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Back to the Basics: Seamless Integration of
Side-Channel Pre-processing in Deep Neural

Networks
Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and Shivam Bhasin

Abstract—Deep learning approaches have become popular for
Side-Channel Analysis (SCA) in the recent years. Especially Con-
volutional Neural Networks (CNN) due to their natural ability
to overcome jitter-based as well as masking countermeasures.
Most of the recent works have been focusing on optimising
the performance on given dataset, for example finding optimal
architecture and using ensemble, and bypass the need for trace
pre-processing. However, trace pre-processing is a long studied
topic and several proven techniques exist in the literature. There
is no straightforward manner to integrate those techniques into
deep learning based SCA.

In this paper, we propose a generic framework which allows
seamless integration of multiple, user defined pre-processing
techniques into the neural network architecture. The framework
is based on Multi-scale Convolutional Neural Networks (MCNN)
that were originally proposed for time series analysis. MCNN
are composed of multiple branches that can apply independent
transformation to input data in each branch to extract the
relevant features and allowing a better generalization of the
model. In terms of SCA, these transformations can be used
for integration of pre-processing techniques, such as phase-only
correlation, principal component analysis, alignment methods,
etc. We present successful results on generic network which
generalizes to different publicly available datasets. Our findings
show that it is possible to design a network that can be used in
a more general way to analyze side-channel leakage traces and
perform well across datasets.

Index Terms—Multi-scale convolutional neural networks,
MCNN, Side-channel attacks, Deep learning

I. INTRODUCTION

Deep neural networks (DNN) have gained popularity in
the last decade due to advances in available computational
resources. While image classification has benefited the most,
the capability of DNN is also demonstrated in other domains
like natural language processing, bioinformatics, etc. Security
evaluation of cryptography against classical and implemen-
tation level attacks has also seen rapid adoption of DNN.
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In particular, side-channel attacks (SCA) have received the
most attention as being a classification problem, DNN comes
as a natural candidate. Various works in the literature have
demonstrated the capability of DNN to break protected im-
plementations, triggering a wave of research in understanding
their limits and in turn design of strong countermeasures.

A. Related Works

Maghrebi et al. [1] first demonstrated the power of Deep
Learning (DL)-based SCA to break protected implementations,
specially masking countermeasures. Further, Cagli et al. [2]
showed the advantages of Convolutional Neural Networks
(CNN) against jitter based countermeasures. Authors exploited
the input invariance property of CNN to perform SCA eval-
uation on misaligned traces without the need for trace re-
alignment. The work of Zhou et al. [3] showed that trace
re-alignment can still be helpful for deep learning which is
also clear by looking at the results of Cagli et al. when
comparing ASCAD datasets with different misalignments.
These works triggered further research into the usage of DL-
based techniques for SCA. The methodology to determine suit-
able hyper-parameters for CNN and Multi-Layer Perceptron
(MLP) was investigated by Prouff et al. [4]. An observation
was later reported by Picek et al. [5], which highlighted
that accuracy, a widely used metric in the machine learning
field, is not an optimal metric in SCA context, instead they
proposed to use guessing entropy. Further, Kim et al. [6]
proposed a VGG([7])-like network, inspired by the similar-
ity of side-channel measurements to time series data like
audio signals. The proposed VGG-like network, along with
(externally introduced) regularization due to added Gaussian
noise, was shown to produce promising results against multiple
datasets. In the context of metrics for side-channel, Masure
et al. [8] theoretically showed that minimization of negative
log-likelihood loss (NLL) corresponds to the estimation of
perceived information, a classical side-channel metric. Zaid
et al. [9] proposed a methodology to design efficient CNN for
SCA context. The authors study different side-channel datasets
and design an optimal CNN for each case, reporting promising
results for each studied dataset. The difference between the
approach of Kim et al. and Zaid et al. is that the latter
optimizes CNN architecture to each use case, while the former
uses the same CNN architecture to evaluate several datasets.
It is not a surprise, Zaid et al. present better results. Perin et
al. [10] use ensemble models to focus on generalization but
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their focus lies in model generalization targeting one dataset at
a time. Further, Won et al. [11] showed that the results of Zaid
et al. can be further boosted by applying data oversampling
technique. Wouters et al. [12] showed the importance of pre-
processing for DL-based SCA evaluation to reduce network
size. They also highlighted the need for study of networks
which are optimal across datasets and indicated the existing
literature on time-series classification as a direction. Golder et
al. [13] showed DL-based SCA for cross-device attacks. They
also showed that pre-processed traces with Dynamic Time
Warping (DTW) and Principal Component Analysis (PCA)-
based pre-processing outperforms standalone MLP and CNN
in terms of testing accuracy. As mentioned earlier, accuracy is
not an optimal metric for evaluating the model performance
with regards to SCA. The results in [13] were obtained by
using traces collected from an 8-bit ChipWhisperer platform
and the dataset was not made public.

B. Motivation

Scanning through the series of previous works, we notice
that the majority of the research has been done towards the
direction of designing an efficient network that can provide
the best attacks against a set of public trace datasets [6], [9],
[12] or on techniques to boost the results of existing networks
like augmentation or oversampling [5], [2], [11]. The general
focus of these works has been to optimize CNN to defeat the
underlying countermeasures, leading to designing a specific
network for each dataset, tailored for the properties of this
dataset. Independently, the advantage of pre-processing the
training set for DL based SCA was shown in [3], [13]. To the
best of our knowledge, no work has investigated the possibility
of strengthening DNN architecture with the capability of
integrating existing side-channel pre-processing or filtering
techniques. Moreover, there is no general framework up to
date that would help users with the overall trace analysis
aided by machine learning, thus minimizing the necessity
for architecture adjustments by the user. This forms the key
motivation of this work, where we would like to propose a
framework to seamlessly integrate previously developed and
proven techniques for side-channel pre-processing into deep-
learning based evaluation.

C. Multi-Scale Convolutional Neural Networks

Multi-Scale Convolutional Neural Networks (MCNNs) were
proposed for time series classification (TSC) in [14]. The
idea is to incorporate feature extraction and classification
in a single framework by using a multi-branch model. The
working principle of MCNN is to extract features at different
scales and frequencies by transforming the original data and
feeding the result to different branches of the model. One
convolutional layer is capable of detecting local patterns, while
the combination of multiple convolutional layers can recognize
more complex patterns. Later, the branches are concatenated
and the computation follows a standard CNN architecture.

Overall architecture of MCNN is depicted in Figure 1. The
MCNN framework from [14] has three sequential stages:
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Fig. 1: MCNN architecture proposed in [14] for time series
classification.

1) Transformation stage: various transformations are ap-
plied on the input data. In the TSC domain, the proposed
transformations were identity mapping, down-sampling
in the time domain, and spectral transformation in the
frequency domain. Each part is called a branch, and
serves as an input to the CNN. Long-term features reflect
overall trends and short-term features characterize small
changes in local regions, while both of these can be
important for the prediction.

2) Local convolution stage: several convolutional layers are
used in each branch to extract the features. Convolutions
for different branches are independent. Max pooling
is also performed between the convolutions to prevent
overfitting and improve computation efficiency.

3) Full convolution stage: extracted features are concate-
nated and several more convolutional layers are applied,
followed by fully connected layers, and a softmax layer
to generate the output.

MCNN was applied to 44 time series datasets in [14],
achieving better results than a standard CNN on 41 of them.
These networks were also successfully used in the past
for predicting heart diseases [15] and for speech emotion
recognition [16] where they outperformed CNNs. Multi-scale
recurrent CNNs were used for financial time series classifica-
tion [17].

One of the advantages of the MCNN over the classical
CNN is the ability to extract features at different time scales.
Each branch can be specified to work on a different scale
and frequency, and therefore, help to extract features that are
relevant on such scale. It can be thought of as looking at the
original data from different viewpoints. It is not a simple data
triplication, but each branch looks and extracts the information
at a specific property, based on what the network designer
aims to analyze. As side-channel leakages come from various
operations, working at different frequencies, MCNN naturally
fit this problem.

D. Contributions

In this work, we propose a generic framework to integrate
side-channel oriented pre-processing into deep learning archi-
tecture for side-channel evaluations. The framework is based
on MCNN. Each branch of MCNN can be configured to
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perform a different transformation of the raw data. These trans-
formations can be from time domain or frequency domain.
Each convolution layer in an individual branch is expected
to learn local patterns or features which when stacked with
other layers result in a more complex learning. This makes
the network more generic and consistent across datasets.

The main contributions of this work as follows:
• We propose a generic framework based on MCNN to

enable seamless integration of side-channel oriented pre-
processing techniques into deep learning based side-
channel evaluations.

• By choosing a CNN architecture proposed for AS-
CAD(desync=100) as a building block from [9], we
show that the constructed MCNN performs better across
a range of side-channel datasets without the need of
fine-tuning the parameters, as compared to the original
network which performs only for optimized dataset or its
trivial variants.

• We integrate well known methods from side-channel
literature like Phase-Only Correlation (POC), Principal
Component Analysis (PCA), Elastic Alignment (EA),
Moving Average (MA) into MCNN to boost its perfor-
mance.

• We present successful key recovery results for a masked
FPGA implementation of AES-128.

• We also demonstrate that pre-processing alone is not
always helpful. Indeed, it is the MCNN architecture that
learns different features in each branch to result in a
strong classifier that is comparable to the performance
of the ensemble method [10], while requiring lesser
performance overhead.

The code is made publicly available for reproducibility of
results1.

E. Organization

The rest of the paper is organised as follows. Section 2
recalls general background concepts used in the rest of the
paper. Section 3 describes the adaption of MCNN for side-
channel evaluation. Section 4 compares the performance of
MCNN across public side-channel datasets against the state
of art network. Section 5 demonstrates the capability of
MCNN to seamlessly integrate well established side-channel
pre-processing methods in the evaluation process. Finally,
conclusions are drawn in Section 6.

II. BACKGROUND

This section highlights general background concepts used
in the following sections.

A. Time Series

A time series is a real-valued, high-dimensional vector
that contains observations that are naturally ordered w.r.t.
time. A time series often comes from recording time-varying
measurements of an underlying process, e.g. stock market

1The code is available at https://github.com/mitMathe/SCA-MCNN

valuations, electronic health measurements, acoustic signals,
etc. A univariate time series consists of sequentially collected
observations of a single time-varying measurement and a
multivariate time series consists of collected observations of
two or more time-varying measurements. Given a collection
of side-channel measurements, if the attacker focuses on
exploiting one particular time sample (e.g. one sample during
one XOR operation), the side-channel traces are considered
as univariate times series. On the other hand, if the attacker
exploits multiple points of interest in each trace, corresponding
to one or more operations, we can view a single trace as a
multivariate time series.

In time-series analysis, the main objective is to apply algo-
rithms to analyze and extract previously unknown information
in time series. In terms of SCA, this usually means recovery of
information related to secret key used for encryption. As stated
in [12], analyzing network architectures built for time series
classification and adopting them for SCA might be beneficial
for the community.

B. Profiled Side-Channel Analysis

Considering a strong adversary with access to a clone
device, profiled SCA [18] operates in two phases. In the
profiling or training phase, the adversary acquires side-channel
measurements for known plaintext/ciphertext and known key
pairs. This training set is used to characterize or model
the device. The adversary then acquires few measurements
from the target device, usually identical to the clone device,
with known plaintext/ciphertext but the key is secret. These
measurements from the target device are then tested against
the characterized model from the clone device. For a well-
trained model, predicted labels corresponding to measurements
from the target device reveal information on the secret key.
First known profiled SCA used Gaussian templates [18],
commonly referred to as Template Attacks (TA). Later, ma-
chine learning [19] and eventually deep learning [1] were
shown to be better in practice when the traces are limited
in number with intentional disturbance from countermeasures
and measurement noise.

C. Performance Metrics

To evaluate the performance of an applied SCA, one must
choose a suitable metric. While accuracy is a common metric
to evaluate the performance of neural networks, it was shown
that it is not optimal for side-channel based key recovery
attacks [5]. As a result, we use guessing entropy (GE), a
metric commonly used for side-channel evaluations [20], even
in deep-learning context. GE can be described as an average
rank of the correct key after the attack, where GE = 0 indicates
that the correct key is ranked the top, which means the correct
key has been recovered by the attacks. Note that, if the
deep learning model is unable to learn the dataset during the
training phase, the GE results while testing are expected to
show a random behavior and in general do not provide much
information on the attack ability using that trained model [21].

https://github.com/mitMathe/SCA-MCNN
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D. Pre-processing Techniques for SCA

While it is common practice in machine learning to pre-
process features before training/testing, these pre-processing
methods are often limited to range normalization or similar
adjustment of the input data. The focus of this work is to
integrate side-channel oriented pre-processing into deep neural
networks, while default pre-processing like normalization is
still in place. We recall four pre-processing techniques for SCA
that are utilized in this paper.

a) Moving Average (MA): In the context of SCA, moving
average technique is usually combined with the fundamental
SCA techniques to resist the jitter-based countermeasure. For
example, correlation [22], [23], T-test [24] is combined with
moving average for boosting the performance. The original
proposal of MCNN uses moving average as one of the
transformations to act as a low-frequency filter, reducing the
variance of time series [14].

b) Principal Component Analysis (PCA): TA exploits
multivariate leakages by exploiting information in the covari-
ance matrix [25]. However, with the increase in number of
samples in the trace, the size of co-variance matrix grows
quickly beyond computation limits. Thus, PCA [26] was
proposed as a technique for dimensionality reduction. PCA
finds linear transformation that projects high-dimensional data
to a lower dimensional subspace while preserving the data
variance. Several variants of TA had used PCA as a pre-
processing tool [25], [27].

c) Phase-Only Correlation (POC): POC is used for high-
accuracy image matching problems [28]. This technique was
adopted as an alignment scheme by [23], [29] in the context
of side-channel analysis. POC is based on phase components
in the discrete Fourier transform and provides the shift value
to properly match with the reference trace for alignment.
In the case of EM signal with sharply shaped samples in
numerical data, the alignment technique based on correlation
might be useless and requires many trial-and-error methods
for searching proper parameters. Since the shift value for
alignment is based on Peak-to-Sidelobe Ratio in POC, there
is no need for parameter adjustments.

d) Elastic Alignment (EA): As desynchronization such
as random jitters and random process interrupts are frequently
employed to reduce the signal-to-noise ratio in the context
of SCA, it is sometimes hard to align using the alignment
technique based on correlation. One of the solutions over-
coming this obstacle is EA [30], which is based on dynamic
time warping algorithm adopted from speech recognition [31].
As a result, the elastic alignment naturally concentrates on
resynchronizing the traces. However, it might cause a loss of
data leakage since it focuses the synchronization on traces
shape and generates artificial samples.

III. TAILORING MCNN FOR SCA

In SCA domain, the time series data normally comes from
leakage measurements like power consumption or electromag-
netic (EM) emanation during the execution of the crypto-
graphic algorithm. Different types of SCA countermeasures
are usually utilized to prevent the attacker from extracting the

secret information from these measurements. It was shown
that hiding countermeasures based on random delay insertion
(RDI) can be defeated by data pre-processing techniques [32].
These techniques aim at minimizing misalignment either by re-
aligning the original traces according to a reference trace or by
selecting points of interest that contribute to the information
leakage. We notice that the multi-branch structure of MCNN,
where each branch undergoes an independent pre-processing,
provides us with an opportunity to seamlessly integrate the
side-channel pre-processing capability in our deep-learning
architecture. The rest of the section describes our approach
and rationalises our architecture choices.

A. Main Characteristics of the Framework

In this part, we discuss the basic characteristics of the
framework based on MCNN architecture. As shown in Fig-
ure 1, MCNN is composed of different branches. Each branch
consists of convolutional and pooling layers applied to dif-
ferent transformations of the input data. The branches are
then concatenated, followed by a full convolutional stage. In
the rest of the paper, we call these branches plug-in branch
components (PBC). Concatenation is also an important part of
MCNN followed by full convolutional layers, which enables
the network to co-learn features from individual branches,
together with the following layers. Combined, they strengthen
MCNN to learn a more complex model compared to a classical
CNN. In the following, we detail the PBC feature, model
requirements, and data pre-processing.

1) Plug-in Branch Components (PBC): As we focus on
modular design for our MCNN SCA framework, we introduce
the concept of Plug-in Branch Components (PBC). The design
of the original MCNN utilizes 3 PBCs, one of them taking
the original data as an input, and the other two transformed
data. In the context of SCA, we propose using transformations
that were shown to be helpful when analyzing leakage traces,
such as PCA, or moving average. Alignment techniques, such
as elastic alignment, and signal processing and noise filtering
techniques like Fast Fourier Transform can also be used as
PBCs. As neural networks naturally select important features
during the training phase, it is expected that the PBC providing
more relevant features will be prioritized. This unburdens
the user from trying out various pre-processing techniques to
get the best result. The choice of PBC can also profit from
the attacker’s expertise who can carefully choose PBC based
on the underlying countermeasure. Linking these PBC based
transformations to data pre-processing is what enables natural
and seamless integration of widely used techniques to DL-
based SCA.

a) Data Pre-processing: Pre-processing is a general
practice in SCA. Most evaluation labs dealing with real prod-
ucts with countermeasures spend the majority of their effort
in data pre-processing. If pre-processing is done correctly, the
following process of key recovery is straightforward. Adopting
MCNN structure for SCA allows us to feed the pre-processed
traces into the neural network. Note that this is a salient feature
of MCNN whereas for other used architectures, such pre-
processing is applied on training data. Being a time series
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data, side-channel traces contain both short term and long term
features, while also exhibiting different frequency features.
Processing only the transformed data can also lead to loss of
information. With pre-processing, we can create training data
with more distinct features when exploited together with the
original data in another branch, thus increasing the learning
power of the trained network. We have discussed several
existing pre-processing techniques for SCA in Section II-D.
Moving averages are a simple and common type of smoothing
used in time series analysis and time series forecasting. For
SCA, it helps to remove noise and better expose the signal of
the underlying operations within each averaged interval of the
trace. Hence, moving average assists in capturing short term
features and merging leakages spread over several neighbour-
ing samples together. PCA projects high-dimensional data to
a low-dimensional subspace and preserves the most important
directions. It helps in identifying important features in differ-
ent frequency domains. Similarly, POC analyzes the discrete
Fourier transforms of waveforms, hence extracting features in
various frequency domains. Elastic alignment aims to align the
entire trace to counter jitter and random interrupts. The pre-
processed traces will then contain enhanced long term features.

b) Model Requirements: We can summarize our require-
ments on the neural network model based on MCNN in
following points:

• Perform well on multiple datasets without the need of
hyperparameter tuning.

• Overcome side-channel countermeasures, specially com-
monly studied jitter-based and masking countermeasures
for hardware and software implementations.

• Easy to replace a PBC with a different one, in case a
better pre-processing method is available in the future.

Additionally, as we aim to have a general framework that
works across various datasets, we integrate different pre-
processing techniques in a single package that are designed
for extracting important side-channel information preserving
distinct features.

B. MCNN Architecture for SCA

While the original MCNN proposal [3] uses CNN as a build-
ing block, one can choose to build MCNN like architecture
with advanced deep learning techniques like recurrent CNN
(RCNN) and long short-term memory (LSTM). We however
continue to use CNN for our MCNN architecture for two
distinct reasons. Firstly, LSTM and RNN are not currently
well studied for SCA use case. While some work do report
results with LSTM [33], in current form, the use of such
architectures is not shown to be specially advantageous over
CNN. Secondly, the wide variety of results available for use of
CNN with SCA datasets, help us to benchmark our results. To
this end, we choose state of the art CNN architecture known
in the SCA literature. In particular we use the the architecture
from Zaid et al. [9].

Zaid et al. [9] have proposed different CNN architectures for
different datasets. For example, they fine-tuned the filter size
based on the jitter amount. However, in practice, one would
not expect the attacker to have this kind of knowledge. Since

we aim to propose a generic architecture that can be utilized
for any dataset, we choose one particular network structure
from [34] for comparison. We have chosen the CNN proposed
for ASCAD(desync=100) as it has the most complicated
structure and we expect it to perform reasonably well on other
datasets as well. We will denote this CNN as Base Network
(BN) throughout the rest of the paper. We note that as BN
is not optimized for other datasets, we expect sub-optimal
performances of BN on other datasets.

In line with the MCNN structure presented in Section I-C
and the original paper [14], we consider three plug-in branch
components in the transformation stage, with one PBC being
the identity. Therefore, the other two PBCs have to be chosen
carefully to provide extraction of relevant features. With three
branches, the parameter complexity of the network stays
within reasonable numbers while the advantage from different
feature sets is clearly visible in the result. Naturally, there
are a lot of candidates for PBC since many pre-processing
techniques have been suggested in the context of side-channel
analysis. As a representative example, we consider the moving
average and PCA. The moving average techniques are widely
combined with the fundamental side-channel analysis to boost
the performance against jitter countermeasures. For example,
the correlation based on sliding window is employed because
the points of interest are normally spread over several points.
Hence, moving average is used as one of the PBCs in the
transformation stage of our MCNN. For the second PBC, we
can choose one of the representative pre-processing techniques
performing dimensionality reduction such as PCA. PCA has
been used for years in the context of profiled SCA. Especially,
this technique is used for noise reduction and overcoming of
misalignment, and it has been recently applied to increase the
performance of DL [13].

While for our basic MCNN structure, we use identity,
moving average, and PCA as PBCs for the transformation
stage, we propose MCNN as a generic framework where the
PBCs can be user-defined and seamlessly integrated into the
network structure. Therefore we show a few examples for
variations of the basic MCNN structure in Section V.

C. MCNN Structure

Structure of the MCNN used in this paper is depicted in
Figure 2. It closely follows the original proposal from [14],
using two convolutional layers in each branch, one convo-
lutional layer after the merging of the branches, and dense
layers at the end. As stated in [9], three convolutional layers
in a sequence can provide optimal feature extraction for SCA
tasks. While the increasing number of convolutional layers can
increase the performance according to [12], after three layers,
this increase is marginal in terms of traces required for the
attack.

To make sure the model architecture is well-fit for SCA,
we experimented with a few different candidate models. We
used the AES HD dataset to benchmark the models as it is
more challenging compared to software datasets due to low
SNR. Therefore, the performance difference can be clearly
recognizable between good and bad options. The results of
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these experiments are stated in Figure 3. Differences of the
candidate models over the main model are as follows:

• Candidate 1: One additional convolutional layer was
added to each branch, making the total number of branch
layers three.

• Candidate 2: Same as Candidate 1, but with removing
the convolutional layer after the branch merging.

• Candidate 3: Same as Candidate 2, but with adding an
extra batch normalization step after the branch merging.

• Candidate 4: One additional convolutional layer was
added after the branch merging, making the total number
of convolutional layers in the full convolutional stage two.

As can be seen from the figure, the chosen MCNN architecture
performs the best among the five models. The number of
convolutional blocks for this architecture is the same as in [9],
which is in line with their findings. While Candidate 2 also
has the same number of convolutional blocks, the performance
is degrading because of properties of MCNN architecture – a

convolutional layer after the branch merging is beneficial to
further extract the features. A different number of branches
was explored in [17] (see Table 7) for analyzing financial
time-series data, where authors tried 1-3 branches. From their
results, 3 branches provide the best accuracy.

For local convolution and full convolution stages, we follow
the properties of the BN architecture. Since there are three
convolution and pooling layers in BN, it can be split into
two convolution and pooling layers for the local convolution
stage and the last one convolution and pooling layers for the
full convolution stage in MCNN. Moreover, the convolution
filters, convolution kernel size, pooling size, and pooling
strides are also adopted from BN. For PCA, there are some
modifications as the number of points is different compared to
other branches. In the second convolution block of the local
stage, the convolution kernel size and pooling size are set to
1. Similar to BN, batch normalization is applied to the next
pooling layer. The architecture requires the batch normaliza-
tion before concatenation as data of different dimensions are
merged before the full convolution stage. We summarize our
MCNN architectures and compare them to BN in Table I. We
use Original to indicate the branch with identity function in
order to emphasize the traces are without pre-processing. For
example, the loss function and optimizer are NLL and Adam,
respectively.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
MCNN architectures from Table I against BN. The comparison
is performed on various publicly available datasets. While [9]
recommend different architectures for different datasets with
the objective of achieving the best results for all datasets, our
MCNN experiments do not aim at minimizing N̄tGE , but
we aim at demonstrating that MCNN performs well across
datasets in general. Therefore, the evaluation is performed with
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Arch.
Transformation

stage (PBC)

Local convolution stage Full convolution stage Multiperceptron
layerfilters kernel pool filters kernel pool

size size size size

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20MA (32,64) (1,50) (2,50)
PCA (32,64) (1,1) (2,1)

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20MA (32,64) (1,50) (2,50)
POC (32,64) (1,50) (2,50)

MCNN
Original (32,64) (1,50) (2,50)

128 3 2 20 × 20 × 20MA (32,64) (1,50) (2,50)
EA (32,64) (1,50) (2,50)

MCNN*
Original (64) (15) (2,50)

128 3 2 20 × 20 × 20MA (64) (15) (2,50)
PCA (64) (1) (2,1)

BN Original - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20

BN MA - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20

BN PCA - - - (32,64,128) (1,1,3) (2,1,2) 20 × 20 × 20

BN POC - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20

BN EA - - - (32,64,128) (1,50,3) (2,50,2) 20 × 20 × 20

BN* Original - - - (64,128) (15,3) (2,50,2) 20 × 20 × 20

All hyperparameters for MCNN and BN are employed from [9].
The definition of BN* and MCNN* refers to Section IV-C.

TABLE I: Network Architecture for BN and MCNN

Dataset #Train #Validation #Test

AES HD 45, 000 5, 000 5, 000
AES HD MM 45, 000 5, 000 5, 000

AES RD 20, 000 5, 000 5, 000
ASCAD 45, 000 5, 000 5, 000

ASCAD(desync=50) 45, 000 5, 000 5, 000
ASCAD(desync=100) 45, 000 5, 000 5, 000

TABLE II: Number of train/test sets in all open datasets to
perform BN and MCNN

a fixed network architecture. The chosen BN as a baseline
architecture is motivated as the most complex architecture of
all the architectures proposed in [9] as it will learn different
datasets with ease compared to smaller architectures. Since
BN has been reported to perform better than template attacks
in [9], we focus on comparison with deep learning models
only.

A. Target Dataset & Notations

For the experiments, we consider the following 4 public
datasets, which are freely available online, for reproducibility.

a) ASCAD: The dataset2 contains side-channel mea-
surements of protected AES implementations running on an
8-bit AVR microcontroller. It was introduced by Benadjila et
al. [4], as a public dataset for comparing the performance
of deep-learning based side-channel attacks. The ASCAD
database traces correspond to first order masking protected
AES with artificially introduced random jitter. In particular,
for the experiments, the introduced jitter (desynchronization)
are set to range up to 50 and 100 sample points. We represent
the desynchronization of 50 and 100 as ASCAD(desync=50)
ASCAD(desync=100), respectively. The dataset consists of
60, 000 traces, with 700 features each.

b) AES RD: The dataset3 is based on AES software im-
plementation on an 8-bit AVR microcontroller. The implemen-
tation is protected with a random delay countermeasure [35]
to cause misalignment in the traces, which in turn reduces
the SNR. The dataset consists of 50, 000 traces, with 3, 500
features each.

2https://github.com/ANSSI-FR/ASCAD
3https://github.com/ikizhvatov/randomdelays-traces
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Fig. 4: Results for AES HD and AES HD MM.

c) AES HD: The dataset4 includes an unprotected AES
hardware implementation on FPGA. Unlike software imple-
mentations, the last round is considered as a main target, in
order to utilize the register update leakage from last round to
output ciphertext. There are 50, 000 traces with 1, 250 points
in the dataset.

d) AES HD MM: In all the previous works, DL based
SCA have focused on countermeasures implemented for soft-
ware targets. However, AES HD MM dataset5 is based on
multiplicative masking countermeasure [36] implemented in
hardware. The implementation performed masked AES on
SASEBO-GII FPGA board [37]. According to [38], the suc-
cess rate for this countermeasure is only 90%, even though
they launched second-order attacks [38] with 500, 000 traces.
Dataset contains 5, 600, 000 traces with 3, 125 points are
provided in their open URL5. For attack, the leakage model
is identical to AES HD dataset, which means second-order
attack on a hardware countermeasure.

e) Notations and Parameters.: BN(x) and
MCNN(PBC1(x),PBC2(x),PBC3(x)) indicate the Base
Network with original traces x and MCNN with PBCs
(PBC1, PBC2, PBC3), respectively. For MCNN, PBC1 is
an identity function (org), PBC2 is moving average (ma)
and PBC3 as PCA (pca). For later experiments, we change
PBC3 to POC (poc) and EA (ea). In the case of moving
average technique, step size is a required parameter when
merging from n points to single point. Hence, we represents
it as man. For example, BN(ma100) (instead of BNma100

(x)
for simplicity) means Base Network having input as original
traces applying moving average technique with merging 100
points to single point. The original traces are datasets such as
AES HD, AES HD MM, ASCAD, ASCAD(desync=50),
and ASCAD(desync=100).

Additionally, ”+” notation which is used as the input for
BN in order to fairly compare with the MCNN indicates
merging of datasets. For instance, org+ma means that a
training dataset consists of original traces and the output of
moving average applied to original traces. If the dimension is
not matched, we use a zero padding scheme.

4https://github.com/AESHD/AES HD Dataset
5https://chest.coe.neu.edu/\?current page=POWER TRACE LINK&

software=ptmasked

https://github.com/ANSSI-FR/ASCAD
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/AESHD/AES_HD_Dataset
https://chest.coe.neu.edu/\?current_page=POWER_TRACE_LINK&software=ptmasked
https://chest.coe.neu.edu/\?current_page=POWER_TRACE_LINK&software=ptmasked
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Fig. 5: Results for AES RD and ASCAD.

B. Comparing MCNN with BN
Performance of MCNN and BN is compared across

datasets. All experiments in this section are done with
MCNN(org,ma100, pca). Traces in each dataset were split
for training, validation and testing. For a fair comparison,
we followed a similar split as in [9]. We also use a similar
dataset split ratio for AES HD MM. The ratio is listed in
Table II. The attack is repeated 100 times and GE is obtained
by averaging the result over these 100 attacks.

In Figure 4, we first report the results for the attacks on
AES hardware implementations. For the unprotected imple-
mentation, AES HD, we can see that the proposed model,
MCNN, performs better than BN. Here BN only learns from
the raw AES HD traces, MCNN also learns from the PBC
branches obtained through moving average with step 100 and
PCA. To have a better insight into the results, we repeat the ex-
periments with BN by training it with transformed traces using
moving average with step 100 and PCA in two independent
experiments. In this case, the transformations are applied to the
training set directly. As shown in Figure 4, the transformation
of the traces alone does not give good results as shown for
BN(ma100) and BN(pca). This shows that it is an inherent
property of MCNN which allows it to learn more features
than BN alone and result in better attacks. Note that BN is
not designed for AES HD and thus the results are worse than
those reported in [9], still we report significant improvements
with MCNN. Next, we take a look at AES HD MM dataset,
where we target traces for a FPGA implementation of AES-
128 protected with multiplicative masking. MCNN shows a
significantly faster convergence to GE 1 as compared to BN
with original traces as well as two sets of transformed traces.

Next, we look into datasets for software implementation of
AES. These include AES RD dataset and ASCAD dataset

Arch. ASCAD ASCAD ASCAD AES RD AES HD AES HD MM(desync=50) (desync=100)

MCNN Good Good Good Good Good Good
BN Good Bad Good Good Average Average

TABLE III: Overall performance of MCNN vs. BN on
different datasets. Good indicates GE ≤ 10 at 5k traces,
Average indicates GE declining steadily but not reaching GE
≤ 10 at 5k traces, and Bad means that it is not clear when
the GE can converge.
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Fig. 6: Results for ASCAD(desync=50) and
ASCAD(desync=100).

with different desynchronization. Figure 5 shows the results
ASCAD dataset with no desynchronization and AES RD.
These two datasets are easy to break as shown in various
previous works [9], [6]. Both MCNN and BN have no trouble
in learning these datasets and perform very well.

We next move to test the ASCAD dataset with desynchro-
nization. Here we have two cases, ASCAD(desync=50) and
ASCAD(desync=100). Recall that BN, as proposed in [9], is
optimized for ASCAD(desync=100) and indeed as shown in
Figure 6, BN performs best. While MCNN performs fine in
this case, it is not as good as BN. This reinstates the results
of [9] that networks optimized for a chosen dataset perform
best. Figure 6 shows the results for ASCAD(desync=50).
ASCAD(desync=50) is a special case as it can be considered
a subset of ASCAD(desync=100) where desynchronization
is limited to 50 samples only. Intuitively, we expect BN to
perform well in it, however, our results show that BN struggles
with this dataset and MCNN performs best. This shows that
BN is probably over-optimized for ASCAD(desync=100)
dataset. BN(ma100) and BN(pca) GE results for ASCAD and
AES RD did not converge as in previous cases.

Comparing Figure 5 and Figure 6, we can see that MCNN
performs well in all the datasets. Since BN is fine-tuned for
ASCAD(desync=100), it performs the best on that particular
dataset, but its performance on other datasets is not guaranteed.
Note that, MCNN does not outperform the results of [9]
when considering architectures optimized for each dataset, and
neither it is the objective of this work. While, as shown in [9]
it is possible to propose efficient attacks for various datasets by
fine-tuning the architecture for a chosen dataset, MCNN here
is proposed as a common architecture that would generalize
better across datasets.

The overall results across all the datasets are stated in
Table III. It shows that MCNN can scale to different datasets
without the need of changing the network structure or even
PBCs.

1) Comparison on the Resistance of Reinforced Jitter-based
Countermeasure: To investigate the capability of MCNN
in generalizing further, we conduct a special set of exper-
iment. In this case, the training dataset is derived from
ASCAD(desync=50), while the testing dataset is derived
from ASCAD(desync=100). Note that ASCAD(desync=50)
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Fig. 7: Results of dissimilarity between train and test datasets
based on ASCAD(desync=50) and ASCAD(desync=100).

and ASCAD(desync=100) differ in the jitter offset range
only, while everything else remains the same. Thus, we are
testing the trained network with cases never seen by the
training model. In other words, while the network learns
to recognize jitter up to 50 samples in either direction, the
testing data can have jitter up to 100 samples. The results are
shown in Figure 7 (left). It can be clearly seen that MCNN
performs better thus being able to learn the underlying problem
with more ease than BN. The opposite i.e. training dataset
derived from ASCAD(desync=100), while the testing dataset
derived from ASCAD(desync=50), is shown in Figure 7
(right). As training datasets already contain samples expected
in the testing dataset, the performance of both the networks is
comparable.

2) Comparison on the Ensembles in Machine Learning-
based Profiled SCA: Hyperparameter tuning remains a major
challenge in deep learning as there is no optimal way to find
the best model parameters. Ensembles in deep learning aim to
combine the decision of several models in order to improve
the generalization performance of the overall predictor. In
the context of side-channel attack, Perin et al. [10] recently
showed that ensemble perform better than single models.
As MCNN also learns from three branches it can be easily
confused or compared with ensembles. However, there are
subtle differences between the two methodologies. Ensemble
uses multiple models trained separately and combines their
output probabilities in an optimal manner to maximize success.
MCNN on the other hand acts upon the input features by using
branches to extract the relevant features from different input
data transformations while training a single model.

We performed experiments to compare ensemble with
MCNN on side-channel datasets. We use the publicly available
code from [10]. We adjusted the number of models to directly
compare with MCNN with 10 models overall and 3 best
models. The choice of three best models is to directly compare
with three branches of MCNN. The results are shown in
Figure 8 and even with the 3 best models, MCNN performs
much better. The time required to train 10 ensemble classifiers,
used for selecting 3 best models, is also significantly higher
than MCNN as shown in table IV. To increase the performance
of ensembles, the number of models must be increased as

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

Number of Traces

G
u
e
s
s
in

g
E
n
t
r
o
p
y

MCNN(org,ma100,pca) Ensemble 3 Best Models

Ensemble 10 Models Ensemble BN(org)+BN(ma100)+BN(pca)

Fig. 8: Results for MCNN and Ensemble on ASCAD dataset.
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Fig. 9: Comparison of various architectures when trained and
tested on AES HD dataset.

already shown in [10]. Moreover as already pointed out in [14],
3-layer MCNN achieves similar accuracy as an ensemble
model with 35 classifiers for other datasets.

Further, we build an ensemble from three chosen models
BN(org), BN(ma100), BN(pca). This can be considered a
special case of an ensemble, more powerful than proposed
in [10], as [10] does not include pre-processing and works
with generic models rather than models optimized to a par-
ticular dataset. While the ensemble of BN(org), BN(ma100),
BN(pca), performs better than previous experiments of ensem-
ble, MCNN outperforms it by a slight margin. This difference
can be potentially attributed to the fact that while the ensemble
simply combines output probabilities, MCNN combines the
three models with an additional convolutional and pooling
layer to combine the learning of three models.

C. On Versatility of MCNN

The previous results have shown that MCNN can perform
and generalize better across datasets when compared to BN,
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Dataset Arch.
Learning

Time
(seconds)

Complexity
(Trainable Parameter)

ASCAD
MCNN(org,ma100 ,pca) 4, 950 267, 676

BN(org) 3, 000 141, 596
Ensemble 59, 300 2, 743, 860 ∼ 6, 321, 616

AES HD

MCNN(org,ma100 ,pca) 9, 500 280, 476
BN(org) 5, 750 149, 276

MCNN*(org,ma100 ,pca) 1, 900 70, 108
BN*(org) 1, 050 47, 708

AES RD MCNN(org,ma100 ,pca) 5, 120 339, 356
BN(org) 3, 000 177, 436

AES HD MM MCNN(org,ma100 ,pca) 21, 500 329, 116
BN(org) 12, 750 172, 316

TABLE IV: Learning time and complexity for BN and MCNN

which was known to produce the best results in public lit-
erature. Recently, an improvement to BN was proposed by
Wouters et al. [12], where simplifying the initial convolution
layer resulted in reducing the number of parameters while
keeping comparable attack performance. We call this updated
network from [12] as BN*(refer to Table I for details). To show
that MCNN is not limited to one network, we build a variant
of MCNN based on BN*(Refer to MCNN*). The attack perfor-
mance of original and updated networks are reported in Fig-
ure 9. As expected from public literature, BN*(org) performs
better than BN(org). The baseline MCNN(org,ma100,pca)
already performs better than both BN(org) and BN*(org).
The improved MCNN*(org,ma100,pca) built upon BN*(org)
shows the best results. These results reinstate two key features
of MCNN. Firstly, MCNN can be adapted to any baseline ar-
chitecture. Secondly, MCNN can learn features from different
PBCs and generalize better enabling better performance than
the baseline network in most cases.

V. INTEGRATING PROVEN SCA PRE-PROCESSING
TECHNIQUES IN MCNN

In the previous section, we show on public datasets that
MCNN can achieve consistent performance even without mod-
ifying the network architecture. While the MCNN architecture
used two well known pre-processing techniques, these pre-
processing techniques were not chosen based on the dataset.
Nevertheless, MCNN performed better across the datasets.

As discussed previously, we propose MCNN as a general
framework where the PBCs can be exploited to integrate
any pre-processing technique into the framework. Consider
an evaluation lab conducting security evaluation of several
products on a daily basis. Over the course of years, evaluators
in these labs see various countermeasures and develop various
pre-processing techniques to optimize the evaluation. The
current state of deep learning research for SCA has majorly
focused on optimizing architectures so as to bypass the pre-
processing phase altogether. With PBC in the proposed MCNN
architecture, MCNN provides the opportunity for an evaluator
to integrate those tested and proven pre-processing techniques
directly into deep learning based SCA evaluation. While the
list of pre-processing techniques (including their parameter
space) is non-exhaustive, we demonstrate this feature of the
proposed MCNN framework by two distinct case studies.
In the first case study, we focus on improving the current
MCNN architecture by optimizing transformation parameters.
The second case study focuses on integrating other well-known
pre-processing techniques as PBCs to MCNN.
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Fig. 10: Results for AES HD in various moving averages.

A. Case Study 1: Optimizing Transformation Parameters in
Existing MCNN Architecture

The choice of moving average as a PBC in MCNN was
inspired by the original MCNN [14]. However, in the previous
experiments, we did not consider optimization of moving
average parameters to suit dataset characteristics, while still
showing good results across datasets. In this part, we ex-
periment with moving average parameters to evaluate their
effect on AES HD dataset. As mentioned earlier, AES HD
implements an AES-128 parallel architecture to compute one
round per clock. Here, different sub-components of the cipher
leak in different parts of the clock cycle. By measuring on
a high sampling rate oscilloscope, these leakages might be
spread over different points but within a single clock cycle or
to a neighbouring clock cycle in some cases. This is unlike
software computation where sub-operations might be separated
by several clock cycles. Thus, for hardware implementation,
simple signal processing techniques like moving average allow
the combination of leakage, allowing an attacker to exploit
contribution of several leakages spread over a number of
points.

For AES HD, we investigated the effect of the pa-
rameters for moving average. We consider the param-
eters space with varying step size ∈ {100, 200, 300},
thus MCNN(org,ma100,pca), MCNN(org,ma200,pca) and
MCNN(org,ma300,pca). Here step size refers to the width
of the window used for calculating moving average while
sliding through the trace. The default step size 100 was chosen
to fit BN parameters and adjusted in the chosen range. The
results are shown in Figure 10. By choosing a bigger step size
for the moving average, the result of MCNN can be largely
improved as compared to the previous result in Figure 4. On
the other hand, playing with moving average parameters, does
not improve the attack results for BN.
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Fig. 11: Comparison of performance of MCNN and BN
architectures when working with pre-processed traces of

ASCAD(desync=50) and ASCAD(desync=100) datasets.

(a) Overlapped 20 traces for ASCAD(desync=100)

(b) ASCAD(desync=100) after applying POC

(c) ASCAD(desync=100) after applying EA

Fig. 12: Overlapped 20 traces ASCAD(desync=100) after
pre-processing techniques.

B. Case Study 2: Integrating New Pre-Processing Techniques
In MCNN

Finally, in this case study, we investigate the effectiveness
of MCNN by plugging in known pre-processing techniques
in SCA to replace PCA used as PBC in the original ar-
chitecture. We choose 2 known techniques. The first tech-
nique was proposed by Homma et al. [29] in CHES 2006
and is known as POC. The second technique investigated
is EA [30] which was proposed at CT-RSA 2011 and also
available in few commercial tools for SCA evaluations. To
perform the evaluations, we choose ASCAD(desync=50) and
ASCAD(desync=100), as these datasets implement jitter or
misalignment countermeasure. Both POC and EA are designed
to overcome misalignment. It was also shown previously that
pre-processing traces can improve efficiency of deep learning

based evaluations [3], [13]. MCNN is different from these
previous works because, while previous works were modify-
ing the training dataset altogether by pre-processing, MCNN
applies these pre-processing on the fly in one of its branches
through PBC, while the training set remains unchanged. Few
sample traces from ASCAD(desync=100) before and after
alignment are shown in Figure 12. It can be seen that EA
works better than POC in this case. In essence, a good align-
ment method is converting these traces close to synchronised
ASCAD database and one should expect similar results. The
two modified MCNN used in the following experiments are
MCNN(org,ma100, poc) and MCNN(org,ma100, ea).

The results are reported in Figure 11. From the figure,
we can see that in the case of desynchronization = 50, all
methods are working successfully, including BN, which is
unsuccessful in recovering the key in the original experiments
(see Figure 6). Thus, we confirm the results of [3], [13] that
pre-processing helps deep-learning based SCA evaluations.

Now, we look at a comparatively difficult case of AS-
CAD(desync=100) with higher desynchronization = 100. In
this case, MCNN is performing slightly better than BN with
POC pre-processing, where we can observe faster convergence
and smaller number of traces required to recover the key, and
much better than BN with other pre-processing methods. In
general, for all the experiments conducted, we can observe that
the performance of MCNN is consistent throughout different
datasets and different parameter settings. With a good choice
of PBC, we were able to match the performance of BN(org)
with MCNN(org,ma100,poc), where BN(org) is specifically
designed to perform best for ASCAD(desync=100).

We note that even though visually EA results in bet-
ter alignment compared to POC (see Figure 12), BN(ea)
performs worse than BN(poc). Indeed, EA introduces dis-
tortion to the trace, which can make it more difficult to
learn as compared to POC. Moreover, BN(org) is optimized
for ASCAD(desync=100) and not for pre-processed traces,
thus BN(org) performs better for the original dataset, while
MCNN generalizes better. This demonstrates the importance
of capturing features in different scales and frequencies. EA
helps to enhance the long term features by aligning the traces,
while POC analyzes the discrete Fourier transforms of wave-
forms and extracts features in various frequency domains. The
observation further confirms the benefits of data prepossessing
done in the PBCs. Finally, we show in Figure 11b (bottom),
that BN(ea) does converge, trending towards GE=0 albeit
requiring more traces.

Finally, we investigate if MCNN is not simply doing feature
space augmentation. To check this, we augment the training
dataset with feature transformed traces and see if BN can per-
form better. In other words, we take ASCAD(desync=100)
dataset, transform it using moving average and EA to get two
separate datasets, merge it with the original dataset to have an
augmented dataset with 3× traces, and use this augmented
dataset to train and test BN. As shown in Figure 11, the
result is much worse and confirms that MCNN is not simply
augmenting the dataset but exploiting salient features from all
the transformations to bring a more complex model.
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VI. CONCLUSIONS

In this paper, we presented a neural network architecture
for profiled side-channel attacks based on multi-scale con-
volutional neural networks (MCNN). We proposed a general
framework that can be used for building MCNN models that
can effectively perform SCA tasks on various datasets without
fine-tuning of parameters. Our results show that MCNN has a
great potential to serve as an architecture of choice when the
details of the leakage traces are not available to the attacker
while providing the power to the attacker to integrate pre-
processing seamlessly into the architecture.

a) Future directions: Different architectures based on the
idea of MCNN would be interesting to explore. For example,
in [17], the authors use multi-scale recurrent CNN (RCNN)
and report superior results on financial time series data com-
pared to other models. They claim that using RCNN over
CNN improves capturing of temporal dependencies in the data.
In time series classification, long short-term memory (LSTM)
models are a popular approach to solve tasks that would not be
possible to solve with traditional feed-forward networks [39],
[40]. Therefore, LSTM might offer additional ways to analyze
SCA leakage traces, albeit with proper adaption as works
like [40] shifts the focus away from pre-processing step.

Different PBCs could be explored to enhance the feature
transformation step. Autoencoders, successfully used for SCA
before [41], [42], could be plugged as a PBC to improve the
performance of the model. Moreover, we only looked at non-
profiled data pre-processing techniques in this work. it would
be interesting to investigate methods to integrate profiled pre-
processing (like linear discriminant analysis, autoencoders)
into MCNN as a PBC.

Automated selection of PBCs with usage of neural ar-
chitecture search (NAS) [43] could be implemented. NAS
approaches iterate over different architectures and try various
hyperparameters to find the best model for the task. In terms
of SCA, there could be a pool of different PBCs, and the
branches would be chosen automatically by NAS based on
their performance.
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