, Jagielski et al. [7] proposed two attacks. One
of the two attacks enabled full model functionally equivalent
extraction for a 2-layer neural network with a weight error of
only 9× 10−7, which is current state-of-the-art. This method
required access to logit values, which is a stronger assumption
compared to outputs of the softmax function used in our
approach. The other method they developed enabled full model
extraction preserving task accuracy and fidelity.

Compared to these prior works, the goal of our work is
exact extraction. When experimentally testing our method with
Keras and Pytorch, the recovered weight error of our fault
assisted approach was at most 10−13. It must be noted that
the stated error is the precision error of the Python libraries
used in our experiments. Otherwise, our proposed method
can provably recover the exact weights. The comparison is
summarized in Table II.

C. Selecting the Model Extraction Method

It is important to understand the purpose of the model
extraction attack – after that, it is possible to determine what
type of attack should the attacker choose, ultimately deciding
the difficulty of the extraction.

If the main goal is to have a task accurate extraction or
functionally equivalent extraction, the attacker can achieve this

by querying the network with a set of inputs and observing
the outputs [7], [43]. In this case, the extracted network might
have a different architecture than the original one, but will
perform well on the same or similar task. As can be seen in
Figure 5, for functionally equivalent extraction, it is enough
to be able to recover the parameters with the precision of two
floating point digits for all the considered networks. However,
if the task changes, the extracted network might give different
output than the original one, as it was not trained the same way.
For example, some attackers might be interested in robustness
of a certain network to a set adversarial examples, but are
not able to query the original network with the entire set. In
such case, task accurate extraction will not help as it will not
reveal the vulnerability of the original network by testing the
extracted network. As the adversarial examples are often very
close to decision boundaries [24], precision of the parameters
is crucial to assess the vulnerability. For such scenarios, it
is necessary to have extracted network that is as close to the
original network as possible. That is a task of exact extraction.

VI. PROTECTION TECHNIQUES

In this section we will outline different techniques that
can help protect neural network implementations against fault
injection attacks.

A. Overview

In general, the protection techniques against fault injection
can work either on device level, or implementation level.

Device level techniques focus on preventing the attacker to
reach the chip, by various forms of packaging, light sensors,
etc. [44]. The goal is to increase the equipment and expertise
requirement to access the chip in a way that the possible
reward for the attacker for doing so will be lower than the
effort she has to put in. Device level techniques can also have
a different working principle – to detect potential tampering
with the chip. In this case, a hardware sensor that checks
environmental conditions can be deployed [45], [46], [47].

Implementation level techniques aim at detecting changes
in the intermediate data. Detection can be achieved by using
various encoding techniques, ranging from simple ones such
as parity [48], to sophisticated codes that can be customized to
protect against specific fault models [49]. Another approach
is performing the computation several times and comparing
the result. A different way to use redundancy is to perform
it at the instruction level, either by generating instruction
sequences that replace the original vulnerable instructions [50],
or by re-arranging the data within the instructions to make it
hard to tamper with without detection [51]. However, there
is no straightforward way of using these two techniques for
protecting DNNs. It is important to mention that unlike device
level techniques, the implementation level countermeasures
normally incur significant overheads, either in time, circuit
area, or power consumption.

Protecting the learning phase. Additionally, there is a line
of work that focuses on protecting the learning phase of the
deep learning method [52]. Such protection technique might
be useful in case the learning does not happen in a protected
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TABLE I
EXPERIMENTAL RESULTS FOR REVERSE ENGINEERING WITH FAULTS. WE TARGETED DEEP-LAYER FEATURE EXTRACTOR NETWORKS BASED ON

PUBLICLY AVAILABLE NETWORKS FOR IMAGE CLASSIFICATION.

Reverse Engineering
Model No. of Features To Recover Weight Precision Bias Precision

AlexNet [29] 9216 10−13 10−14

GoogleNet (Inception V1) [35] 1024 10−14 10−14

VGG-16 [30] 25088 10−13 10−14

ResNet-50 [31] 2048 10−14 10−14

Inception V3 [32] 2048 10−13 10−14

Inception ResNet V2 [36] 1536 10−14 10−14

Wide-ResNet-50-2 [37] 2048 10−14 10−14

DenseNet-201 [38] 1920 10−14 10−14

Xception [39] 2048 10−14 10−14

ResNeXt-101 32x8d [40] 2048 10−14 10−14

NasNet-A (6 @ 4032) [41] 4032 10−14 10−14

TABLE II
COMPARISON WITH PRIOR WORK TARGETING DIRECT MODEL EXTRACTION. ∗ DENOTES THAT TECHNIQUE HAS NULL PRECISION ERROR. IN OUR

EXPERIMENTS THE ERROR REPORTED WAS AT MOST 10−13 , WHICH IS THE PRECISION LIMITATION OF THE USED PYTHON LIBRARIES.

Attack Leakage Source Weight Error Target Network Goal
[42] Labels N/A Linear models Functionally equivalent
[43] Gradients/logits N/A 2-layer neural network Functionally equivalent
[4] EM Side-Channel 2.5× 10−3 Full network Functionally equivalent
[7] Probabilities/logits 9× 10−7 2-layer neural network Functionally equivalent

This Work Faults/Probabilities 0 (10−13)∗ 2-layer neural network Exact extraction

environment and there is a significant risk of faults coming
either from the environment or from the attacker. In our work
we consider the model is already learned and therefore, the
attacker is trying to tamper with the classification phase.

B. Analysis

Analysis of overheads and coverage of each countermeasure
that can be used against instruction skips presented in earlier
sections is stated in Table III. Here, we provide more details
on each technique and its applicability to DNN.
Spatial/temporal redundancy. This is the most straightfor-
ward way to protect a circuit. Implementer can choose the
number of redundant executions depending on what attacker
model is expected. In case of redundancy, there is always
an integrity check or a majority voting that decides whether
the output is valid or not. When used as a countermeasure
in cryptography, circuit is either deployed 2-3× on the chip
(spatial redundancy), or the computation is repeated 2-3× one
after another (temporal redundancy) [53]. Execution times can
be randomized so that it is hard to reproduce the same fault
in all the redundant executions.
Software encoding. As the software encoding countermea-
sures are realized by table look-up operations, they are not
directly applicable to neural networks which operate on real
values. However, it is possible to apply this countermeasure for
fixed-point arithmetic networks [55]. As it was shown, fixed-
point arithmetic can provide good results when used on bigger
networks [56]. The timing overhead in this case is around 75%
– for example, let us consider a multiplication operation on
AVR architecture: for the unprotected implementation, there is
operand loading into the registers (2× 1 clk cycle), followed
by a multiplication (2 clk cycles), resulting into 4 clock cycles.

For the protected implementation, there is a register precharge
(see e.g. Section 5.1 of [49]) of both input registers and the
output register (3 × 1 clk cycle), followed by the operand
loading (2 × 1 clk cycle) and table look-up (2 clk cycles),
resulting into 7 clock cycles. Regarding the area overhead,
as stated in [49], in case the codeword size is ≤ 8 bits,
there is a fixed table size of 65 kB per binary operation (e.g.
multiplication). That is why the area (memory) overhead is
huge for this case.
Hardware sensor. Application of a hardware sensor to protect
DNN circuit is depicted in Figure 6. The main advantage
of hardware sensor is that there is no need to change the
underlying implementation of the neural network. The sensor
resides on the front side of the chip, protecting all the under-
lying circuits from fault injection. In case there is a sudden
parasitic voltage detected by such sensor, it raises an alarm.
While front side deployment might be vulnerable to back
(substrate) side injection, [45] reported successful detection
of backside injection. Recently, circuit level techniques were
also proposed to enhance backside detection capabilities [57].
Afterwards, security measures, such as discarding the output,
can be applied. Recently, a way to automate the deployment
of such circuit was proposed [58].

To summarize, selection of countermeasures depends heav-
ily on the type of application that relies on DNN outputs.
For security critical application, it would be recommended to
combine several techniques together to minimize the possible
attack vectors and make cost of the attack as high as possible.

VII. CONCLUSION

In this paper, we developed a method for provable exact
extraction of neural network parameters with the help of fault
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TABLE III
OVERVIEW OF COUNTERMEASURES EFFECTIVE AGAINST SKIPPING INSTRUCTIONS.

Overhead
Countermeasure Time Area Coverage

Spatial redundancy (×N ) – N × 100%
Covers up to N − 1 faults. To break the countermeasure, faults need to be
injected at the same instruction in all the redundant circuits – which normally
requires multiple fault injection devices.

Temporal redundancy (×N ) N × 100% – Covers up to N − 1 faults. To break the countermeasure, faults need to be
injected at the same instruction in all the redundant executions.

Software encoding [49] 75% ≈ 65, 000%

Protects against instruction skips that target one instruction at a time. Although
it does not protect against consecutive instruction skips, during one execution
it can protect arbitrary number of non-consecutive skips with 100% detection
rate.

Hardware sensor [54] – 1.1%2

As the sensor is based on detecting voltage variations on the chip surface,
the detection rate depends on the fault injection device parameters. The most
recent work shows high detection rates for both laser and EM fault injection
techniques, 97% and 100% detected injections, respectively.

Fig. 6. Hardware sensor protecting the DNN circuit.

injection. Our method aims at recovering the student layer of
deep-layer feature extractor networks that were constructed by
transfer learning. This is done by changing the sign of inter-
mediate values to obtain the information about the parameters
with a method called SNIFF – sign bit flip fault. Our practical
experiments show that the exact recovery ultimately depends
on computer architecture and the precision of the library used.
For 64-bit floats used in Keras, the parameter recovery error
was at most 10−13.

For the future work, it would be interesting to look at meth-
ods that would allow extraction of parameters from deeper
layers of a network. It would be also worth exploring whether
a combination of multiple faults during a single execution can
improve the efficiency of the attack.
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APPENDIX

A. Other Activation Functions
In this section we consider the case when the activation

function of the output layer is not softmax. Following notations
from Section IV-B, suppose there are k layers in the teacher
neural net, and let OθT,−1

denote the part of the teacher neural
network that was preserved by the student neural network.
Let WS and bS denote the trained weight matrix and bias
vector for the last layer of student neural network. Suppose
the (k − 1)th layer of teacher network has n neurons and the
output layer of student network has m neurons.

Our attack goal is to recover WS and bS . We refer to the
unknown weight wij as the target weight parameter and the
unknown bias bS,j as the target bias parameter.

For an input x, let I(x) denote OθT,−1
(x). Let y(x) :=

OθT,−1
(x)TWS + bS . For simplicity, we write I (resp. y)

instead of I(x) (resp. y(x)). As described in Section III-D,
we consider SNIFF on the product Iiwij and on the bias bS,j .

1) Sigmoid: In case the activation function for the last layer
is sigmoid, for an input x, the output of the student neural
network is given by

Oθ(x) = sigmoid(OθT,−1
(x)TWS + bS),

for i = 1, 2, . . . ,m,

Oθ,i(x) =
1

1 + exp(−yi(x))
.

Theorem 3. For any j0 ∈ {1, 2, . . . ,m} and any input x.
Suppose a SNIFF on target bias parameter bS,j0 was carried
out. Let zj0 and z̃j0 denote the correct and faulted value of
Oθ,j0(x). Then the target weight bS,j0 can be recovered as:

bS,j0 =
1

2
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Proof. Let j0 be given and let x be any input. For any j ∈
{1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij , zj =
1

1 + exp(−yj)
.

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 =
1

1 + exp(−yj0)
.

Let

A :=

n∑
i=1

Iiwij0 = yj0 − bS,j0 .

We have

zj0 =
1

1 + exp(−A− bS,j0)
,

z̃j0 =
1

1 + exp(−A+ bS,j0)
.

We note that by definition of sigmoid, zi0 > 0 and z̃i0 > 0.
1

zj0
− 1 = exp(−A− bS,j0)

1

z̃j0
− 1 = exp(−A+ bS,j0)
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By definition of sigmoid, z−1j0 > 1,

z̃−1j0 − 1

z−1j0 − 1
= exp(2bS,j0) =⇒ bS,j0 =

1

2
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Corollary 3. The attacker can recover the bias vector bS with
m faults and 2m executions of the target neural network (the
student neural network).

Theorem 4. For any i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, . . . ,m} and
any x, a non-vanishing input for i0. Suppose a SNIFF on
target weight parameter wi0j0 was carried out. Let zj0 and
z̃j0 denote the correct and faulted value of Oθ,j0(x). Then
the target weight wi0j0 can be recovered as:

wi0j0 =
1

2Ii0
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Proof. Let i0, j0 be given, and let x be a non-vanishing input
for i0. We let wij denote the (i, j)th entry of the weight matrix
WS . And let bS,j denote the jth entry of the bias vector bS .
Then for any j ∈ {1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij , zj =
1

1 + exp(−yj)
.

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 =
1

1 + exp(−yj0)
.

Let

A := bS,j0 +

n∑
i=1,i6=i0

Iiwij0 = yj0 − Ii0wi0j0 .

We have

zj0 =
1

1 + exp(−A− Ii0wi0j0)
,

z̃j0 =
1

1 + exp(−A+ Ii0wi0j0)
.

We note that by definition of sigmoid, zi0 > 0 and z̃i0 > 0.

1

zj0
− 1 = exp(−A− Ii0wi0j0)

1

z̃j0
− 1 = exp(−A+ Ii0wi0j0)

Since x is a non-vanishing input for i0, we have Ii0 6= 0. Also
by definition of sigmoid, z−1i0 > 1. Together with the above
equations,

z̃−1j0 − 1

z−1j0 − 1
= exp(2Ii0wi0j0) =⇒ wi0j0 =

1

2Ii0
ln

(
z̃−1j0 − 1

z−1j0 − 1

)
.

Corollary 4. The attacker can recover the weight matrix WS

with mn faults and 2mn executions of the targeted neural
network (the student neural network).

2) Tanh: In case the activation function for the last layer is
tanh, for an input x, the output of the student neural network
is given by

Oθ(x) = tanh(OθT,−1
(x)TWS + bS),

for i = 1, 2, . . . ,m,

Oθ,i(x) =
exp(yi(x))− exp(−yi(x))
exp(yi(x)) + exp(−yi(x))

.

Theorem 5. For any j0 ∈ {1, 2, . . . ,m} and any input x.
Suppose a SNIFF on target bias parameter bS,j0 was carried
out. Let zj0 and z̃j0 denote the correct and faulted value of
Oθ,j0(x). Then the target weight bS,j0 can be recovered as:

bS,j0 =
1

4
ln

(1 + zj0)(1− z̃j0)
(1− zj0)(1 + z̃j0)

.

Proof. Let j0 be given and let x be any input. For any j ∈
{1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij ,

zj =
exp(yj)− exp(−yj)
exp(yj) + exp(−yj)

= 1− 2

exp(2yj) + 1
.

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 = 1− 2

exp(2yj0) + 1
.

Let

A :=

n∑
i=1

Iiwij0 = yj0 − bS,j0 .

We have

zj0 = 1− 2

exp(2A+ 2bS,j0) + 1
,

z̃j0 = 1− 2

exp(2A− 2bS,j0) + 1
.

We note that by definition of tanh, zi0 < 1 and z̃i0 < 1.

1 + zj0
1− zj0

= exp(2A+ 2bS,j0)

1 + z̃j0
1− z̃j0

= exp(2A− 2bS,j0),

which gives

(1 + zj0)(1− z̃j0)

(1− zj0)(1 + z̃j0)
= exp(4bS,j0) =⇒ bS,j0 =

1

4
ln

(1 + zj0)(1− z̃j0)

(1− zj0)(1 + z̃j0)
.

Corollary 5. The attacker can recover the bias vector bS with
m faults and 2m executions of the target neural network (the
student neural network).

Theorem 6. For any i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, . . . ,m} and
any x, a non-vanishing input for i0. Suppose a SNIFF on
target weight parameter wi0j0 was carried out. Let zj0 and
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z̃j0 denote the correct and faulted value of Oθ,j0(x). Then
the target weight wi0j0 can be recovered as:

wi0j0 =
1

4Ii0
ln

(1 + zj0)(1− z̃j0)
(1− zj0)(1 + z̃j0)

.

Proof. Let j0 be given and let x be any input. For any j ∈
{1, 2, . . . ,m},

yj = bS,j +

n∑
i=1

Iiwij , zj = 1− 2

exp(2yj) + 1
.

In particular,

yj0 = bS,j0 +

n∑
i=1

Iiwij0 , zj0 = 1− 2

exp(2yj0) + 1
.

Let

A := bS,j0 +

n∑
i=1,i6=i0

Iiwij0 = yj0 − Ii0wi0j0 .

We have

zj0 = 1− 2

exp(2A+ 2Ii0wi0j0) + 1
,

z̃j0 = 1− 2

exp(2A− 2Ii0wi0j0) + 1
.

We note that by definition of tanh, zi0 < 1 and z̃i0 < 1.

1 + zj0
1− zj0

= exp(2A+ 2Ii0wi0j0)

1 + z̃j0
1− z̃j0

= exp(2A− 2Ii0wi0j0),

which gives

(1 + zj0)(1− z̃j0)

(1− zj0)(1 + z̃j0)
= exp(4Ii0wi0j0)

=⇒ wi0j0 =
1

4Ii0
ln

(1 + zj0)(1− z̃j0)

(1− zj0)(1 + z̃j0)
.

Corollary 6. The attacker can recover the weight matrix WS

with mn faults and 2mn executions of the targeted neural
network (the student neural network).

3) Relu: In case the activation function for the last layer is
relu, for an input x, the output of the student neural network
is given by

Oθ(x) = max{0,OθT,−1
(x)TWS + bS},

for j = 1, 2, . . . ,m,

Oθ,j(x) = max{0, yj(x)}.
When the output of the activation function is 0, we cannot
get much information. Thus, for relu, we need to consider an
additional faulting position, position 5 in Figure 2. The effect
of the fault is to flip the sign of the result of the summation,
i.e. yj with notation above. Thus in case the output of relu was
original zero, after fault, the output would be absolute value
of the summation, i.e. −yj .

Given any i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, . . . ,m} and any
input x. Then there are two steps for the attack:
Step 1:

1) If Oθ,j0(x) 6= 0. Let zj0 denote Oθ,j0(x).
2) If Oθ,j0(x) = 0. The attacker executes the inference with

the same input and inject SNIFF on the summation yi. Let
zj0 denote the negative of the faulted value of Oθ,j0(x).

Step 2: The attacker executes the inference with the same
input and inject SNIFF on target parameter - bias bS,j0 or
weight wi0,j0 .

1) If the faulted value of Oθ,j0(x) 6= 0. Let z̃j0 denote the
faulted value of Oθ,j0(x).

2) Otherwise, the attacker executes the inference with the
same input and inject SNIFF on both the target parameter
and the summation yi. Let z̃j0 denote the negative of the
faulted value of Oθ,j0(x).

Theorem 7. For any j0 ∈ {1, 2, . . . ,m} and any input x.
Following the attack steps described above, the target bias
can be recovered as

bS,j0 =
1

2
(zj0 − z̃j0)

Proof. We note that with the above attack, we have

zj0 = yj0 = bS,j0+

n∑
i=1

Iiwij0 , z̃j0 = ỹj0 = −bS,j0+
n∑
i=1

Iiwij0 .

Thus
bS,j0 =

1

2
(zj0 − z̃j0)

Corollary 7. The attacker can recover the bias vector bS with
at most 3m faults and at most 4m executions of the target
neural network (the student neural network).

Theorem 8. For any i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, . . . ,m} and
any x, a non-vanishing input for i0. Following the attack steps
described above, the target weight wi0j0 can be recovered as:

wi0j0 =
1

2Ii0
(zj0 − z̃j0).

Proof. We note that with the above attack, we have

zj0 = yj0 = bS,j0 +

n∑
i=1

Iiwij0 ,

z̃j0 = ỹj0 = bS,j0 − Ii0wi0j0 +
n∑

i=1,i6=i0

Iiwij0 .

Since x is a non-vanishing input for i0, we have Ii0 6= 0. We
have

wi0j0 =
1

2Ii0
(zj0 − z̃j0)

Corollary 8. The attacker can recover the weight matrix WS

with at most 3mn faults and at most 4mn executions of the
targeted neural network (the student neural network).


