
1

SBCMA: Semi-Blind Combined Middle-Round
Attack on Bit-Permutation Ciphers with Application

to AEAD Schemes
Xiaolu Hou, Jakub Breier and Shivam Bhasin

Abstract—Side-channel and fault injection attacks are well-
researched topics within physical security of cryptographic imple-
mentations. They can reduce the complexity of the key retrieval to
trivial numbers. It was shown that their combination is even more
effective, for example in breaking redundancy countermeasures.

In this paper, we present the first semi-blind combined
attack that allows secret key retrieval in unknown plaintext and
ciphertext scenario. SBCMA – Semi-Blind Combined Middle-
round Attack is aimed at bit-permutation ciphers, such as GIFT-
128 which serves as a case study for this work. On average, it can
recover GIFT-128 master key with 92.17 encryptions and 91.17
faults. For GIFT-128 based NIST LWC Round 2 candidates,
SBCMA requires 13.79 sessions and 94.32 faults on average.

Index Terms—Side-Channel Attacks, Fault Injection Attacks,
Combined Attacks, Blind Attacks, Symmetric Cryptography

INTRODUCTION

Hardware attacks constitute a powerful attack vector against
cryptographic implementations on embedded devices. Since
the inception of side-channel attacks (SCA) in 1996 [1] and
fault injection attacks (FIA) in 1997 [2], these two branches
have become the major research direction in this field. Current
trends such as Internet-of-Things and Edge computing make
a push towards transferring the computations from the cloud
to the embedded chips. As these systems need to communi-
cate with the outside world, the need of low computational
power cryptography becomes more evident, resulting in a
branch called lightweight cryptography. Multitude of algo-
rithms have been proposed to date, pushing the limits of
lowering the resource requirements with every iteration [3].
Bit permutation-based ciphers, such as PRESENT [4] and
GIFT [5] have become popular due to their permutation layer,
which allows zero-cost in hardware and also very efficient
implementation in software [6], [7]. The lightweight cryptog-
raphy standardization efforts by National Institute of Standards
and Technology (NIST)1 show a great interest in GIFT-based
candidates, resulting in 4 out of 32 Round-2 candidates based
on this cipher, including one of the ten finalist. Apart from
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classical cryptanalysis, it is especially important to analyze
these proposals w.r.t. hardware attacks due to their intended
deployment.

Resistance of PRESENT and GIFT ciphers against SCA and
FIA have been explored in series of works in the past (e.g. [8],
[9], [10]), but their resistance to physical attacks within AEAD
setting is not yet explored. Several AEAD use plaintext or
ciphertext masking. It is well known that majority of SCA and
FIA operate under a known/chosen plaintext/ciphertext setting,
making those attacks impossible when plaintext/ciphertext
masking is in place. In this paper, we propose SBCMA on
GIFT-128 which leads to full key recovery with a combination
of side-channel and fault injection, while having no knowledge
of plaintext/ciphertext. Our attack targets bitslice software
implementations – these are the most efficient implementations
on general-purpose 32-bit devices.

Our contribution.
1) We propose the first semi-blind combined physical attack

on block ciphers with bit permutations – SBCMA: Semi-
Blind Combined Middle-round Attack.

2) We show an application of SBCMA on GIFT-based
AEAD schemes proposed for NIST LWC competition.
Attack complexities on these schemes are stated in Ta-
ble I.

3) We provide simulation results for SBCMA with different
values of SNR.

4) We provide experimental results of the SBCMA on ARM
Cortex-M0 device.

5) We provide a discussion on countermeasures and how
SBCMA can be extended to reverse engineering of secret
ciphers.

Depending on the attacker ability, we have considered two
attack types, SBCMA A and SBCMA B (further detailed in
Section III-A).

Complexity
Attack type Sessions Enc./session No. of faults

SBCMA A Known fault mask 13.79

8

94.32
Chosen fault mask 11.62 76.96

SBCMA B Known fault mask 20.20 145.58
Chosen fault mask 14.51 100.08

TABLE I
ATTACK COMPLEXITY (NUMBER OF AEAD SESSIONS/LEAKAGE TRACES,

AND NUMBER OF ENCRYPTIONS PER SESSION UNDER ATTACK) AND
NUMBER OF FAULTS NEEDED FOR MASTER KEY RECOVERY WITH BCMA

ON NIST LWC ROUND 2 CANDIDATES BASED ON GIFT-128.
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Roadmap. The rest of the paper is organized as follows.
In Section I we provide background on physical attacks and
discuss related work. In Section II we detail the specifications
of GIFT-128 and the specific properties of its bit-permutation
operation we target. In Section III we present SBCMA with
application to GIFT-128. Section IV shows the simulation and
the experimental results. Section V discusses how SBCMA
can be applied to LWC candidates. Section VI provides
discussion on mitigation and application of SBCMA to reverse
engineering. We finally conclude with Section VII.

I. BACKGROUND

In this section, we outline general background on side-
channel attacks, fault injection attacks, and combined attacks.
Later, we detail the noted related work and compare it with
our proposal.

A. Physical Attacks

a) Side-channel analysis: Side-Channel Analysis (SCA)
attacks target implementations of cryptographic primitives in
a passive manner. They exploit the possibility of observing
the physical characteristics of a device during the encryp-
tion/decryption process [11]. The attacker obtains so-called
side-channel information that can be in a form of execution
time, power consumption, electromagnetic emanation (EM),
cache leakage, etc. This information is then used to reveal
information related the secret key used during the computation.

In this work, we focus on SCA attacks that use either power
consumption leakage or EM leakage for the analysis. These
can be generally divided into three categories:
• Simple Side-Channel Attacks (SSCA) aim at information

recovery with a one or few number of side-channel traces.
The attacker aims at recognising secret dependent pat-
terns in side-channel trace to determine its value, example
conditional multiply in squareand multiply operation of
RSA when key bit is 1. In our methodology, we assume
the attacker can use SSCA to determine the executed
operations of cryptographic algorithm by observing the
trace.

• Differential Side-Channel Attacks (DSCA) operate on
higher number of side-channel traces compared to SSCA
hwere an attacker use statistical means to find dependency
between hypothetical leakage based on key hypothesis
and the assumed leakage model (like Hamming Weight
model) and actual traces. The correct key hypothesis
maximizes statistical score. DSCA are more resistant to
noise compared to SSCA.

• Side-Channel Assisted Differential Plaintext Attacks
(SCADPA [12]) uses side-channel leakage to aid dif-
ferential cryptanalysis [13]. Generally, the attacker en-
crypt two known plaintext and tracks its propagation in
middle rounds through side-channels. The middle round
difference is computed by subtracting side-channel traces
from the two plaintext. The input and middle round
differences can be used in differential cryptanalysis to
recover the key. This attack, initially introduced against
bit-permutation based ciphers, was recently extended to

SPN ciphers, being capable of targeting intermediate
rounds [14].
b) Fault injection attacks: Unlike SCA, Fault Injection

Attacks (FIA) are active attacks on cryptographic imple-
mentations. They utilize various techniques, such as lasers,
electromagnetic emanation, voltage glitching, to affect the
intermediate values during the computation [15]. After a fault
is introduced in the computation, various analysis methods can
be then used to retrieve the secret key information. Most of
the current block ciphers have been shown vulnerable to FIA,
especially to differential fault analysis (DFA) [16], which is a
well-researched method in this field.

Generally, the attacker introduces a fault in an intermedi-
ate value, and then observes the cipher behavior under this
fault. There are different varieties of faults: transient/perma-
nent; data/control flow; stuck-at/random/precise; bit/byte/word
faults. Each of these can be exploited in a different manner
– for example, DFA exploits data fault propagation through
non-linear cipher components [16], statistical ineffective fault
attacks exploit faults that do not change the data values [17],
persistent fault analysis exploits permanent faults [18], etc.
For more details on different fault analysis methods, we refer
interested reader to [19].

c) Combined physical attacks: Few proposals also ex-
plore the possibility of combining SCA and FIA to propose
strong attacks against cipher implementations. One of first
proposal of a combined attack was differential behavioral
analysis [20], which utilized a combination of SCA and safe-
error attack. Assuming stuck-at fault model, it observes if the
fault alters the side-channel behavior of the computation to
derive the key. In the same year, a combined attack on RSA
was proposed in [21], which combines ”stuck-at-0” with SCA
to overcome masked implementations. Later, several proposals
have emerged proposing combination of SCA and FIA under
various setting. These include, but not limited to, stuck-at
faults with DSCA to break masking comutermeasure [22],
fault sensitivity with collision correlation [23], differential
fault analysis (DFA) assisted by SCA targeting specific design
choices like bit permutations [24], DFA with SCA to break
fault hardened implementations [25], [26], and combination
of SIFA and SCA [27].

B. Related Work

In this part, we outline the noted related work – combined
physical attacks and middle round attacks. High-level com-
parison of different types of attacks to SBCMA is stated in
Table II.

The commonly used attacks like DSCA, SSCA and most
fault-based attacks require access to plaintext/ciphertext.
Moreover their application to middle rounds is not trivial as
the complexity goes beyond brute force when applied only a
couple of rounds deeper.

A couple of advanced fault attacks were proposed in recent
literature. Blind fault attacks (BFA [30]) can operate without
precise knowledge or plaintext and ciphertext. However, they
need to know if the injected fault has changed the output
ciphertext or not. Nevertheless, it needs as high as ≈ 160k
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Attack Unknown Unknown ciphertext Targets Fault modelplaintext Unkn. value Unkn. change middle round
SSCA [28] 7 7 7 7 –
DSCA [28] 7 7 7 7 –
Blind SCA [29] 3 3 3 3 –
Blind FIA [30] 3 3 7 3 Stuck-at
SIFA [17] 3 3 7 7 Ineffective
Blind SIFA [27] 3 3 3 7 Ineffective
FTA [31] 3 3 7 3 Stuck-at
SBCMA (this paper) 3 3 3 3 Random/chosen

TABLE II
COMPARISON OF DIFFERENT PHYSICAL ATTACKS TO SBCMA.

faults [32] according to the recently proposed improvements,
which is 3× lower than 480k faults in the original proposal,
both targeting AES-128. Statistical ineffective fault attack [17]
can also operate without knowledge of ciphertext and inef-
fective faults, but it does not apply on middle rounds. The
fault model required is a strong stuck-at model. Fault template
attacks (FTA) [31] can target middle rounds with the help
of detailed profiling of fault behavior. It also works under
strong stuck-at fault and attacker needs information if the
faults resulted in change of output ciphertext value or not.

Blind SCA is another related area, utilizing leakage mea-
surement at several points of interest during the algorithm
computation and comparing the distributions obtained from the
leakage [29]. The original attack was later improved in [33]
and [34]. These attacks do not assume knowledge of plaintext
and ciphertext. As blind SCA are statistical attacks in their
nature, the number of required traces is high – around 10k
traces in the lowest noise scenario according to [34].

SBCMA as proposed in this paper also targets middle
rounds without knowledge of plaintext and ciphertext. In
this regard, SBCMA is direct competitor to blind SCA with
certain advantages and disadvantages. Blind SCA has high
SNR requirements and in particular precise knowledge of
points of interest in the side-channel trace must be known.
SBCMA is comparatively has a better tolerance to SNR. More
specifically, the lowest noise reported in blind SCA is σ = 0.5
when simulating the operation for a single AES Sbox on 8-
bit microcontroller, while SBCMA can tolerate noise up to
σ = 0.73 for 32-bit bitslice variables, keeping the number of
executions lower by two orders of magnitude.

II. ATTACK TARGETS

SBCMA aims at the bit-permutation operation with certain
properties. We first provide overview of block cipher GIFT
which uses such bit-permutation in its diffusion function.
Later, we give the details of this particular class of bit-
permutation in Section II-B. Table III summarizes attack
complexities of SBCMA on GIFT-128.

A. GIFT-128

In this section we follow the terminologies from [5] and
describe the specifications of GIFT-128. GIFT-128 consists
of 40 rounds, where each round consists of three operations:
SubCells, PermBits and AddRoundKey. The cipher state
can be expressed as 32 nibbles S = b127||b126|| . . . ||b0 =
ω31||ω30|| . . . ||ω1||ω0.

Round key recovery Master key recovery
Attack type Complexity # faults Complexity # faults

SBCMA A
Known
mask 89 88 92.17 91.17

Chosen
mask 65 64 71.46 70.46

SBCMA B
Known
mask 145.78 144.78 146.194 145.194

Chosen
mask 97 96 99.03 98.03

TABLE III
ATTACK COMPLEXITY (NUMBER OF ENCRYPTIONS/LEAKAGE TRACES)

AND NUMBER OF FAULTS NEEDED FOR KEY RECOVERY WITH SBCMA ON
GIFT-128.

a) SubCells: operation applies a 4−bit invertible Sbox
to each nibble of the cipher state:

ωi ← GS(ωi), ∀i ∈ {0, 1, . . . , 31}.
The specification of the GIFT Sbox is 1a4c6f392db7508e.

b) PermBits: maps bit i to another bit according to the
following formula

P (i) = 4

⌊
i

16

⌋
+32

((
3

⌊
i mod 16

4

⌋
+ (i mod 4)

)
mod 4

)
+ (i mod 4).

c) AddRoundKey: consists of adding the round key and
the round constant. A 64-bit round key RK is extracted from
the key state and partitioned into two 32−bit words RK =
U ||V = u31 . . . u0||v31 . . . v0. U and V are then XORed to
{b4i+2} and {b4i+1} of the cipher state respectively:

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}

B. Target Bit-Permutation

Bit-permutation operation has been used as a building
block in many SPN cipher designs. We are interested in a
particular class of bit-permutation operation, which satisfies
the following:
• Each Sbox is a b−bit permutation.
• Sboxes in each round can be divided into groups of m

in two ways – the Quotient and Remainder groups.
• The bit-permutation operation can be viewed as a group

mapping, which takes the outputs from one Quotient
group as the input and outputs m × b bits which will
be XORed with the round key and used as inputs for one
Remainder group in the next round.

• The input bits of an Sbox in round i + 1 come from m
distinct Sboxes in one Quotient group in round i.
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Fig. 1. Grouping of bits and nibbles in GIFT.

• The output bits of an Sbox in round i go to m distinct
Sboxes in one Remainder group in round i+ 1.

For both GIFT and PRESENT cipher designs, m = b = 4.
Let us number the Sboxes in round i of the cipher as
SBi

0, SB
i
1, . . . , SB

i
s, where s = n/4 and n is the block size of

the cipher. Then, for both PRESENT and GIFT, the Quotient
groups and Remainder groups, Qx and Rx, are defined as
• Qx = {SB4x, SB4x+1, SB4x+2, SB4x+3};
• Rx = {SBx, SBq+x, SB2q+x, SB3q+x},

where q = s/4, 0 ≤ x ≤ q − 1. For example, Figure 1 shows
the mapping from Quotient group Q0 in round i to Remainder
group R0 in round i + 1 for GIFT-128, where GSi

j denotes
the jth Sbox in the ith round.

III. SBCMA – SEMI-BLIND COMBINED MIDDLE-ROUND
ATTACK

In this section we present SBCMA, a combined side-channel
and fault attack on the middle-round of bit-permutation based
SPN with target bit-permutation as described in Section II-B.

A. Methodology
SBCMA injects faults in a middle round of the cipher

and uses side-channel leakage in the following two rounds
to recover the round key. The main strength of this attack
is zero knowledge of inputs and outputs of the cipher. The
attacker can recover the secret key just by injecting faults and
observing the side-channel leakage.

a) Attacker assumptions.: We assume that the attacker:
• has no control and no knowledge of plaintext and ci-

phertext but she can repeat the encryption of the same
plaintext;

• can inject a fault in an Sbox input in an intermediate
round;

• can either choose the fault mask or has the knowledge
of the fault mask in case of the random fault model (we
note that this fault mask is the input difference of the
Sbox under attack);

• can measure the side-channel leakage (power/EM) during
the two subsequent rounds after the fault injection.
b) Attack steps.: Here, we assume the order of operations

in each round of the target SPN is as follows: Sbox, bit-
permutation, round key addition2. The side-channel leakage

2For ciphers with round key addition before the Sbox computation, the
attack recovers round key i+ 1.

we measure in our attack corresponds to the intermediate
value right after bit-permutation and before key addition. We
denote this intermediate value as Ii for round i. Consequently,
the traces we are interested in is the parts of the traces
corresponding to bit-permutation and round key addition. And
we denote this part of the trace as LIi for round i. Keeping
the notations from Section II-B. To recover round key at a
middle round i, we have the following steps:

1) Fix a Quotient group at round i, say Q, to attack.
2) Run the encryption and measure side-channel leakages

LIi and LIi+1
.

3) Run the encryption with repeated plaintext and inject
a fault in the input of one Sbox from Q in round i.
Measure side-channel leakages L′Ii and L′Ii+1

after the
fault injection.

4) Use LIi − L′Ii to determine the output difference of the
faulted Sbox in round i, which also gives the input differ-
ences of faulted Sboxes (in the corresponding Remainder
group) in round i+ 1.

5) Use LIi+1 − L′Ii+1
to determine the changes in the

faulty inputs of Sbox in round i + 2, which gives the
output changes of Sboxes in round i + 1. For different
attacker assumptions (leakage model, device architecture,
implementation), the exact information on differentials
can vary. We analyze two possible scenarios:

a. Attacker can observe if input changes or not in each
Sbox;

b. Attacker can observe if input changes or not in each
Quotient group.

6) Reduce the input candidates for Sboxes in rounds i and
i+ 1 using results from steps 3 and 4.

7) Repeat steps 3-6 for Quotient group Q until the inputs of
Sboxes in Q and those in the corresponding Remainder
group are recovered.

8) Repeat steps 2-7 for other Quotient groups until the round
key for round i is recovered.

We refer to the attacks with conditions a, b separately, as
SBCMA A and SBCMA B. We note that in steps 4) and 5),
only single trace differences are considered.

B. Application of SBCMA to GIFT-128

In this part, we first detail the attack to recover the first
8 bits of a round key for GIFT-128 at any middle round
i. Then, we give estimates for attack complexity to recover
the master key for different attacker capabilities. We recall
that the intermediate value that we would like to measure the
leakage is the state of the cipher right after bit-permutation
and before key addition. We use LIi to denote the leakage
for this intermediate value in round i. The attack steps are as
follows:

1) Run the encryption and measure the side-channel leakage
LIi and LIi+1 .

2) Run the encryption with repeated plaintext and inject a
fault in the input of Sbox GSi

0 at round i. The fault mask
is an input difference of Sbox GSi

0.
3) Measure the side-channel leakages L′Ii and L′Ii+1

after
the fault injection.
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Algorithm 1: SBCMA attack steps for recovery of the
first 8 bits of round key i.

Data: i : target round for round key recovery; Q0 : the
first Quotient group in round i; R0 : Remainder
group in round i+ 1 corresponding to Q0

1 while inputs for Q0 and R0 are not recovered do
// R0 consists of: GSi+1

0 , GSi+1
8 , GSi+1

16 ,

GSi+1
24

2 for Sbox GS in Q0 do
3 run encryption, measure LIi and LIi+1

;
4 run encryption with repeated plaintext;
5 inject one fault in the input of GS;

// fault mask is input difference for GS

6 measure L′Ii and L′Ii+1
;

7 calculate LIi − L′Ii ;
// this gives output difference for GS

and input differences for GSi+1
0 ,

GSi+1
8 , GSi+1

16 , GSi+1
24

8 calculate LIi+1 − L′Ii+1
;

// this gives information on output

changes for GSi+1
0 , GSi+1

8 , GSi+1
16 ,

GSi+1
24

9 reduce input candidates for GS and R0;
// using the input and output

differences information gained in the

previous steps

10 recover inputs for Q0 and R0;
11 recover the first 8 bits of round key i;

4) Use LIi − L′Ii to determine if there are changes in
the inputs of the four faulted Sboxes in round i + 1,
GSi+1

0 , GSi+1
8 , GSi+1

16 , GSi+1
24 , which gives the output

difference of Sbox GSi
0 and also the input differences

of Sboxes GSi+1
0 , GSi+1

8 , GSi+1
16 , GSi+1

24 .
5) Use LIi+1

− L′Ii+1
to gain information on the output

differences of GSi+1
0 , GSi+1

8 , GSi+1
16 and GSi+1

24 .
6) With the output difference from step 4 and the input

difference from step 2, reduce input candidates for GSi
0.

7) With the input difference from step 4 and the out-
put difference from step 5, reduce input candidates for
GSi+1

0 , GSi+1
8 , GSi+1

16 , GSi+1
24 .

8) Repeat steps 1-7 for the other Sboxes in the same
Quotient group as GSi

0, namely GSi
1, GS

i
2, GS

i
3.

9) Repeat steps 1-8 until the inputs of Sboxes
GSi

0, GS
i
1, GS

i
2, GS

i
3, GS

i+1
0 , GSi+1

8 , GSi+1
16 , GSi+1

24

are recovered to get the first 8 bits of ith round key.

To illustrate step 4, for example, if the side-channel leakage
indicates there is a change in the inputs of GSi+1

0 and GSi+1
16

and there is no change in the inputs of GSi+1
8 , GSi+1

24 , then we
can conclude that the output difference of GSi

0 is 0x5 (0101)
and the input differences of GSi+1

0 and GSi+1
16 are 0x1 (0001)

and 0x4 (0100) respectively. In Section IV-B1, we simulate the
side-channel leakages when fault is injected in input of GSi

0.
Lines in Figure 4 indicate the maximum absolute difference
for the part of LIi − L′Ii that corresponds to the leakage for

1 2 3 4 5 6 7 8 9 a b c d e f

0 b 5 d 7 e 2 8 3 c a 6 4 1 9 f
1 b 6 e 5 c 3 9 7 8 d 1 a f 4 2
2 8 5 e 7 d 2 b f 3 6 9 c a 1 4
3 8 6 d 5 f 3 a b 7 1 e 2 4 c 9
4 9 5 f 7 c 2 a 3 6 e 8 4 b d 1
5 9 6 c 5 e 3 b f a 1 7 2 d 8 4
6 a 5 c 7 f 2 9 b d 6 3 8 4 1 e
7 a 6 f 5 d 3 8 7 1 9 c e 2 4 b
8 f 9 5 7 2 a c 3 8 6 e 4 d 1 b
9 f a 6 d 8 3 5 7 c 1 9 2 b 4 e
a c 9 6 3 5 e b f 7 a 1 8 2 d 4
b c a 5 9 f 7 2 b 3 d 6 e 4 8 1
c 5 d b 7 8 e 2 3 a 6 c 4 f 1 9
d 5 e 8 d 2 7 b f 6 9 3 a 1 c 4
e 6 d 8 3 f a 5 b 1 e 7 c 4 9 2
f 6 e b 9 5 3 c 7 d 1 8 2 a 4 f

TABLE IV
GIFT SBOX OUTPUT DIFFERENCE TABLE - COLUMNS CORRESPOND TO
INPUT DIFFERENCES, ROWS CORRESPOND TO VALUES OF INPUTS, AND

ENTRIES ARE OUTPUT DIFFERENCES.

first bits of inputs of GSi+1
0 , GSi+1

16 , GSi+1
8 , and GSi+1

24
3.

By the design of the permutation, when a fault is injected
in input of GSi

0, this fault does not propagate to first bits of
GSi+1

16 , GSi+1
8 , or GSi+1

24 inputs. It can only influence the first
bit of GSi+1

0 input through the first bit of GSi
0 output. Black

(resp. gray) line simulates the case when the fault propagates
(resp. does not propagate) to the first bit of GSi

0 output. We
can see that when the SNR is big enough (≥ 0.47), we can
successfully distinguish the two cases and conclude if there
is a change in the first bit of GSi

0 output, and equivalently, if
there is a change in the first bit of GSi+1

0 input. Experimental
results for this setting are shown in Section IV-C1.

Step 5 can be achieved in a similar way, for example, the
change/no-change in Sboxes GSi+2

0 , GSi+2
8 , GSi+2

16 , GSi+2
24

correspond to change/no-change in the 1st, 2nd, 3rd, and
4th bits of GSi+1

0 output, respectively. In Section IV-B2, we
simulate the side-channel leakages when fault is injected in
input of GSi

0. For the simulation, we consider SBCMA B
scenario, where we assume the attacker can only observe
the output changes of each Quotient group in round i + 1.
Lines in Figure 5 indicate the maximum absolute difference
for the part of LIi+1

− L′Ii+1
that corresponds to the leakage

for first bits of outputs for Sboxes in Quotient group 0 in
round i+ 1. Since the fault was injected in GSi

0, only GSi+1
0

and GSi+1
8 outputs would be influenced from this Quotient

group. Black (resp. gray) line simulates the case when the
fault propagates (resp. does not propagate) to the first bit of
GSi+1

0 or GSi+1
8 output. We can see that when the SNR is

big enough (≥ 0.47), we can successfully distinguish the two
cases and conclude if there is a change in the first bit of GSi+1

0

or GSi+1
8 output. Experimental results are also provided for

this setting in Section IV-C2.
The fault propagation is further illustrated in Figure 2.
1) Recovery of Sbox Inputs for Round i: First, we note that

the information we have for recovering the inputs of Sboxes
GSi

0, GS
i
1, GS

i
2, GS

i
3 are the input and the output differences,

obtained from known fault masks and side channel leakage
(step 4). Table IV gives the Output Difference Table for GIFT
Sbox, where the columns correspond to input differences, rows

3The implementation enables such leakage information. Details are ex-
plained in Section IV-B1.
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Fig. 2. Fault propagation after 2 rounds of GIFT-128. By observing the input change of Sbox in round i+ 1 (resp. i+ 2), attacker can gain knowledge of
Sbox output difference in round i (resp. i+ 1).

No. of pairs m Total cases Successful cases Success Rate Probability exactly
m pairs are needed

2 105 78 74.29 74.29
3 455 420 92.31 18.02
4 1365 1340 98.17 5.86
5 3003 2997 99.80 1.63
6 5005 5005 100.00 0.2

TABLE V
DISTINGUISHING GIFT SBOX INPUT FROM THE KNOWN FAULT MASK AND

OUTPUT DIFFERENCE PAIRS. THE FIRST COLUMN IS THE NUMBER OF
KNOWN FAULT MASK AND OUTPUT DIFFERENCE PAIRS. SECOND COLUMN

IS THE TOTAL NUMBER OF POSSIBLE CASES FOR m PAIRS. THIRD
COLUMN IS THE NUMBER OF PAIRS WHICH CAN UNIQUELY IDENTIFY

EACH INPUT OF GIFT-SBOX. FOURTH COLUMN IS THE PERCENTAGE OF
SUCH PAIRS. FIFTH COLUMN IS THE PROBABILITY THAT EXACTLY m

PAIRS OF KNOWN FAULT MASK AND OUTPUT DIFFERENCE ARE NEEDED TO
RECOVER THE GIFT SBOX INPUT.

correspond to input values and entries are output differences.
More specifically, an entry x at cell i, j is the output difference
of value i with input difference j, i.e. GS(i)⊕GS(i⊕j) = x.
To recover the Sbox input, we need to find a sub-table with
the same number of rows and a subset of the columns such
that all the rows are distinct in this sub-table. The columns in
this sub-table give us the combination of fault masks that can
help us recover the Sbox input.

Chosen fault mask. By an exhaustive search, we found that
the smallest number of columns needed is 2 and there are 78
such choices. For example, if we look at the columns 1 and 2
of Table IV, all the rows are distinct. Thus, by observing the
two output differences corresponding to fault masks 1 and 2,
the attacker can uniquely identify the input of the Sbox. So,
the number of chosen faults needed to recover the Quotient
group inputs in round i, GSi

0, GS
i
1, GS

i
2, GS

i
3, is 8.

Random fault with known fault mask. In Table V we sum-
marize the results for different number of input (known fault
mask) and output (step 4) difference pairs. The first column
indicates the number, m, of input/output difference pairs. The
second column is the total number of possible combinations
of m input/output difference pairs. As we have in total 15
possible input differences, the total number of combinations of
input/output difference pairs is 15 choose m. The third column
gives us the number of successful cases – combinations that
can help an attacker uniquely identify the input value of the
Sbox. This was calculated by the observation mentioned above
– we construct sub-tables of Table IV and check if the rows are
all distinct. Fourth column lists the percentage of successful
cases among the total cases – obtained by the value in column
three divided by the value in column two. The fifth column
shows the probability that the attacker needs exactly m pairs of
known fault masks and output differences to uniquely identify
the Sbox input. To give an example on how these values
are obtained, we detail the calculations for m = 3. First,
we notice that column four actually gives us the probability

that ≤ m pairs needed for input recovery. The probability
that “exactly 3 pairs are needed” is equal to the probability
that “at most 3 pairs are needed” minus the probability that
“at most 2 pairs are needed” i.e.

Pr[m = 3] = Pr[m ≤ 3]−Pr[m ≤ 2] = 0.9231−0.7429 = 0.1802

We also note that as Pr[m ≤ 6] = 1, the probability that 7
or more pairs are needed is 0. So, on average

6∑
m=2

m× Prob(exactly m pairs are needed) = 2.34

faults are needed to recover the input of one Sbox. On average,
number of random faults needed to recover the Quotient group
inputs in round i is 9.36.

2) Recovery of Sbox Inputs for Round i + 1: To recover
the inputs of Sboxes GSi+1

0 , GSi+1
8 , GSi+1

16 , GSi+1
24 , we use

the individual input differences, which are obtained by side-
channel leakage in Step 4) (Section III-B). We note that
with the attack setting, not all the input differences are
achievable. In particular, we assume the attacker can attack
one Sbox input in round i at once. For example, when one
of GSi

0, GS
i
1, GS

i
2, GS

i
3 is under fault attack, the possible

input masks for GSi+1
0 are 0x1, 0x2, 0x4, 0x8, respectively

(see Figure 1).
The output difference information depends on the attacker

abilities as mentioned in Section III-A. In the following,
we analyze the attack complexities for both SBCMA A and
SBCMA B scenarios. Recall scenario A means the attacker
can observe if input changes or not in each Sbox in round
i+ 2; and scenario B means the attacker can observe if input
changes or not in each Quotient group in round i+ 2.

a) SBCMA A: In case the attacker can observe the input
change in each Sbox in round i + 2, she can get the Sbox
output difference for each Sbox in round i+ 1 (see Figure 2).

Chosen fault mask. As discussed in Section III-B1, we need
on average 2 faults for each Sbox input recovery in round i
and there are 78 choices for the fault masks. When considering
the whole Quotient group Q0 in round i, there are 784 possible
combinations of those fault masks. Each fault mask propagates
to input masks for each Sbox from Remainder group R0 in
round i + 1. By exhaustive search we found that 1377 of
them can help us recover the inputs of R0 in round i + 1.
For example, the combination of fault masks 0x7 and 0xa;
0x7 and 0x8; 0x2 and 0x7; 0x0 and 0x7 in the input of
GSi

0, GS
i
1, GS

i
2, GS

i
3, respectively, can recover the inputs of
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all 8 Sboxes (4 in Q0 from round i, 4 in R0 from round i+1).
Thus, for chosen fault masks we need 8 faults to recover 8
bits of the round key and 64 faults for recovery of the full
round key.

Random fault with known fault mask. With random fault,
we can assume the four input masks, 0x1, 0x2, 0x4, 0x8, of
GSi+1

0 appear randomly with the same probability. By exhaus-
tive search we find that in half of the cases, two out of the four
input masks can recover GSi+1

0 input. In 75% of the cases,
three input masks can recover the Sbox input. And if all four
input masks are observed, the input can always be determined.
Thus, on average, we need 2×0.5+3×0.25+4×0.25 = 2.75
input masks, which means 2.75 different faults. Same results
hold for GSi+1

8 , GSi+1
16 and GSi+1

24 . In total, we need 11 faults
to recover Remainder group R0 input in round i + 1. As
discussed in Section III-B1, we need on average 9.36 faults
to recover the Quotient group Q0 input in round i. We can
conclude that 11 faults can recover inputs for all 8 Sboxes
and consequently 8 bits of the key. Hence, for random fault
we need 88 faults for the recovery of the ith round key.

b) SBCMA B: In this scenario, we assume the attacker
can only determine if there is a change in each Quotient group
of round i + 2. Figure 3 illustrates this situation with a fault
injected in Sbox GSi

0 – the input differences for two adjacent
Sboxes with a same color cannot be differentiated.

Let us consider a mapping, denoted as Combined-Sbox, that
takes 8 bits as input and outputs 4 bits defined as follows:

Combined-Sbox(x) = GS(x1)⊕GS(x2),

where x1 and x2 are the first and the second nibble of
x respectively. GS denotes GIFT-Sbox. Then, for input x
and input difference ∆x, the output difference is given by
GS(x1 ⊕∆x1)⊕GS(x2 ⊕∆x2), where ∆x1 and ∆x2 are
the first and the second nibble of ∆x, respectively.

With this notion, we can consider the pair of Sboxes
GSi+1

0 , GSi+1
8 as one Combined-Sbox. As discussed above,

we know the input difference of this Combined-Sbox from
Step 4. We note that there are only 12 possible in-
put differences in our attack scenario: when GSi

0 (resp.
GSi

8, GS
i
16, GS

i
24) is attacked, the possible input differ-

ences for this Combined-Sbox are 0x01, 0x20, 0x21 (resp.
0x02, 0x40, 0x42, 0x04, 0x80, 0x84, 0x08, 0x10, 0x18). Fur-
thermore, the output difference as defined above can be
obtained in Step 5.

We have constructed an Output Difference Table for the
Combined-Sbox, where columns correspond to 12 input differ-
ences, rows correspond to input values and entries are output
differences. With each observed input and output difference
pairs, we can reduce the candidate for the Combined-Sbox
input4.

Chosen fault mask. With each combination of fault masks at
round i we can translate it to input masks of two Combined-
Sboxes (GSi+1

0 , GSi+1
8 and GSi+1

16 , GSi+1
24 ) at round i+1. As

shown in Section III-B1, we need on average 8 fault masks to
recover the Quotient group Q0 input at round i. Starting from 8
fault masks, we did exhaustive search with GIFT Sbox Output

4As the table has 3,072 entries, we omit the table in this document.

Difference Table (Table IV), which tells us if the fault mask
can recover input of Sbox in round i, and Output Difference
Table for the Combined-Sbox, which tells us if the propagated
fault can help us recover inputs of Combined-Sboxes in round
i+ 1. We found that 12 fault masks at round i are enough to
recover inputs of all 8 Sboxes. Hence, we need 96 faults to
recover the ith round key.

Random fault with known fault mask. By a similar analysis
of Table IV that resulted in Table V, we analyzed the Output
Different Table for the Combined-Sbox and the results are
presented in Table V in Appendix A. On average, the number
of faults needed to recover a Combined-Sbox input is 9.049.
The same result holds for GSi+1

16 and GSi+1
24 (viewed as a

Combined-Sbox). For recovery of Q0 input in round i we need
on average 9.36 random faults (Section III-B1), thus we need
on average 18.098 random faults for recovery of 8 bits of
round key. Consequently, we need 144.784 faults to recover
the full ith round key.

3) Complexity for Recovery of Master Key: We note that
after recovery of the ith round key, the attacker knows the
cipher state after round i PermBits. By a similar attack as in
Section III-B1, we can inject faults at each Sbox input of round
i+2 and measure the side-channel leakage of round i+2 after
the fault injection to get inputs of Sboxes in round i+ 2. This
way, we recover the (i + 1)th round key and together with
the ith round key we get the master key. Following similar
argument as in Section III-B1, the attacker needs another 64
(resp. 74.88) faults to get the master key in case of chosen
fault mask (resp. random fault with known fault mask).

On the other hand, with the knowledge of output differences
for each Sbox in round i+ 1, we can get the input differences
for all Sboxes in round i + 2. We assume the attacker has
stored the traces for each encryption carried out during the
attack. In case there is a faulty input in only one Sbox
for any of the Quotient groups in round i + 2, by taking
the difference of traces corresponding to round i + 2 we
can figure out the output difference for this particular Sbox.
For example, if we inject a fault in GSi

0 and the input of
GSi+2

0 is changed but the input of GSi+2
2 does not change,

then we have only one Sbox input change in the Quotient
group Q0 (GSi+2

0 , GSi+2
1 , GSi+2

2 , GSi+2
3 ) of round i+2. This

saves us one fault for the Sbox GSi+2
0 . In Appendix B, we

provide detailed analysis for the number of faults saved to
recover the master key. The total number of faults needed for
each attack scenario is as follows: SBCMA A chosen fault:
64 + 6.46 = 70.46; SBCMA A random fault with known
fault mask 88 + 3.17 = 91.17; SBCMA B chosen fault:
96 + 2.03 = 98.03; SBCMA B random fault with known
fault mask 144.784 + 0.41 = 145.194

IV. EXPERIMENT

In this section, we target publicly available bit slice imple-
mentation5 for GIFT-128 by SBCMA B.

a) Difference Recognition by Side Channels: As it was
shown before, in bit permutation based ciphers it is possible to
recognize differences in Sbox outputs of round i by observing

5https://www.isical.ac.in/∼lightweight/COFB/resource.html
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Fig. 3. Fault propagation after 2 rounds of GIFT-128, illustrating the situation when only combinations of 2 Sboxes can be distinguished.

data operations in round i + 1 [12], [35]. This is due to
the characteristics of bit permutations with optimal diffusion,
where the x output bits of one Sbox are distributed to x
different Sboxes in the subsequent round. While the above-
mentioned works focused on propagating differentials from
plaintext and observing the differences in the second round,
later it was shown that middle rounds can be attacked in
a similar fashion with so-called See-In-The-Middle attack
(SITM) [14]. SITM also extended the methodology to SPN
ciphers which were protected by shuffling.

In the following sections, we simulate how this characteris-
tic can be observed by the side-channel leakage from a bitslice
implementation of GIFT.

A. Bit Slice Implementation of GIFT-128

In software, it is usually recommended to use bitslice
implementations to fully utilize the bandwidth provided by
the architecture. In this part, we detail the attack on bitslice
implementation of GIFT for 32-bit architectures.

The state of an intermediate value is represented by four
32−bit variables S0, S1, S2, S3. The SubCell operation is then
carried out as follows: ∀j ∈ {0, 4, . . . , n4 − 1}

(s3,j ||s2,j ||s1,j ||s0,j)← GS(s3,j ||s2,j ||s1,j ||s0,j)

where si,j denotes the jth entry of Si. And PermBits follows
the permutation described in Table 17 in [5] such that

si,Pi(j) ← si,j ,∀i ∈ {0, 1, 2, 3}, j ∈ {0, 4, . . . ,
n

4
− 1}.

We focus on the bislice implementation provided in [36].
In this implementation, PermBits is realized by the rowperm
function, detailed in Listing 1, which permutes one nibble of
the input S in one loop (line 5 - 8).

0 rowperm(uint32_t S, int B0_pos, int B1_pos,
1 int B2_pos, int B3_pos){
2 uint32_t T=0;
3 int b;
4 for(b=0; b<8; b++){

//permute bits at positions 4b
5 T |= ((S>>(4*b+0))&0x1)<<(b + 8*B0_pos);

//permute bits at position 4b+1
6 T |= ((S>>(4*b+1))&0x1)<<(b + 8*B1_pos);

//permute bits at position 4b+2
7 T |= ((S>>(4*b+2))&0x1)<<(b + 8*B2_pos);

//permute bits at position 4b+3
8 T |= ((S>>(4*b+3))&0x1)<<(b + 8*B3_pos);
9 }
10 return T;
11 }

// call rowperm with state variables S[0-3]

12 S[0] = rowperm(S[0],0,3,2,1);
13 S[1] = rowperm(S[1],1,0,3,2);
14 S[2] = rowperm(S[2],2,1,0,3);
15 S[3] = rowperm(S[3],3,2,1,0);
\vspace{-0.6cm}

Listing 1. Implementation of permutation in bitslice GIFT.

B. Leakage Simulation

The side-channel leakage we would like to exploit happens
at the execution of each iteration of the for loop (line 4) in
the target rounds i, i + 1 for recovery of the ith round key.
Keeping the notations from Section II-B. At each round, with
input S[j] to rowperm, the bth iteration of the for loop applies
PermBits to the jth bit of each Sbox output in Quotient group
b in that round.

We can assume the side-channel leakage in the bth iteration
is closely related to the four jth bits of the Sboxes’ outputs
in Quotient group b. We would like to exploit this relation. In
the following, we analyze this leakage for different Signal-to-
Noise Ratio (SNR) values.

We implemented rowperm in ARM Cortex-M4 assembly
and leakaqe traces are generated as follows:
• We have adopted the Hamming Weight (HW) model.

Namely, we model the leakage of an assembly instruction
as the sum of hamming weights of the value in each
register involved in the instruction (when loaded in the
pre-charged data bus).

• The noise component at each time sample are mutually
independent and each of them follows the same Gaussian
distribution with mean 0 and variance σ2. For different
SNR, we vary the noise variance σ2.

We remark that we have also simulated the leakage with
the regression model [37]. We found that deviation from HW
model due to non-equal contribution of each bit does not
influence the attack results – there is no improvement nor
degradation of the difference recognition.

1) Recovery of Sbox Inputs for Round i: In this part, we
simulate the attack as described in Step 4 of Section III-B. If
the fault is injected at the input of GSi

0, we know there is no
change in the outputs of the other three Sboxes in Quotient
group Q0 of round i. Consequently, the side-channel leakage
of 0th iteration of rowperm at round i with inputs S[0]; S[1];
S[2] and S[3] indicates if there is a change in the 1st; 2nd;
3rd and 4th bit of the GSi

0 output, respectively.
To simulate the leakage of the 1st bit of the GSi

0 output,
we use the following steps:
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1) Set the SNR value and calculate the corresponding noise
variance σ2.

2) Generate three random 32−bit values X , Y and Z such
that X = Z and

Y [0] = Z[0]⊕ 1, Y [i] = Z[i] for i = 1, 2, . . . , 31.
3) Generate one side-channel trace TX for the 0th iteration

of rowperm(X, 0, 3, 2, 1) with the Hamming
Weight model and noise variance σ2.

4) Generate one side-channel trace TY for the 0th iteration
of rowperm(Y, 0, 3, 2, 1) with the Hamming
Weight model and noise variance σ2.

5) Generate one side-channel trace TZ for the 0th iteration
of rowperm(Z, 0, 3, 2, 1) with the Hamming
Weight model and noise variance σ2.

6) Find max |TX − TZ | and max |TY − TZ | for the part of
the traces that corresponds to line 5 in Listing 16.

7) Repeat the above for different SNR values between 0.01−
20.

In this simulation, Z simulates an intermediate value S[0]
as the input of rowperm in round i without fault injection.
X simulates value of Z for the scenario when the fault does
not propagate to the first bit of the GSi

0 output. Y simulates
the case when the fault propagates to the first bit of the GSi

0

output. Note that since only one Sbox is under fault attack,
the other bits in Z do not change.

If we can distinguish these two scenarios by observing the
peaks of |TX − TZ | and |TY − TZ | then we can carry out
the attack. In Figure 4 we show the simulated results for plot
of the two different peaks versus the SNR. The black line
corresponds to the peaks for |TY − TZ | and the grey line
corresponds to the peak for |TX − TZ |. From the figure we
can see that with SNR >= 0.47 we can successfully conclude
if there was a change in the first bit of the intermediate value
Z(S[0]) and hence if there is a change in the 1st bit of GSi

0

output. We note that the attack for the remaining three bits of
the GSi

0 output work in a similar way.
2) SBCMA B – Recovery of Sbox Inputs for Round i+ 1:

In this part, we simulate the attack as described in Step 5
of Section III-B. Parameters of our simulation setup, such as
leakage model, and GIFT implementation allowed the usage of
SBCMA B. In this part we only focus on this type of analysis
method.

To recover Sbox inputs for round i + 1, we use the traces
in round i+ 1 to obtain information on output differences for
the Sboxes. Recall from Section III-B2 that we try to infer
the output difference of Combined-Sboxes GSi+1

0 , GSi+1
8 and

GSi+1
16 , GSi+1

24 . At round i + 1, the side-channel leakage of
0th iteration of rowperm with input S[0]; S[1]; S[2] and S[3]
indicates if there is a change in the 1st; 2nd; 3rd and 4th
bit of the Combined-Sbox GSi+1

0 , GSi+1
8 output, respectively.

And the side-channel leakage of the 1st iteration of rowperm
with input S[0]; S[1]; S[2] and S[3] indicates if there is a
change in 1st; 2nd; 3rd and 4th bit of the Combined-Sbox
GSi+1

16 , GSi+1
24 output respectively. To simulate the leakage of

6Here, we assume the attacker can distinguish which part of the trace
corresponds to which operation. This can be achieved for most side-channel
attacks, see e.g. [28].

1st bit of Combined-Sbox GSi+1
0 , GSi+1

8 output, we follow the
same steps as in Section IV-B1 with Steps 2 and 5 changed
to the following:

2. Generate three random 32−bit values X , Y and Z such
that7

X[i] = Z[i] for i 6= 4, 6,

Y [0]||Y [2] 6= Z[0]||Z[2], Y [i] = X[i] for i 6= 0, 2,

with no restrictions on the 4th and 6th bits of X,Y .
5. Find maxi |TX [i]−TZ [i]| and maxi |TY [i]−TZ [i]| for the

part of traces that correspond to lines 5 and 7 in Listing 1.
In this simulation, Z simulates an intermediate value S[0] as
the input of rowperm in round i+ 1 without fault injection.
X simulates the case when the fault does not propagates to
the 1st bit of GSi+1

0 or GSi+1
8 output. Y simulates the case

when the fault propagates to the 1st bit of Combined-Sbox
GSi+1

0 , GSi+1
8 output – the 1st bit of GSi+1

0 output or/and the
1st bit of the GSi+1

8 output. Furthermore, “no restrictions on
the 4th, 6th bits of X,Y ” means the 1st bits of GSi+1

16 , GSi+1
24

outputs may or may not be faulty.
To successfully carry out the attack, the attacker needs to

distinguish the two different scenarios by observing the highest
peak in the trace differences obtained in Step 6. In Figure 5 we
show the simulated results of the two different peaks versus the
SNR. The black line corresponds to the peaks for TY −TZ and
the grey line corresponds to the peaks for TX −TZ generated
in Step 10. The distinguishing margin increases with SNR as
expected and allows to successfully conclude if there was a
change in the first bit of the intermediate value Z (S[0]) and
hence if there is a change in the 1st bit of the Combined-Sbox
GSi+1

0 , GSi+1
8 output.

We note that the attack for the remaining three bits of the
Combined-Sbox GSi+1

0 , GSi+1
8 output work in a similar way.

Same for the Combined-Sbox GSi+1
16 , GSi+1

24 output.

C. Experimental Evaluation

In this part, we show practical results of applying SBCMA
on a bitslice implementation of GIFT-128. The experiments
were conducted by using a ChipWhisperer evaluation platform
as a measurement device, and ARM Cortex-M0 microcon-
troller as a device under test.

Similar to Section IV-B, we focus on validating the possi-
bility of exploiting side-channel leakages for achieving steps
4 and 5 as described in Section III-B.

1) Recovery of Sbox Inputs for Round i: : In this part, we
show experimental results for Step 4 of Section III-B. We have
conducted 10 experiments. For each experiment, we generate
three random 32-bit values X , Y and Z such that X = Z and

Y [0] = Z[0]⊕ 1, Y [i] = Z[i] for i = 1, 2, . . . , 31.

Z corresponds to the intermediate value S[0] as the input of
rowperm in round i without fault injection. X corresponds to
value of Z for the scenario when the fault does not propagate
to the first bit of the GSi

0 output. Y represents the case when
the fault propagates to the first bit of the GSi

0 output. Note

7|| indicates concatenation.
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Fig. 4. Plot showing leakage against the signal-to-noise ratio for SBCMA– recovery of Sbox input in round i. X[i] = Y [i] = Z[i] for i 6= 0.
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(a) SBCMA B Step 4, where X = Z, Y [0] 6= Z[0].
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(b) SBCMA B Step 5, where X[i] = Z[i] for i 6= 4, 6,
Y [0]||Y [2] 6= Z[0]||Z[2], Y [i] = X[i] for i 6= 0, 2.

Fig. 6. Observation of differences for SBCMA B from a real set of traces.
Measurement was done on a ChipWhisperer Lite platform with ARM Cortex-
M0 as a DUT.

that since only one Sbox is under fault attack, the other bits
in Z do not change.

The side-channel leakages TX , TY , TZ are measured for line
5 of Listing 1 where the difference can be clearly recognized.
The results are plotted in Figure 6 (a). Blue traces are calcu-
lated using |TY −TZ | and each blue trace has a corresponding
black dotted trace which is equal to |TX−TZ |. The horizontal
guiding lines show a distinguishing area between these two
sets. The blue guiding line takes the lowest peak of black
traces (which is the minimum of max |TY − TZ | among
the experiments). The black guiding line takes the highest

peak from the black dotted traces (which is the maximum
of max |TX − TZ | among the experiments). There was no
averaging or other post-processing done on the traces. The
results show that we can successfully distinguish if there is a
change in the first bit of GSi

0 output.
2) SBCMA B – Recovery of Sbox Inputs for Round i+ 1:

Next, we experimentally verify the attack as described in Step
5 of Section III-B. We have conducted 10 experiments. For
each experiment, we generate three random 32−bit values X ,
Y and Z such that

X[i] = Z[i] for i 6= 4, 6,

Y [0]||Y [2] 6= Z[0]||Z[2], Y [i] = X[i] for i 6= 0, 2,

with no restrictions on the 4th and 6th bits of X,Y . Here ||
indicates concatenation.
Z corresponds to an intermediate value S[0] as the input of

rowperm in round i+1 without fault injection. X corresponds
to the case when the fault does not propagates to the 1st bit of
GSi+1

0 or GSi+1
8 output. Y represents the case when the fault

propagates to the 1st bit of Combined-Sbox GSi+1
0 , GSi+1

8

output – the 1st bit of GSi+1
0 output or/and the 1st bit of the

GSi+1
8 output. Furthermore, “no restrictions on the 4th, 6th

bits of X,Y ” means the 1st bits of GSi+1
16 , GSi+1

24 outputs
may or may not be faulty.

The side-channel leakages TX , TY , TZ are measured for line
5 of Listing 1 where the difference can be clearly recognized.
The results are plotted in Figure 6 (b). Blue traces are calcu-
lated using |TY −TZ | and each blue trace has a corresponding
black dotted trace which is equal to |TX−TZ |. The horizontal
guiding lines show a distinguishing area between these two
sets. The blue guiding line takes the lowest peak of black
traces (which is the minimum of max |TY − TZ | among
the experiments). The black guiding line takes the highest
peak from the black dotted traces (which is the maximum of
max |TX−TZ | among the experiments). The results show that
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we can successfully distinguish if there was a change in the
first bit of the intermediate value S[0] and hence if there is
a change in the 1st bit of the Combined-Sbox GSi+1

0 , GSi+1
8

output.
We note that there was no averaging or other post-

processing done on the traces. From the experimental result it
can be concluded that the difference recognition can be done
even on a relatively inexpensive measurement setup.

V. APPLICATION TO LIGHTWEIGHT AEAD SCHEMES

In this section we detail how SBCMA can be used to attack
the NIST LWC competition finalist GIFT-COFB. We note
that similar attack method also applies to round-2 candidates
ESTATE, HYENA and SUNDAE-GIFT with the same attack
complexity.

AEAD algorithm takes four inputs: plaintext, associated
data, nonce, and secret key; and outputs the ciphertext and
a tag. Such algorithm provides confidentiality of the plaintext
and integrity of the ciphertext.

We have the following assumptions:

1) The length of the messge is long. Paricularly, there are
more than 8 blocks of message for each encryption.

2) Attacker can repeat the same encryption.
3) Attacker has no knowledge of plaintext, ciphertext, nonce,

associated data or tag.

Application of SBCMA to GIFT-COFB. COFB is an
AEAD scheme based on an underlying cryptographic prim-
itive, which is an n-bit block cipher, EK . The key of the
scheme is the key of the block cipher, i.e. K. We consider
the case when the underlying block cipher is 128−bit GIFT,
which is the recommended setting in the scheme design. The
schematic of the GIFT-COFB encryption can be found in
Figure 2.2 in [36], where N is the nonce, A[i],M [i], C[i]
denote the ith block of associated data, the message and the
ciphertext, respectively. X[j], Y [j] denote intermediate values.
G is a feedback function defined as follows: let Y ∈ {0, 1}n
and Y [1], Y [2] be the first and the second n/2 bits of Y . Then,
G(Y ) = (Y [2], Y [1] << 1), where << 1 denotes left rotation
by 1 bit.

To apply SBCMA we can utilize all the encryption blocks
in the scheme. To attack the ith round key, for each group
of Sboxes, we recover the inputs using one encryption of a
block. Since there are more than 8 blocks, we can recover the
groups with different blocks, thus revealing different parts of
the ith round key. The detailed steps are as follows:

1) Apply SBCMA to Quotient group Q(j − 1) in round i
of the encryption for a message block j, j = 1, 2, . . . , 8.
Successful attack on each encryption block recovers 8
bits of ith round key.

2) After Step 1, we recover the 16−bit output for Remainder
group R(j − 1) in round i + 1 for encryption block j.
Those 16 bits correspond to inputs to 16 different Sboxes
in round i+ 2. There are 8 bits which are XOR-ed with
i + 1th round key bits. Then, for each encryption block
j, we inject faults in those 8 Sbox inputs for round i+ 2
to recover the inputs, which gives the 8 bits of the key.

For SBCMA A with random fault and known fault mask
(resp. chosen fault mask), Step 1 requires 11 (resp. 8) faults
on each block and by a similar calculation as in Appendix B,
Step 2 needs an extra 0.79 (resp. 1.62) faults on each block. In
total, to recover the master key we need 94.32 (resp. 76.96)
faults and 13.79 (resp. 11.62) sessions for random fault (resp.
chosen fault mask).

For SBCMA B with random fault and known fault mask
(resp. chosen fault mask), Step 1 requires 18.098 (resp. 12)
faults on each block and by a similar calculation as in
Appendix B, Step 2 needs an extra 0.1 (resp. 0.51) faults. In
total, to recover master key we need 145.58 (resp. 100.08)
faults and 20.20 (resp. 14.51) sessions for random fault (resp.
chosen fault mask).

VI. DISCUSSION

a) Mitigation techniques: There are generally two ways
to mitigate the SBCMA attack: application of SCA counter-
measures; and implementation that processes bits in a way that
it is not possible to distinguish the changes from the leakage
trace.

When it comes to SCA countermeasures, masking is an
obvious choice to protect the implementation, as it is provably
secure [38]. If the masks are completely independent and
uniformly distributed, the attack will not work. However, if
a bias in masks is present, the attack could be still possible
with increased effort, as stated in [35]. Similarly, if there is
a hiding-based countermeasure, any imbalance can reveal the
differentials in the leakage traces. Shuffling countermeasures
were shown to be vulnerable against SCA that aim at distin-
guishing middle rounds differentials [14]. As SBCMA falls in
this category, the same technique can be applied. We leave
this investigation for future work.

Another direction is implementations that do not allow mea-
surement of differentials according to steps in Section III-A.
Naı̈ve and standard bitslice implementations leak information
the same way as shown in Section IV-B1. However, if the
grouping of bits is done in a different fashion, such as in
Fixslicing GIFT implementation [7], recognition of difference
can be made impossible. In Fixslicing implementation, five
rounds are grouped together for efficiency, requiring different
ordering of operations. While the difference recovery for round
i + 1 according to SBCMA methodology still works, the
differences in round i+2 remain hidden, effectively thwarting
the attack.

b) Reverse engineering of secret Sboxes: Let us consider
a cipher with a secret Sbox component and a bit permutation
operation satisfying the conditions in Section II-B. We de-
scribe how SBCMA with chosen fault model can be extended
to recover the secret Sbox component as well as the round
key i, for any round i. First, we inject 5 chosen faults, with
values 1, 2, 3, 4, 5 in each Sbox input from round i. Using side-
channel leakage, we record the input and the output masks for
each Sbox from rounds i and i+ 1.

We further inject 10 different faults (6 − f ) in GSi
0 input,

thus we have 15 pairs of different input (∆j) and output (δj)
masks (j = 1, 2, . . . , 15) for GSi

0. Thus, for each hypothesis
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of the input value x and the corresponding output value y =
GSi

0(x), we can construct a hypothesis for the secret Sbox
GS(x ⊕ ∆j) = y ⊕ δj . We assume that x is not mapped to
itself. This gives us 16×15 = 240 different Sbox hypotheses.

For each hypothesis of an Sbox, we can carry out SBCMA
with the input and the output mask information we have
collected for each Sbox in round i, i+ 1. We assume that for
the secret Sbox, output masks corresponding to 1, 2, 3, 4, 5 are
enough to recover the input. This is a reasonable assumption
as it holds for all the existing Sbox designs. Then, we can
recover one round key hypothesis for round i. In case one
round key is enough to recover the master key, with one pair
of correct plaintext and ciphertext we can get the correct key
guess out of the 240 hypotheses.

c) Practical considerations: As stated in the previous
parts, on average, the attacker needs to achieve 91.17 faulty
encryptions to recover the master key of GIFT-128. This is
under the assumption that the attacker has carried out the
profiling phase and is capable of injecting faults at every
iteration. If this is not the case, the number of attempts will be
higher. For example, results from [39] indicate 39.18% success
rate when injecting faults into 4-bit registers on an FPGA
(same size as GIFT-128 Sbox). Based on that, the number
of encryptions to achieve 91.17 faults would be 232.7.

VII. CONCLUSION

In this paper, we have presented SBCMA – a combined
attack on bit-permutation operation in symmetric block ciphers
which does not require any knowledge of plaintext or cipher-
text. We showed how this attack can be applied to GIFT-128
as well as to LWC candidates that use GIFT-128 as their main
building block. The simulation results show the feasibility of
the attack.

For future work, it would be interesting to analyze how the
attacks can be extended to implementations with countermea-
sures. Another potential improvement would be to relax the
requirement on fault model, to include random faults without
the knowledge of the fault mask.
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APPENDIX

A. Table for Section III-B2 SBCMA B

By a similar analysis of Table IV that resulted in Table V
(Section III-B1), we analyzed the Output Different Table for
the Combined-Sbox and the results are presented in Table VI.

m: No.
of pairs

Total
cases

Successful
cases

Success
Rate

Probability ex-
actly m pairs
needed

4 495 9 1.8 1.8
5 792 54 6.8 5.0
6 924 141 15.3 8.5
7 792 210 26.5 11.2
8 495 196 39.6 13.1
9 220 118 53.6 14.0
10 66 45 68.2 14.6
11 12 10 83.3 15.1
12 1 1 100 16.7

TABLE VI
DISTINGUISHING COMBINED-SBOX INPUT FROM THE DIFFERENCE PAIRS.

THE FIRST COLUMN IS THE NUMBER OF INPUT/OUTPUT DIFFERENCE
PAIRS. SECOND COLUMN IS THE TOTAL NUMBER OF POSSIBLE CASES FOR

m PAIRS. THIRD COLUMN IS THE NUMBER OF PAIRS WHICH CAN
UNIQUELY IDENTIFY EACH INPUT OF COMBINED-SBOX. FOURTH COLUMN
IS THE PERCENTAGE OF SUCH PAIRS. FIFTH COLUMN IS THE PROBABILITY
THAT EXACTLY m PAIRS OF INPUT/OUTPUT DIFFERENCES ARE NEEDED TO

RECOVER DOUBLE-SBOX INPUT.

B. Number of faults calculation for SBCMA master key recov-
ery

In Section III-B3 we argued that in case there is faulty input
in only one Sbox for any of the Quotient groups in round i+2,
by taking the difference of traces corresponding to round i+2
we can figure out the output difference for this particular Sbox.
This can help us reduce the extra number of faults needed

Attack type Fault
mask y p pr

Recovered
Sbox

No. of ex-
tra faults

SBCMA A Known 11 0.96 0.96 30.65 3.17
Chosen 8 0.90 0.90 28.77 6.46

SBCMA B Known 18.1 0.99 0.99 31.82 0.41
Chosen 12 0.97 0.97 30.99 2.03

TABLE VII
y - NO OF FAULTS INJECTED IN EACH QUOTIENT GROUP IN ROUND i; p -

PROBABILITY ONE FAULT MASK CAN BE SAVED FOR ONE SBOX; pr -
PROBABILITY THAT ONE SBOX INPUT CAN BE RECOVERED FROM

INFORMATION OBTAINED BY ATTACKER ROUND KEY i

to recover the master key. In this section, we calculate the
expected number of extra faults needed.

When one fault is injected in Sbox input from round i, there
are 16 Sbox inputs in round i + 2 which may have one bit
change. Let d = d15d14 . . . d0 denote the 16 bits. We assume
the 216 − 1 possible values for d appear randomly with the
same probability.

Let y denote the number of faults injected in each Quotient
group of round i. First, let use focus on Sbox GSi+1

0 . The
analysis for other Sboxes in round i+ 2 are similar.

a) Fault Masks: Suppose there is fault injection in Quo-
tient group Q0 in round i. In this case there are 2 Sbox inputs
from Q0 round i + 2 that might have one bit change. For
GSi+1

0 to be the only one with faulty input in Q0 of round
i + 2, we need input of GSi+1

0 changes and that of GSi+1
2

does not change. Such a scenario means a fault mask 0x1 in
GSi+2

0 can be saved for attacking GSi+2
0 . The probability for

this to happen with one fault injection in Q0 of round i is
214

216−1 . With y faults injected, the probability that fault mask
0x1 in GSi+2

0 can be saved, denoted by p1, is given by

p1 = 1−
(
1− 214

216 − 1

)y

.

Similarly, for fault injection in Quotient group Qj (j = 1, 2, 3)
in round i. We get the probability that fault mask 0x2, 0x4,
0x8 in GSi+2

0 can be saved, denoted by p2, p3, p4 respectively
are equal to p1. For simplicity, let us denote this probability
by p.

b) Recovery of input.: To recover the input of GSi+2
0

with four possible input masks 1, 2, 4, 8, we carried out a sim-
ilar analysis as in Section III-B1. The probability that 2, 3, 4
input masks are enough to recover the input is 0.5, 0.75, 1
respectively. Thus the probability that input of GSi+2

0 can
be recovered with information from attacking round key i,
denoted by pr, is

pr =

4∑
m=2

Prob(exactly m input masks happened)

∗ Prob(m input masks can recover the input)

= 0.5p2(1− p)2
(

4

2

)
+ 0.75p3(1− p)

(
4

3

)
+ p4.1

The same probability pr holds for other Sboxes in round
i + 2. Thus we can conclude that 32pr Sbox inputs can be
recovered without extra fault injection. For chosen fault mask
(resp. random fault with known fault mask), we need 2 (resp.
2.34) faults to recover Sbox input (Section III-B1). Hence the
number of extra faults needed to recover master key (32 −
32pr) ∗ 2 (resp. (32− 32pr) ∗ 2.34) for chosen fault (random
fault with known fault mask) model.


