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Abstract—The versatility and cost of embedded systems have
made it ubiquitous. Such wide-application exposes an embedded
system to a variety of physical threats like side-channel attacks
(SCA) and fault attacks (FA). Recently, a couple of software
encoding schemes were proposed as a protection against SCA.
These protection schemes are based on dual-rail precharge logic
(DPL), previously shown resistant to both SCA and FA. In this
paper, we analyze the previously proposed software encoding
schemes against FA. Our results show that software encoding
offers only limited resistance to FA. Finally, improvement to
software-encoding schemes is improved. With this improvement,
software encoding can serve as a common SCA and FA counter-
measure with an exploitable fault probability as low as 0.0048.

I. Introduction

Security has emerged as a key parameter in new tech-
nologies, especially Internet of Things (IoT). Each node of
an IoT is a computing device and does suffer from usual
security threats, from operating system viruses to network
vulnerabilities. With such vicinity to the adversary, threats
like side-channel attacks (SCA) and fault attacks (FA) have
become a reality for IoT. Thus, designers tend to deploy
countermeasures against these novel threats.

Side-channel countermeasures roughly fall into two wide
categories – masking [1] and hiding [2]. Masking countermea-
sures are generally applied at the algorithmic level. It depends
on a random mask to prevent leakage of sensitive data.

On the other hand, hiding countermeasures try to hide
the data dependent leakage in order to remove the basis of
SCA. The most common hiding countermeasure is a dual-rail
precharge logic (DPL [2]). DPL is a circuit-level countermea-
sure which removes data-dependent leakage by introducing
a generated False (F) rail to compensate the activity of the
original True (T) rail. It also introduces a notion of Precharge
phase as a spacer between every two Evaluation phases such
as, where valid algorithmic data is computed and propagated.
The two-phase operation with a dual-rail structure (theoreti-
cally) ensures constant activity and is therefore free from any
exploitable data-dependent leakage.

Although DPL was initially introduced as a side-channel
countermeasure, Selmane et al. [3] showed in 2009 that DPL
possess properties that resist FA naturally. Fault resistance is
an obvious advantage of DPL countermeasures over masking.
For software implementations, masking is an obvious choice

as it only needs modification of the algorithm. However,
some researchers have recently proposed software-oriented
DPL countermeasures. The notion of software DPL was first
introduced in [4], however a complete implementation was
missing. In [5], Rauzy et al. extended this idea to propose
a first DPL implementation of PRESENT cipher in software.
Moreover, they provided a formal proof of security for the
proposed DPL implementation. Another related work by Chen
el al. [6] presents a different software-oriented hiding counter-
measure called ‘Balanced Encoding’, based on [4]. All these
countermeasures were proposed to counter SCA and were
shown to provide a theoretical side-channel resistance.

From an attacker’s perspective, one will try the easiest and
most efficient attack. Therefore application of FA on side-
channel protection cannot be ignored. If we can work towards
a generic countermeasure, which to an extent, resists both SCA
and FA, the solution will be much more appealing for real-life
applications.

In this paper, we analyze previously proposed software
variants of DPL against FA. Since DPL is already known to
resist majority of faults in a hardware implementation, we want
to analyze it if the software DPL still holds that property.
Precisely, we target the implementations proposed in [6]
and [5], when implemented on a simple microcontroller. Our
analysis follows a two-step methodology. First, we develop a
fault simulator, which injects fault into a given software code,
with common fault models. Secondly, we perform practical
fault attacks on an AVR platform, using laser fault injection,
to validate our simulation results.

Based on our analysis, we propose an improved version of
the implementation introduced in [5], reducing possibility of a
fault attack to minimum. Overhead of our countermeasure in
terms of AVR microcontroller clock cycles is ≈ 72.3% com-
pared to original implementation. Probability of a successful
fault attack was reduced to 0.0048 and after conducting a
practical laser fault analysis we were not able to find any
exploitable fault.

The rest of the paper is organized as follows: Sec. II pro-
vides some general background on DPL.The fault simulation
methodology is discussed in Sec. III, together with simulation
results. Practical validation of simulated faults on an 8-bit AVR
microcontroller, using laser injection technique, is explained
in Sec. IV. Then, the discussion on the faults obtained from
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both simulations and experiments is given in Sec. V. Next, we
propose an improved countermeasures in Sec. VI. Finally, we
draw conclusions in Sec. VII.

II. General Background

In this section, we give a general background on dual-rail
precharge logic, its application on software and previous work.

A. Dual-Rail Precharge Logic

Dual-Rail Precharge Logic (DPL) is countermeasure to
SCA. DPL adds a complementary logic to balance the sensitive
activity of a target. In DPL, every sensitive bit x is coded as
(xT , xF ), where xT = x and xF = x. The couple (xT , xF )
alternates in two phases: Precharge i.e. propagating (0, 0)
NULL spacer1, and Evaluation i.e. propagating (1, 0) or
(0, 1) VALID data. The duplication of sensitive data along
with a two-phase operation (theoretically) ensures constant
activity. However, some imbalances in timing or structure
always exist between the duplicated halves, which leads to
side-channel leakage. One of the first introduced DPL was
Wave Dynamic Differential Logic (WDDL) [2]. It uses only
positive gates and uses duplicated master-slave registers to
enable precharge propagation. An inversion in WDDL can
be realised by a simple wire swapping. A simple example
of WDDL conversion from a basic digital circuit is shown in
Fig. 1a.

B. Software-Oriented DPL

The concept of DPL for software application was proposed
in [4]. This paper only presents a basic idea and overhead
estimates. Author motivates around the fact that a standard
processors are not designed for DPL. Nevertheless, any func-
tion can be computed using a look-up table by concatenating
its operands. Using this strategy, Hoogvost et al. proposed a
DPL design for PRESENT, but no implementation was given.
In a following work, Rauzy et al. [5] presented the first DPL
protected implementation of PRESENT, based on a bit sliced
implementation. In a following year, Chen et al. [6] extended
the approach of [4] in a different way to propose another hiding
countermeasure. Both countermeasures are described briefly in
the following.

1) Software DPL [5]: Rauzy et al. proposed a design of
balanced assembly code, following the dual-rail with precharge
logic protocol. They proved the absence of power consumption
leakage by a formal method and developed a tool to automat-
ically adjust the assembly code to follow the DPL protocol.

1Unlike some DPL styles, we consider (1,1) as invalid

The method implements all the basic logical operations using
a look-up table with a balanced addressing. Implementation
uses bitslicing, therefore one byte carries only one bit of
effective information. Two bits out of the byte are chosen to
implement DPL. These bits are selected in a way that their
leakage characteristics are roughly the same. In the following
we use two least significant bits. Thus 1 is encoded as 01 and 0
is encoded as 10. Assembly code for this implementation and
a look-up table for basic gates is stated in Tab. I and Tab. II.
In the rest of the paper, we refer to this implementation as to
“DPL” implementation.

TABLE I: Assembly code for DPL XOR in AVR

# Instruction # Instruction
0 ldi r1 a 5 andi r2 00000011
1 ldi r2 b 6 or r1 r2
2 andi r1 00000011 7 ldi r4 operation
3 lsl r1 1 8 ldd r3 r4 r1
4 lsl r1 1 9 mov d r3

TABLE II: Look-up tables for and, or, and xor

index 0101 0110 1001 1010
and 01 10 10 01
or 01 01 01 10
xor 10 01 01 10

2) Balanced Encoding [6]: Chen et al. presented a balanced
encoding of assembly code that has a constant leakage in
common linear leakage models. The target platform is an
8-bit processor where each nibble is balanced by adding
complementary bits, in two forms: b3b̄3b2b̄2b1b̄1b0b̄0 and
b0b̄2b1b3b̄1b2b̄0b̄3. In the paper, authors transform the coding
from one to another, in order to minimize side-channel leak-
age. Since we focus on a fault resistance, we only consider the
first of the two encodings. The encoding scheme is explained
on a Prince cipher, which can be realized by using a balanced
XOR and a balanced table-lookup. Balanced XOR assembly
code is stated in Tab. III. In the rest of the paper, we call this
implementation the “Encoding” implementation.

TABLE III: Assembly code for Encoding XOR in AVR

# Instruction # Instruction
0 ldi r1 a 19 and r20 r1
1 ldi r2 b 20 and r21 r1
2 ldi r16 11110000 21 swap r21
3 ldi r17 11110000 22 or r20 r21
4 and r16 r1 23 ldi r22 00001111
5 and r17 r1 24 ldi r23 00001111
6 swap r17 25 and r22 r2
7 or r16 r17 26 and r23 r2
8 ldi r18 11110000 27 swap r23
9 ldi r19 11110000 28 or r22 r23
10 and r18 r2 29 ldi r21 10100101
11 and r19 r2 30 eor r20 r21
12 swap r19 31 eor r20 r22
13 or r18 r19 32 ldi r24 11110000
14 ldi r17 01011010 33 ldi r25 11110000
15 eor r16 r17 34 and r24 r16
16 eor r16 r18 35 and r25 r20
17 ldi r20 00001111 36 or r24 r25
18 ldi r21 00001111

C. Side-Channel Security of Software - Oriented DPL

Software-oriented DPL is a fairly new topic with the first
implementations surfacing in late 2013. The papers are mainly



focused on side-channel protection. Rauzy et al. proposed
a formal proof of security for their countermeasure [5] and
showed that under perfect Hamming Weight (HW) model, the
scheme is side channel resistant. However on a real processor,
a perfect HW model is almost impossible to achieve, which
breaks the security proof. As a result, the practical security
gain of this scheme was 22×, i.e. needs 22× more traces to
mount the attack. Similarly, balanced encoding [6] provided
good resistance against standard CPA. Recently, it was shown
that if the attacker chooses to perform a bit-wise CPA on
balanced encoding, the security gain is drastically reduced [7].
Nevertheless, both implementations show some amount of
side-channel resistance.

D. Fault Resistance of DPL

A point, which was left unexplored is a potential resistance
of such countermeasure against other physical attacks, like
faults. In 2009, Selmane et al. [3] demonstrated that WDDL
is naturally protected against most (or asymmetric) fault
injections. Indeed, in hardware it is very hard to fault two
complementary wires with opposite polarity without affecting
a third wire. Therefore, in hardware, most faults are asymmet-
ric. Indeed, this is a very interesting property as it paves the
way towards design of common countermeasures which resist
both side-channel and fault attacks.

In WDDL, one can only use positive gates like AND and
OR to construct complex gates. An XOR gate can be designed
as shown in Fig. 1b. Under DPL property, i.e. xT = xF , the
output is VALID. When either of the inputs deviates from
the DPL protocol, the output is NULL. Moreover, when the
input at a subsequent step is NULL, the output will be infected
towards NULL. In a typical block cipher, where plenty of XOR
operations are performed one round after the other, this NULL
output will infect (or erase) the whole faulted data and leave
no exploitable information for the attacker. Several other DPL
countermeasures [8], [9], [10] were proposed after WDDL to
improve its side channel resistance. These countermeasure also
made sure to not lose this property of fault resilience in their
construction.

The software-oriented DPL discussed earlier were not an-
alyzed against fault attacks. In this paper, we try to analyze
this unexplored aspect of the software-oriented DPL.

III. Fault Analysis in a Simulated Setting

In this section, we analyze Chen et al. (“Encoding” imple-
mentation) and Rauzy et al. (“DPL” implementation), using
a generic assembly code that can be applied to different
targets. The analysis is performed in a controlled and simulated
environment. In order to better understand the behavior of
these countermeasures under faults, we analyzed the basic
operations of these implementations. In total, we analyzed
three different operations. For the “Encoding” implementa-
tion, the basic operations are balanced XOR and table look-up.
These two operations were enough to implement a cipher like
PRINCE. On the other hand, “DPL” implementation uses only
one operation, i.e. table look-up. This same table look-up is

then used for obtaining values of all logical functions. For the
analysis, we focus on XOR operation, but all the operations
are done in the same fashion and thus will have a similar
behavior under faults. In the rest of the section, we describe
our fault simulation methodology and obtained results.

A. Fault Simulation Methodology
We developed a fault simulator in ’Java’ to perform a code

analysis of the aforementioned operations against fault attacks.
The methodology of our fault simulator is depicted in Fig. 2.
The simulator injects faults in the target code under defined
fault models. The output is then checked against expected
output to classify it as faulted or correct. Target code is written
in a generic assembly language and the inputs and outputs are
already encoded. In other words, we do not consider faults
while input plaintext encoding or output ciphertext decoding is
performed. We simulated several fault models, attacking every
instruction from the code, using all the possible inputs and
testing different precharge in order to check if it can bias the
final result. Simulating one implementation against all the fault
models takes few milliseconds, which allows us to get all the
results in a very short time.

Fault Model

DPL Input

Faulty DPL Output

- single/multiple bit flip
- instruction skip
- instruction change
- random byte fault
- stuck-at fault

Target
Code

Output Checker

Fault Position

- for i in instructions
- for j in register bits

Fig. 2: Methodology for fault injection.

The components of the fault simulator of Fig. 2 are de-
scribed in the following:
• DPL Input: input is encoded with respect to used al-

gorithm design. Encoding design has inputs in format
a3ā3a2ā2a1ā1a0ā0 and b3b̄3b2b̄2b1b̄1b0b̄0. Therefore, each
variable in the first encoding can take 16 different values,
i.e. 256 input combinations. DPL design uses inputs in
format 00000001 for 1 and 00000010 for 0, i.e. 4 input
combinations for 2 input values.

• Faulty DPL Output: Output encoding is same as for
the input. For faulty output deviating from the encoding,
an automated format check or a Hamming Weight check
can discover faults. We categorize faulty outputs in three
different types: VALID, NULL and INVALID. A VALID
output follows the input encoding and INVALID does not.
A NULL output signifies all zeros at the output.

• Target Code: We test the basic gates proposed in each
implementation. We tested the schemes on an assembly
implementation for a simple microcontroller.

• Fault Model: Injects fault following the predefined mod-
els. We use common fault models found in literature [11],
which are:



– Single/multiple bit flip: a content of the destination
register of every operation was altered either to
simulate a single or a multiple bit flip. In case of
DPL, multiple bit flips are just a subset of single
and double bit flips, therefore we check vulnerability
against these two. We checked all the combinations
of bits for every instruction in the code.

– Instruction skip: we skipped one or two instructions.
Again, we tested all the possible combinations of
instruction skips.

– Random byte fault: because of the specific encoding
format, random byte faults are a subset of sin-
gle/multiple bit flip faults.

– Stuck-at fault: we changed the content of the desti-
nation register of all the instructions in the code, one
instruction at a time. We tested two values, all zeros
and all ones.

B. Results on ’Encoding’ Implementation

In this subsection we present simulation results on two
operations proposed in [6], xor operation and a balanced table
look-up.

1) XOR Operation With Constant HW: The code for the
balanced XOR is well described in [6] (Tab. III). It shows
no vulnerability against a single bit flip attack and a single
instruction skip attack. It is, however, vulnerable to a double
bit flip attack (Tab. IV) and a double instruction skip attack
(Tab. V). Please note that the table columns in this section
follow the same structure: the first column contains number
of VALID faults out of all the possible faults. The following
column (or the last two columns, in the case of a double
instruction skip attack) contains the instruction together with
its line number corresponding to Tab. I and III. Finally, in the
case of bit flips, the last column contains bit position(s) where
the fault was induced. Our simulator counts bits from left to
right.

Also, the implementation is vulnerable against stuck-at
faults at two positions. The first one is instruction number 14
(xor), the second one is instruction number 29 (xor). Both
instructions are used to produce the final output, either left
(instr. 14) or right (instr. 29) nibble. Because of the behavior of
this implementation, stuck-at fault reveals left or right nibble
of the second input, either in the plaintext (all zeros stuck-at
fault) or as its complement (all ones stuck-at fault). Out of all
the inputs, 192 are vulnerable against this type of attack.

2) Table Look-up With Constant HW: Since the balanced
look-up table size is 16 × 16, containing only 16 valid output
values, the only way to achieve a valid faulty output is to
interchange between these values. Our simulations show that
the only valid fault model is a double bit flip fault model,
changing consecutive bit pairs in input so that the encoding
is satisfied. Results are stated in Tab. VI. Please note that in
our implementation, we force the unused addresses to contain
NULL, i.e. all zeros. The content of unused addresses is not
mentioned in the original paper and using all zeros favors our
scenario of reducing vulnerability to faults. The transformation

TABLE IV: Double bit flip faults for Encoding XOR imple-
mentation.

# of VALID faults Instruction Bit couples
256 0 LDI 0-1, 2-3, 4-5, 6-7
256 1 LDI 0-1, 2-3, 4-5, 6-7
256 4 AND 0-1, 2-3
256 7 OR 0-1, 2-3
256 10 AND 0-1, 2-3
256 13 OR 0-1, 2-3
256 14 LDI 0-1, 2-3
256 15 XOR 0-1, 2-3
256 16 XOR 0-1, 2-3
256 19 AND 4-5, 6-7
256 29 LDI 4-5, 6-7
256 22 OR 4-5, 6-7
256 25 AND 4-5, 6-7
256 28 OR 4-5, 6-7
256 30 XOR 4-5, 6-7
256 31 XOR 4-5, 6-7
256 34 AND 0-1, 2-3
256 35 AND 4-5, 6-7
256 36 OR 0-1, 2-3, 4-5, 6-7

TABLE V: Double instruction skip faults for Encoding XOR
implementation.

# of VALID faults Instr. 1 Instr. 2
240 0 LDI 2 AND
192 2 AND 8 AND, 10 OR, 14 LDI, 15 LDI, 16 AND
192 4 OR 8 AND, 10 OR, 14 LDI, 15 LDI, 16 AND
192 6 LDI 16 AND
192 8 AND 14 LDI, 15 LDI
192 10 OR 14 LDI, 15 LDI
192 14 LDI 16 AND
192 15 LDI 16 AND
192 17 AND 23 AND, 25 OR, 29 LDI, 30 LDI, 31 AND
192 19 OR 23 AND, 25 OR, 29 LDI, 30 LDI, 31 AND
192 21 LDI 29 LDI
192 23 AND 29 LDI, 30 LDI
192 25 OR 29 LDI, 30 LDI
192 29 LDI 31 AND
192 30 LDI 31 AND

of encoding as proposed in the original paper, for side-channel
resistance, is ignored in our implementation. This is because
the side-channel aspect of this scheme is fairly dealt in the
original paper and lies out of scope of this paper.

TABLE VI: Double bit flip faults for Encoding implementation
of table look-up.

# of VALID faults Instruction Bit couples
16 0 LDI 0-1, 2-3, 4-5, 6-7
16 1 LDD 0-1, 2-3, 4-5, 6-7

TABLE VII: Double bit flip faults for DPL XOR implemen-
tation.

# of VALID faults Instruction Bit couples
4 0 LDI 6-7
4 1 LDI 6-7
4 2 ANDI 6-7
4 3 LSL 5-6
4 4 LSL 4-5
4 5 ANDI 6-7
4 6 OR 4-5, 6-7
4 8 LDD 6-7
4 9 MOV 6-7



TABLE VIII: Single and double instruction skip faults for DPL
XOR implementation.

# of VALID faults Instr. 1 Instr. 2
4 3 LSL –
4 4 LSL –
2 3 LSL 2 ANDI, 5 ANDI
2 4 LSL 2 ANDI, 5 ANDI

C. Results on ’DPL’ Implementation

The implementation of Rauzy et al. is coded in two bits.
We have chosen the least significant bit pair to implement the
design. The rest of the bits are unused.

Simulating faults on implementation shown in Tab I shows
no vulnerability against single bit flip faults and stuck-at faults,
however the code is vulnerable to instruction skips and dual
bit flip attacks. Instruction skips are stated in Tab. VIII and
double bit flip faults are stated in Tab. VII, using xor as an
operation.

IV. Experimental Validation

In this section, we extend our analysis to a practical setting.
We perform a fault injection in an 8-bit AVR microcontroller
using laser, while running the previously tested software
operations. This allows us to validate our assumptions for the
simulations and attest if the simulated fault model and effects
are practically sound.

A. Experimental Setup and Fault Injection Platform

Our setup is composed of a near-infrared diode pulse laser.
The properties of the laser setup are as follows:
• Pulse power: 20 W (reduced to 8 W with 20x objective

and to 7 W with 50x objective)
• Pulse repetition: 10 MHz
• Spot size: 30x12 µm (15x3.5 µm with 20x objective and

6x1.4 µm with 50x objective)
• Response to trigger pulse: ≤ 100 ns

Intentional nop are inserted at beginning of each node to over-
come the delay between trigger and laser injection. We used
Atmel ATmega328P microcontroller as the DUT, depackaged
and mounted on Arduino UNO development board. The chip is
3x3 mm2, manufactured in 350 nm CMOS technology. Laser
injection is performed using an X-Y positioning table with a
step precision 0.05 µm. There is a trigger signal set on HIGH
(5 V) during the algorithm execution in order to identify the
correct time for the fault injection.

Communication with the DUT is done via RS232 interface.
We used an oscilloscope for measuring the power consumption
of the DUT, for capturing the trigger signal and checking
the laser diode current, so that we could determine the delay
between sending the trigger signal and activating the laser
beam.

B. Experimental Results

In this section we present experimental results obtained
by using a laser fault injection technique. The presented
results were obtained using the Encoding XOR operation as
described in Tab III. Similar area results were obtained for

other operations as well. First, we tested the device with
different values of precharge. However, the results showed that
the faults were dependent only on the area and offset, and thus
precharge values have no influence on faults.

In total, we were able to obtain 78 different types of faults
in several different areas of the chip for all possible input
combinations. We found all the three kinds of faults, i.e.
INVALID, VALID and NULL. The sensitive area of the chip is
approximately 1100x80 µm2 large (≈ 0.98% of the whole chip
area). VALID faults were only produced in two areas (with the
X coordinate between 1150-1250 µm and 1050-1150 µm). As
far as the fault model is considered , there was a majority of
1-bit flips and 2-bit flips, however we also found few single
instruction skips, double instruction skips and stuck-at faults.
Also most of the faults were impacting the data bus, which
was loading operands from the memory.

V. Discussion

We simulated and experimentally verified fault injection on
Encoding XOR, Encoding table look-up and DPL XOR. In
this part, we make an attempt to bring everything on the same
page and derive objective conclusions. To do this, we plot the
number of faults for each fault model and resultant output.
The analysis is done on faults obtained from simulations and
experiments.

The results are presented in Fig. 4, 5 and 6. Bar plots show
simulation outputs and pie charts show output distribution
from our experimental setting. Since the number of inputs and
code-size is different for each tested operation, we normalize
the simulation results to represent it on an equivalent scale,
i.e [0,1].

For Encoding XOR, majority of the faults are INVALID for
all fault models. Few faults are VALID and a negligible number
of faults are NULL. In Fig. 4, we find a very good coherence
between simulation and experimental results, specially when
the majority of faults are 1-bit or 2-bits flip.

In Encoding table look-up and DPL XOR, the simulations
report a good mix of INVALID and NULL (Fig. 5, Fig. 6),
which is also observed in experimental fault analysis. It is the
number of VALID faults which is deviating from simulations
to experiments. In simulations, 2% and 10% of 2-bit flip
faults are VALID for DPL XOR and Encoding table look-
up respectively. DPL XOR also encapsulates two instructions
vulnerable to single (≈13.3%) and double (≈4.7%) instruction
skips.

In the experiments, we see an inflated number of VALID and
INVALID faults than simulations, especially when considering
look-up table implementations. Unlike simulations, the fault
models are not uniformly distributed for experiments. As
previously stated, in our experiments, most of the faults were
bit flips and on the data bus. This scenario explains a higher
percentage of VALID faults. Also, that is why there are more
VALID faults for Encoding table look-up than for DPL XOR,
despite the fact that only the latter one is vulnerable to
instruction skip attacks. To understand the higher number of
INVALID faults rather than NULL, we refer to the area of DPL



TABLE IX: Fault propagation in Encoding XOR implementa-
tion.

Input 1 Input 2 Output
INVALID VALID INVALID
INVALID INVALID VALID
INVALID NULL VALID
NULL VALID INVALID
NULL NULL VALID

XOR. It is evident from Fig. 3 that a much larger area produces
INVALID faults compared to NULL. Thus it is more likely to
inject INVALID faults. This can be due to several factors like
placement of the data and instruction bus, underlying register,
etc.
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Fig. 3: Distribution of INVALID and NULL faults for Encoding
table look-up.

A. Fault Propagation

Another important parameter to consider is a fault propa-
gation. This means, if a particular operation is faulted, how
the following operations deal with the fault. In a standard
differential fault analysis, a fault in a cipher computation has
to propagate to the output. The attacker then uses the faulty
and correct ciphertext pair to extract the secret key. If a code
is to be made fault resistant, it should not propagate the faults.

A VALID fault will always propagate to the output. How-
ever, it can be seen in figures that majority of faults are
either INVALID or NULL. To analyze the fault propagation
of an operation, we need to check its output when the inputs
are faulted. Any INVALID or NULL input to DPL XOR and
Encoding table look-up will lead to a NULL at the output.
When a NULL is propagated from one stage to another, the
final ciphertext will also be NULL and erase any sensitive
information which allows fault analysis. Encoding table look-
up will only hold this property if the unused addresses contain
all zeros. An alternative solution can be to check on encoding
(ex. Hamming weight verification) at the end of the table
look-up. However, this problem is similar to redundant PIN
verification, where a fault can be used to skip the verification
step.

On the other hand, Encoding XOR does propagate faults. As
we see in Tab. IX, several combinations of inputs can lead to
VALID output. Also, a combination of NULL input and VALID
input leaks information about the input. For example, inputs

A = 0x00 and B = 0xA5 will result in 0x0F, i.e directly
leaking input B in the form b̄3b̄3b̄2b̄2b̄1b̄1b̄0b̄0, bi ∈ B. For
instance, a final key XOR with a faulted NULL value can
directly reveal the last round key.

In a nutshell, DPL XOR and Encoding table look-up are
well designed to hinder fault propagation. However, unlike
hardware, in software it is possible to create symmetric or
2-bit flip faults which makes the design vulnerable to fault
attacks to an extent. Encoding XOR needs to be redesigned
to not propagate faults. For example, an Encoding XOR based
on principle of DPL XOR, i.e. based on look-up table can do
the trick. In conclusion, to be able to design a fault-resistant
countermeasure, VALID faults should be minimized and all
INVALID faults must be converted to NULL.

TABLE X: Comparison of different countermeasures.

Countermeasure SCA
resistance

FA resis-
tance

Universa-
lity

Encoding [6], [5] 3 3 3
Masking [1] 3 7 3

Shuffling [12] 3 7 3
Error-correcting codes [13] 7 3 7

Time redundancy [14] 7 3 3

Additionally, we try to draw comparison among different
software countermeasures in Tab. X. The most studied coun-
termeasure is masking. Masking provides strong resistance
against side-channel attacks and its universally applicable
being a algorithmic level countermeasure. Similarly, shuffling
provides side-channel resistance and can be applied to any
algorithm. Both these countermeasure, do not protect against
fault attacks. Their security is very hard to prove under the
bias introduced by faults. Encoding countermeasures presented
in this paper are capable of SCA resistance, FA resistance
and can be applied across implementations. For traditional FA
countermeasures, error-correcting codes obviously can detect
and correct faults. However, SCA resistance of such codes is
quite limited and its hard to apply such codes on non-linear
operations. Time-redundancy, on the other hand can be widely
applied and protect fault attacks, while its SCA resistance rest
very low.

VI. Proposed Improvements to Software DPL
Countermeasure

In this section we will propose some improvements to
the studied DPL implementation, i.e. hardening the code
against fault attacks. We have chosen this implementation for
improvement because it already provides a decent protection
thanks to properties of the look-up table. Our aim is to further
reduce its vulnerability against fault attacks with minimum
possible overhead.

To do so we deeply analyzed the faults we observe in the
DPL implementation. As shown in Tab. VII and Tab. VIII, this
implementation is vulnerable to 2-bit flips, single and double
instruction skips.

For resisting single-instruction skips, we need to avoid shift
instructions, because these can produce VALID outputs in the
case one of LSL instructions is skipped. For this purpose we
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Fig. 5: Fault distributions of Encoding table look-up simula-
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propose to use another look-up table (Tab. XI), returning the
concatenated value of both inputs (normally obtained after
instruction 6). After this modification, attacker can no longer
use an instruction skip attack, since all the faulty outputs will
be either NULL or INVALID.

As for double instruction skips, we propose a solution
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Fig. 6: Fault distributions of DPL XOR simulations and
experiments.

TABLE XI: Look-up table for concatenating values instead of
using shifting and then or.

inputs 01 10
01 0101 0110
10 1001 1010

based on partial redundancy, where the values are processed
independently and they are compared in the end. Our improved
code is stated in Table XII. Number of instructions changed
from 10 to 15 and we use three more registers to store the data.
In terms of AVR microcontroller clock cycles, overhead is ≈
72.3% (in total 19 clock cycles compared to 11 in original
proposal). Modified implementation is secure against single
and double instruction skips, single bit flip faults and stuck-at
faults. We have checked our implementation with respect to
Hamming weight and Hamming distance leakage, both values
remain constant for every instruction and different input data.

There are only two instructions vulnerable against double bit
flip faults, i.e. instruction 13 (and) and 14 (mov). Instruction 13
is used for comparison of redundant data. As double-bit flips
are the limit of the implemented encoding, it is not possible
to detect or resist such faults using only this encoding. Some
supplementary code such as added parity or error detection
must be used for that purpose. These supplementary methods
remains out of scope of this paper.

A. Results

The countermeasure is thoroughly tested under simulated
environment and real laser setup. The results are presented in
Fig. 7. Simulations were carried out using our Java based
simulator. The proposed countermeasure resists single bit
faults, single and double instruction skips, and stuck-at faults.



TABLE XII: Assembly code for modified DPL XOR imple-
mentation in AVR

# Instruction # Instruction
0 ldi r1 a 8 ldd r1 r1 r2
1 ldi r2 b 9 ldd r3 r3 r4
2 ldi r3 a 10 ldi r6 operation
3 ldi r4 b 11 ldd r5 r6 r1
4 andi r1 00000011 12 ldd r7 r6 r3
5 andi r2 00000011 13 and r7 r5
6 andi r3 00000011 14 mov d r7
7 andi r4 00000011

In other words, the countermeasure produces no VALID faults
for these fault models. The only way to produce a VALID
output is to perform a double bit flip fault in one of the last two
instructions. The probability of injecting such bit-flip faults
in this countermeasure is 0.0048. Fault propagation stays the
same as in the case of DPL XOR implementation, therefore
INVALID and NULL inputs lead to NULL outputs.

Next, we implemented the countermeasure on AVR chip
and tested under back-side laser fault injection. In total, we
injected faults in 240, 000 executions of the countermeasure
and 13, 187 were faulted. From all the injected faults, ≈
93.5% resulted in a NULL output, the rest were INVALID
outputs. This situation corresponds well with the simulation
results, with the exception of VALID faults. As we stated
before, for these types of outputs it is necessary to inject the
fault very precisely. This brings the difficulty of producing
exploitable faults to the same level as for the hardware-based
DPL countermeasures.
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Fig. 7: Fault distributions of DPL XOR simulations and
experiments, implemented with our countermeasure.

VII. Conclusions
This paper tests two software DPL countermeasures for fault

resistance property. Several fault models were tested and a 2-

bit flip fault turned out to be most efficient one, often resulting
in VALID faults. We also show that, unlike hardware DPL, it
is not difficult to find a fault with 2-bit flip model in a software
case. For instance, in Encoding table-look up, about 33% of the
total injected faults followed 2-bit flip model. Encoding XOR
implementation exhibits minimum VALID faults but is not
resistant to fault propagation. Other two implementations do
not have this problem because of the table look-up properties.

Next, we used our understanding to propose an improve-
ment to DPL XOR. In simulated settings, the probability of
achieving a VALID fault is 0.0048. However, we were unable
to find a VALID fault in experimental verification, owing to
the extremely low probability.

To summarize, DPL in hardware can serve as a common
countermeasure, however it is not the case for software DPL.
Nevertheless, software DPL do exhibit fault resilience. The
improvement we proposed in this paper extends the fault
resistance property of software encoding schemes to the same
level as DPL in hardware.
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