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ABSTRACT Machine Learning (ML) is almost ubiquitously used in multiple disciplines nowadays.
Recently, we have seen its usage in the realm of differential distinguishers for symmetric key ciphers. It has
been shown thatML-based differential distinguishers can be easily extended to break round-reduced versions
of ciphers. In this paper, we show new distinguishers on the unkeyed and round-reduced versions of SPECK-
32, SPECK-128, ASCON, SIMECK-32, SIMECK-64, and SKINNY-128. We explore multiple avenues in
the process. In summary, we use neural networks and support vector machines in various settings (such as
varying the activation function), apart from experimenting with a number of input difference tuples. Among
other results, we show a distinguisher of 8-round SPECK-32 that works with low data complexity.

INDEX TERMS Speck, ascon, simeck, skinny, distinguisher, machine learning, differential.

I. INTRODUCTION
Machine learning (ML) is becoming ubiquitous in multi-
ple research areas in computer science. Naturally, there has
been a number of attempts to use ML in cryptography, par-
ticularly fitting it to work with the well-known differen-
tial attack model. In fact, ML tools typically have native
support for the classification problems, which is similar
to the distinguisher model where one attempts to classify
CIPHER from RANDOM. Particularly, after Gohr’s work on
SPECK-32 [1], the proper application of ML seems to be
growing quite fast, as many research works, including (but
not limited to) [2], [3], [4], [5], [6], [7], [8], [9], [10], are now
published.

In this work, we attempt to extend the ML-assisted differ-
ential attack model. As the starting point, we adopt the dif-
ferential distinguishing model presented in [11, Section 3.1].
We apply the concept of [11] to a number of ciphers, namely
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ASCON [12], SPECK [13], SKINNY [14], and SIMECK [15].
While SPECK-32 has been the major, if not the only, focus
of the previous works (a trend initiated/popularised by [1]);
the rest of the ciphers have never been analyzed with respect
to ML-assisted attacks, to the best of our knowledge.

We carry out experiments with the two major Neural Net-
work (NN) libraries, PyTorch and TensorFlow/Keras. Fur-
ther, we explore the applicability of the Support Vector
Machine (SVM), thus supplementing the NN which is the
only ML tool used in the existing literature up to this point.

We argue that the traditional analysis of the differential
distinguisher (that does not involve ML tools), in all like-
lihood, has been underestimating the attacker’s true power,
who is free to use ML tools. Unlike some of the recent works,
where it is assumed the attacker is an expert in machine
learning (thus is capable of designing a special purposed ML
architecture), here we assume the other way around.We show,
how the attacker is able to achieve the task of distinguishing
cipher by using very simple ML tools – the parameters of
which are decided arbitrarily. Even with that, we easily beat
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the non-ML based analysis, and yield the same (if not better)
results compared to a specialized ML architecture.

A. CONTRIBUTION
Our results, which are detailed in Section V, can be summa-
rized as follows:
• In Section V-B, we present distinguishers on up to
8-round SPECK-32 and 7-round SPECK-128, using
MLPs. We experiment with various options for the
choice of the input differences (contrasting, e.g., Gohr’s
work [1]) where only one such option is considered.

• In Section V-C, we present results on 3-round ASCON.
These are obtained by using a linear-kernel SVM.

• In Section V-D, we show results on 9-round
SIMECK-32 and 14-round SIMECK-64, obtained
using MLPs.

• In Section V-E, we present distinguishers on
SKINNY-128 reduced to 7 rounds, using SVMs (linear,
RBF and polynomial kernels).

Note that our data generation method is similar to that of
Gohr’s [1], i.e., un-keyed permutation. In our case, t (>1)
input differences are used to create a t-class classification
problem; whereas one input difference is used together to
create a 2-class classification problem in [1].

B. NOVELTY AND ADVANCEMENT OF STATE-OF-THE-ART
1) REFLECTION ON ML-ASSISTED RESULTS ON SPECK-32

a: NUMBER OF ROUNDS
Gohr (CRYPTO’19 in [1]) reports the maximum number of
rounds of SPECK-32 attacked by ML-based distinguisher
as 8. To the best of our knowledge, the follow-up works
fail to extend the number of rounds beyond 8 [2], [3], [4].
We achieve the same number of rounds (Section V-B3), with
simpler models and with lower data complexity (thus requir-
ing less time).

b: SIMPLICITY OF ML MODEL
Our model for distinguisher is adopted from [11, Model 1 in
Section 3.1]. Thus, the number of neurons at the input layer
is the same as the state size of the cipher. This contrasts with
the model used in [1], [2], [4], and [3], where the number of
neurons is double at the input layer. Further, we need lower
number of epochs (≤20), whereas Gohr’s model requires
much more (such as 200) epochs. Thus, in some sense, our
NN model is simpler. Apart from that, we only use MLP
for its simplicity, this is not intrinsic; thus other NN models
can be used instead. For instance, the Convolutional Neural
Network (CNN), which seems to be the main choice [1], [2],
[3], [4], can also be used. More relevant discussion can be
found in Section III-C.

2) LEVEL OF SIGNIFICANCE
As only 2-class classification is for the most part in this
work, any case with training/testing accuracy of >0.5 can
be potentially taken as a distinguisher. In this work, we only

consider those cases with training and testing accuracy both
>0.51.

Since the inner working of neural networks is generally
not explainable as of now, it might happen that this minute
deviation (i.e., less than 0.01) is caused due to some artifact
of the tool (cf. the performance of Tensorflow/Keras and
PyTorch discussed in Section V-B), rather than being a true
indicator of deviation from randomness. Until this minute
deviation is confirmed otherwise (such as, by some other
method that does not involve ML), there is an off-chance that
it may not hold up in the future (say, with an updated version
of the sameML tool). Thus, we keep 0.01 as the threshold for
detection.

We have noticed that certain distinguishers achieve
(marginally) accuracy of >0.5 for higher rounds in some
experiments with 9-round SPECK-32. This hints that it
may be possible that the distinguishers follow through more
rounds than reported in this work. We do not immediately
claim any confirmation about the 9-round distinguisher (since
the gap of accuracy from the RANDOM case is very similar),
though it is an interesting case to study.

Apart from 2-class classification, we also use 3-class and
32-class classification, where we want to distinguish accu-
racy of 0.33333 and 0.03125, respectively. Here, the threshold
for distinguisher detection is kept at 0.01 and 0.001, respec-
tively.

3) PRACTICALITY
All of our results are practical and take at most a few hours
(except for the SVM which seems to take longer – several
days, though it may be possible to reduce the run time by
tweaking some parameters) to perform on amodern computer
(without high-performance computing hardware).

It can be further mentioned that we do not assume any
more power to the attacker than the classical differential
distinguisher model. The only new ability the attacker has
comes from how she analyses the information collected.

4) NEW METHODS AND CIPHERS
We experiment with PyTorch and TensorFlow/Keras. As far
as we are concerned, there has not been any attempt to study
the impact of the choice of the NN library. While it is true
that in a typical application, these tools perform almost iden-
tically (where the accuracy is near-perfect), it may not be the
case for the current situation where a meager 0.51 accuracy
is considered a success. As a matter of fact, it seems that
PyTorch outperforms TensorFlow/Keras; as the former can
distinguish up to 7-round SPECK-32 (Table 3a) but the latter
only works up to 6-round (Table 3b); despite using the same
parameters, training/testing data, and default options (though
further experimentation is needed).

We employ SVM to study its impact on ML-based dif-
ferential distinguishers. One major comment in [2] is about
interpreting ML-based distinguishers by using an equivalent
representation that does not involve ML-specific terminol-
ogy. In this regard, (linear kernel) SVM is a natural choice
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since it gives an interpretation that can be readily interpreted.
In particular, the linear kernel SVM gives a linear expression.

5) SECOND ORDER DIFFERENTIAL
Since Model 1 from [11] naturally supports multiple dif-
ferences, it is possible to realize higher order differen-
tial (see Table 4d for second order differential analysis on
SPECK-32). To the best of our knowledge, this is the first
time this is used in the literature.

II. BACKGROUND
A. MOTIVATION
In the classical differential distinguisher, the attacker, Eve
chooses an input difference δ and XORs it to the input of
the state of the (possibly round reduced) CIPHER. Then,
CIPHER is run multiple times with randomly chosen inputs.
The attacker finds the output differences for each run. Eve
is also able to deduce a pre-calculated output difference 1

(which is a constant) with a certain probability at which
the (δ,1) pair appears. When this probability is signifi-
cantly more than what would be expected if (possibly round
reduced) CIPHER is substituted by a random source, then
the attacker would be successful in distinguishing (possibly a
reduced round version of CIPHER) from RANDOM.

The modeling of the probability distribution for δ ; 1 is
done through various methods, such as the wide trail strategy
[16, Chapter 1.4] or some tool [17], [18], [19] in the classical
differential distinguisher model.

One may note that the attacker discards all the output
differences which do not match1 in the classical setting. This
happens due to the very nature of the classical distinguisher.
However, the assumption that the attacker will necessarily do
this, possibly acts as hindsight, since this may underestimate
the attacker’s capability.

Instead of discarding any output difference, we feed all
of them to a suitable ML model. However, for this purpose,
we need at least 2 input differences. Therefore, we consider
the general case with t distinct input differences which are
denoted as δ0,δ1, . . . , δt−1. When the accuracy of the ML
model exceeds what is to be expected for RANDOM, this
acts as a differential distinguisher. Thus, at its core, the
ML-assisted differential distinguisher model works by dis-
tinguishing between (possibly round-reduced) CIPHER from
RANDOM; by formulating the challenger–adversary game to
a suitable classification problem [11], [20], [21], for which
native support is available. It is sometimes possible to reduce
the complexity of the differential distinguisher drastically,
even to the cube root of what is required for the classical
case [11].

One point to note here is that we use the testing data for
validation. This is generally not recommended in typical ML
applications, due to the problem of overfitting. However, this
is not a problem in our case, as there is only one test case
(i.e., the testing data which is either generated from RANDOM
or from CIPHER).

B. MACHINE LEARNING BASICS
1) MULTI LAYER PERCEPTRON (MLP)
An MLP [22] is a supervised learning algorithm which is
a type of a feed-forward NN (also called, Artificial Neural
Network, which is abbreviated as ANN). An MLP consists
of three or more layers of neurons (which is the basic unit of
computation in a neural network). The first and the last layers
are called the input layer, and the output layer, respectively,
while all the middle layers are called the hidden layers. One
characteristic of an MLP is that each neuron in a layer is
connected to every neuron in the subsequent layer. Based
on a rule, known as activation (where non-linear functions
are normally used), each neuron may fire with a different
intensity. The back-propagation algorithm is used for the
training of feed-forward neural networks with the usage of the
gradient descent optimization method to update the weights
of the neuron connections between each layer.

2) SUPPORT VECTOR MACHINE (SVM)
SVMs [23] are supervised learning algorithms that are pre-
dominantly used for classification problems with two classes.
An SVM constructs a set hyper-planes to separate the classes.
The points from the two classes which are closest to the
hyper-plane are known as support vectors. The distance
between the hyper-plane and the support vectors are called
margins. In order to find the hyper-plane that best divides the
classes, an SVM tries to maximize the margin. Thus, an SVM
can be thought of as an optimization problem. The classes
need to be linearly separable to construct the optimal hyper-
plane. If the classes are not linearly separable, the original
space is mapped to a higher dimensional space, where separa-
tion of the classes is possible with a linear boundary. The data
in each class are then defined in terms of a kernel function,
which the SVM uses to compute the optimal hyper-plane.

III. MACHINE LEARNING BASED DISTINGUISHER
A. BASIC IDEA AND OVERALL DESCRIPTION
As already mentioned, our model is adopted from that of
[11, Section 3.1] (or [24, Chapter 6.4.1]). Here, Eve chooses
t (≥2) distinct input differences δ0,δ1, . . . , δt−1 and creates
t differentials. In the process, she converts the problem of
distinguisher to the problem of classification, which can
be efficiently tackled by ML tools. More specifically, she
assumes the output differences corresponding to the input
difference δi belong to class i, for i= 0,1, . . . , t−1.
As for the actual attack procedure, we assume the follow-

ing set-up. TheORACLE tosses an unbiased coin, and chooses
either RANDOM (a random source; which can be emulated, for
example, with /dev/random1) or CIPHER, depending on
the outcome of the coin toss. Which output between RANDOM
and CIPHER is chosen is kept secret from the attacker,
and she has to find it out with probability significantly > 1

2 .
For that purpose, she can query the ORACLE with inputs
of her choice as many times as she wants (but it has to

1https://man7.org/linux/man-pages/man7/random.7.html
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be significantly less than that of the exhaustive search) and
the ORACLE will return the output from either RANDOM or
CIPHER.

In our context, she first builds the ML model during the
training (offline) phase with sufficient training data. This
is possible as she knows the specification of the CIPHER.
Essentially, she chooses a random input P, computes the
corresponding output C (=CIPHER(P)); then for each δi,
she computes the output differences (C ⊕ Ci where Ci =
CIPHER(P⊕ δi)); and finally labels the output differences
as belonging to class i. If the accuracy for training is > 1

t
(measurement of the training accuracy is possible as she
knows which output difference belongs to which class), she
proceeds to the testing (online) phase.

In the online phase, she chooses random inputs P and
queries them to ORACLE. Then, she queries with P⊕ δi
for i = 0,1, . . . , t − 1, and computes the output differences
corresponding to each input difference. However, it is to be
noted that she is not able to measure the testing accuracy, as it
is not known which output difference belongs to which class.
To overcome this issue, we propose to use the ordering of
the input differences. Therefore, she queries in the sequence:
P⊕ δ0,P⊕ δ1, . . . ,P⊕ δt−1. In doing so, she can now expect
which output difference should belong to which class (i.e.,
the output difference ORACLE(P)⊕ORACLE(P⊕ δi) should
be classified as belonging to class i). This way, she is able to
measure the accuracy during testing. If ORACLE= CIPHER,
then the testing accuracy should match that of the training
phase, which is > 1

t . Otherwise, i.e., if ORACLE= RANDOM,
then the ML model would arbitrarily predict the classes for
the output differences, hence the testing accuracy would be
1
t . This constitutes the distinguisher.

B. TRAINING AND TESTING THE MODEL
With the algorithmic description given in Algorithm 1, the
basic work-flow is described here (also adopted from [11,
Section 3.1]):

1) TRAINING (OFFLINE)
1) Select t (≥2) non-zero input differences δ0,δ1, . . . , δt−1.
2) For each input difference δi, generate (an arbitrary num-

ber of) input pairs (P,Pi = P⊕ δi). Run the (unkeyed)
permutation on the input pairs to get the output pairs:
C ← CIPHER(P), Ci ← CIPHER(Pi) for all i. Then
XOR the outputs within a pair to generate the output
difference (Ci ⊕ C). The output difference together
with its label i (i.e., this sample belongs from class i)
form a training sample.

3) Check if the training accuracy is > 1
t . Otherwise (i.e.,

if accuracy = 1
t ), the procedure is aborted.

2) TESTING (ONLINE)
1) Generate the input pairs in the same way as in train-

ing. In other words, randomly generate an input P.
With the same input differences chosen during training

δ0,δ1, . . . , δt−1; generate new inputs Pi = P⊕ δi for all
i= 0,1, . . . , t−1.

2) Collect the outputs C and Ci’s by querying ORACLE
with input P and Pi’s in order, for all i= 0,1, . . . , t−1.

3) Generate the testing data asC⊕Ci for all i and in order.
4) Get the predicted classes from the trained model with

the testing data.
5) Find the accuracy of class prediction. In other

words, tally the classes returned by the trained
ML with the sequence: (0,1, . . . , t − 1,0,1, . . . , t −
1, . . . ,0,1, . . . , t−1), and find the probability that both
match.

6) a) If ORACLE= CIPHER, theMLwould predict the
class for C⊕Ci as i with the same probability as
training. Therefore in this case, the accuracy for
class prediction (in Step ) would be the same (or,
close to) the accuracy observed during training,
i.e., > 1

t .
b) If ORACLE= RANDOM, the ML would arbitrarily

predict the classes. Therefore the accuracy for
predicting classes by the trained ML (in Step 6a)
would be equal to (or, close to) 1

t .

C. COMPARISON TO PREVIOUS WORKS
At this place, it is perhaps worth noting the differences
between our ML model and the previous ones, most notably
Gohr’s [1] (other works like [2], [3], [4] use some variation
of that model).

The following points can be noted:

1) In [1], the input layer neuron size is doubled.
2) [1] uses CNN while we show that simpler network

structures, e.g. SVM, can achieve similar performances
3) [1] does not use dropout layers, while we do. Instead [1]

uses L2 regularization for the dense and convolution
layers.

4) The model in [1] requires a higher number of epochs
(around 200), whereas we use much less (not more than
20). Our model takes considerably less time.

5) [1] uses sigmoid activation (as the problem is always
about binary classification) in the last layer while we
use softmax (as we need support for multiple classes).

6) [1] uses mean squared error (MSE) as the loss function
while we use cross-entropy.

7) [1] trains 8-roundSPECK-32 classifier using a transfer
learning approach, as the regular (directly observed)
distinguisher stops working after 7 rounds. In con-
trast, our model can directly observe up to 8-round of
SPECK-32with training/testing accuracy>0.51 with-
out the usage of transfer learning.

8) Compared to [1], we need one-third of entropy (for 2-
class classification).

9) Due to the way the classification problem is formulated
in [1], the cipher query complexity is double the data
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Algorithm 1 Differential Distinguisher With Machine Learning

1: procedure Offline phase (Training)
2: TD← (·) ▷ Training data
3: Choose random P
4: C← CIPHER(P)
5: for i= 0; i≤ t−1; i← i+1 do
6: Pi← P⊕ δi
7: Ci← CIPHER(Pi)
8: Append TD with (i,Ci⊕C)

▷ Ci⊕C is from class i
9: Repeat from Step 3 if required

10: Train ML model with TD
11: ML training reports accuracy a
12: if a> 1

t then
13: Proceed to Online phase
14: else ▷ a= 1

t
15: Abort

1: procedure Online phase (Testing)
2: TD′← (·) ▷ Testing data
3: Choose random P
4: C← ORACLE(P)
5: for i= 0; i≤ t−1; i← i+1 do
6: Pi← P⊕ δi
7: Ci← ORACLE(Pi)
8: Append TD′ with Ci⊕C
9: Test ML model with TD′ to get C

▷ C is sequence of classes by ML
10: a′ = probability that C matches

(0,1, . . . , t−1)
11: if a′ = a> 1

t then
12: ORACLE= CIPHER
13: else ▷ a′ = 1

t
14: ORACLE= RANDOM
15: Repeat from Step 3 if required

complexity. In our case, the number of queries to the
cipher is the same as the total data complexity.2

Note that the choices (such as loss function, batch size,
and a number of epochs) made in our architecture are mostly
arbitrary sincewewant to emulate an attacker who hasmerely
a basic understanding of ML. For this reason, we consider
the most basic neural network, MLP. In any case, we would
like to emphasize that, all these choices (including the choice
of MLP) are in no way linked to the basic ML-based dis-
tinguisher model — any design option can be considered
in conjunction with/instead of our design choices. A more
specialized architecture that follows the same basic model
can be expected to give better accuracy for a given round
of a cipher than this work, and more importantly, it can be
expected to cover more rounds than this work.

Having said that, one may note that, there is no inherent
incompatibility between the ML model used here (adopted
from [11, Section 3.1] with that in [1] (one can be converted
to-and-from another if needed). For reference, in the model
from [1], one class corresponds to the ciphertext pair coming
from input difference δ, and the other class corresponds to the
ciphertext pair coming from random plaintext pair.

IV. CIPHER DESCRIPTION IN BRIEF
A. SPECK
SPECK [13] is a lightweight block cipher family, based on
Feistel structure, designed by the National Security Agency
(NSA) in 2013. There are 10 variants of SPECK, of which
only two with state sizes of 32 and 128 bits are considered
here. The one with a state size of 32-bits runs for 22 rounds
in the full version; and the other one runs for 32, 33, or
34 rounds depending on the key size. The round function of
SPECK divides the input value into l and r , and rotation,

2To avoid any possible ambiguity, we count the data complexity as the
total amount of data (not the amount of data per class) in our results.

modular addition, and xor are performed as follows: li =
(ROR7(li)⊞ ri)⊕ ki and ri = ROL3(ri)⊕ li.

B. ASCON
ASCON [12] is a well-known lightweight authenticated
encryption with associated data (AEAD). ASCON uses a
320-bit permutation, that runs for 12 rounds. It consists of
Addition of Round Constants, Nonlinear Substitution Layer,
and Linear Diffusion Layer, and operates by dividing it into
five 64-bit words (x0,x1,x2,x3,x4). The round constants are
XORed of byte-1 of x2 during Addition of Round Con-
stants. In Nonlinear Substitution Layer, 5-bit SBox is applied.
In Linear Diffusion Layer, rotation operation is applied to
each word as follows: 6(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫
28),6(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39),6(x2) = x2 ⊕
(x2 ≫ 1)⊕ (x2 ≫ 6),6(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫
17),6(x4)= x4⊕ (x4 ≫ 7)⊕ (x4 ≫ 41).

C. SIMECK
The lightweight block cipher family SIMECK [15] allows
three (state size/key size) variants: 32/64 (32 rounds), 48/96
(36 rounds), and 64/128 (44 rounds). The round function and
the key schedule are based on the Feistel architecture. The
round function of SIMECK is similar to that of SIMON [13].
Before the round function, the input plaintext is divided by l0
(plaintext to be encrypted) and r0 (plaintext to be encrypted).
The round function(ith) is as follows: Rki (li,ri)= (ri⊕ f (li)⊕
ki, li). The number of rotations of SIMECK round function
is (0, 5, 1), and ROLi means rotation left operation (ith bit).
The following f is used in the round function Rki update:
f (x)= x∧ROL5(x)⊕ROL1(x).

D. SKINNY
SKINNY is a tweakable block cipher family which was intro-
duced in CRYPTO 2016 targeting lightweight application
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TABLE 1. Accuracy of ML training for 5-round SPECK-32 and 7-round
SPECK-128 (TensorFlow/Keras).

scenarios [14]. It supports 64-bit and 128-bit block sizes. The
internal state is composed of a 4 × 4 array of cells according
to the block size (each cell consists of a 4-bit cell in the case
of a 64-bit block, and an 8-bit cell in the case of a 128-bit
block size).

V. RESULTS ON ROUND-REDUCED CIPHERS
A. SET-UPS
For experiments on SPECK (Section V-B, except those
with the fixed input difference 28000010), ASCON
(Section V-C) and SIMECK (Section V-D); our platform con-
sists of 16× Intel Xeon E7-8880 CPUs, and 1× Nvidia
Tesla-P100 16GB GPU accelerator (CUDA-10.2); and runs
Ubuntu-18.04; with Python-3.6.9 and Numpy-1.16.4.

For the experiment on SPECK (Section V-B3with the fixed
input difference of 28000010), and SKINNY (Section V-E);
our platform consists of an Apple M1 Pro 16GB with 10-
core CPU, 16-core GPU, and 16-Neural Engine; with Python-
3.8.9, Numpy-1.23.1 and Pytorch 1.12.0.

We use TensorFlow-2.1.63 back-end with Keras-2.1.64

API, and PyTorch-0.4.1.5 Among the ML models, only MLP
is used throughout, with Adam as the optimizer.

For SVM, we use ThunderSVM.6

Implementation of SPECK-32 and SPECK-128 unkeyed
permutations are taken from a publicly available repository.7

For the rest of the ciphers, the implementations provided by
their designers’ are used.

B. SPECK
1) ARBITRARY/Ad-HOC INPUT DIFFERENCES
The results in this part are obtained from an MLP with
TensorFlow/Keras that runs for 5 epochs. The size of the
input to the MLP is the same as the state size and the hidden
layers have (128,256,256,256,128) neurons respectively.
A dropout layer (of rate 0.2) is included after the input layer to
reduce the possibility of overfitting. The activation function
for all the layers, save for the output layer, is ReLU. We use
215 data for training and the same amount of data for testing.
The batch size is kept at default, 32.

For 5-round SPECK-32 and 7-round SPECK-128, the
results are summarized in Table 1, where the valid distin-

3https://www.tensorflow.org/
4https://keras.io/
5https://pytorch.org/
6https://github.com/Xtra-Computing/thundersvm
7https://github.com/inmcm/Simon_Speck_Ciphers/blob/master/Python/

simonspeckciphers/speck/speck.py

TABLE 2. Accuracy of ML training for reduced round SPECK-32 and
SPECK-128 (TensorFlow/Keras). All four ML models give valid
distinguishers.

guishers (i.e., the accuracy is significantly > 1
t ) are marked

for better readability. While considering more than two input
differences together, it appears that the input difference
100000 has a greater impact on SPECK-32. Including
this input difference in a previous set of input differences
(for which a valid distinguisher is not found) yields a valid
distinguisher. More research would be needed to explain this
observation.

We also describe distinguishers for SPECK-32 and
SPECK-128 for smaller rounds. The outcomes are given
in Table 2 (Table 2(a) for SPECK-32, Table 2(b) for
SPECK-128). The results for SPECK-32 are done for
the input differences (79042080,1000000), and that
for SPECK-128 are done for the input differences
(1000000,1).

2) ONE-BIT INPUT DIFFERENCES
We apply the concept of choosing the 1-bit input differences,
which is inspired by [25]. While the choice of such input
differences in [25] is proposed to find the location of the
differential fault attack (DFA) [26, Section 5.1], we notice
that it can be linked to the classical differential distinguisher
(for a systematic method to generate the input differences).

Taken from [25], the input differences in this category are
all the possible 1-Hamming weight cases. In other words,
given the state size n of the cipher, we choose n input differ-
ences; where the bit at location i is set to 1 and the rest are 0,
∀i ∈ {0,1, . . . ,n− 1}. Thus, the input differences are chosen
systematically (instead of those in Section V-B1, which are
chosen in an arbitrary or in an ad-hoc manner). SPECK-32,
having a state size of 32; the number of classes is 32 in this
category, and the accuracy for RANDOM is 0.03125.
The average time in seconds for training and validation

(not counting the time taken for data generation) per round
is indicated in Table 3a (PyTorch) and Table 3b (Tensor-
Flow/Keras). It may be noted that, PyTorch (with default
options) can possibly distinguish 7-rounds of SPECK-32,
but TensorFlow/Keras (with default options) cannot go
beyond 6 rounds; even though size of training/testing data and
hyper-parameters are kept the same. Although, the choice of
the activation function appears to drastically affect the accu-
racy/coverage. More experiments are needed to understand
the observations fully.

a: RESULTS FROM PyTorch
The results from PyTorch over various settings are given
in Table 3a (the rest of the settings are kept at default).
The in_features size of the first linear layer and
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TABLE 3. Results for one-bit input differences for round reduced SPECK-32.

the out_features size of the last linear layer is 32.8

The rest in_features/out_features are as indicated.
A dropout layer of rate 0.2 is applied after the first linear
layer. No separate SoftMax layer is used at the output layer for
PyTorch, as the CrossEntropyLoss9 combines LogSoft-
Max. Differential distinguishers can be observed till 6 rounds
of SPECK-32 with all the activation functions tested, except
for the TanhShrink activation function which does not seem
to find any distinguisher even at 1-round (not included in
Table 3a). On top, a strong indication that the distinguisher
follows through the 7th round can be noted with activation

8https://pytorch.org/docs/stable/generated/torch.nn.
Linear.html#torch.nn.Linear

9https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.
html#torch.nn.CrossEntropyLoss

functions ReLU; as well as with its variations – PReLU,
RReLU, ReLU6, and LeakyReLU.10

b: RESULTS FROM TensorFlow/Keras
Results for round-reduced SPECK-32 from Tensor-
Flow/Keras are given in Table 3b. A SoftMax layer is applied
at the output layer with a neuron size of 32, which is not
included for the sake of brevity. Note that the differential
distinguisher works till the 6th round, with the activation
functions ELU, SELU and ReLU. No indication for it to
follow to the 7th round is observed.

3) 28000010 AS A FIXED INPUT DIFFERENCE
One notable contribution of [2, Section 4], is to find an
interesting input difference for SPECK-32, 28000010. The

10Although the deviation of accuracy for the RANDOM case is small, the
same deviation is observed through repeated trials of the same experiment.
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TABLE 4. Results for SPECK-32 8-round with 28000010 as an input difference (PyTorch). All distinguishers are valid.
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TABLE 4. (Continued.) Results for SPECK-32 8-round with 28000010 as an input difference (PyTorch). All distinguishers are valid.

Expression 1 A valid SVM distinguisher for 3-round ASCON (rate/128-bits, accuracy 0.916)

+0.06524x0+0.25818x1−0.07127x2−0.02698x3−0.00589x4−0.32018x5+0.00419x6+0.10561x7−4.89209x8−0.07874x9−0.23816x10−0.01899x11−0.03706x12

+0.00224x13−0.13761x14+0.03035x15−0.01552x16−1.70353x17−0.32852x18+0.16048x19−0.02296x20−0.03522x21−0.02862x22−0.01690x23−0.32018x24

−0.04786x25+0.00340x26−0.13893x27−0.05532x28+0.16708x29−0.06691x30−0.02850x31−0.06942x32−0.03979x33+0.08352x34−0.12548x35+0.95676x36

+0.00000x37−0.14355x38−0.06691x39−0.03362x40−0.11080x41−0.07196x42+0.19412x43−0.00180x44−0.00503x45+0.27334x46+0.04656x47+0.05862x48

+0.01036x49−0.22783x50+0.00008x51−0.10638x52−0.02959x53+0.09513x54−0.05866x55−0.02052x56−0.06191x57+0.10620x58+0.11661x59+0.04581x60

+0.57142x61+0.00000x62−1.00000x63+0.00708x64−0.02973x65−0.02207x66−0.00509x67−0.02888x68−0.28811x69+0.07271x70+0.01869x71−0.10360x72

−0.01156x73−0.31847x74−0.06710x75+0.02993x76−0.00578x77−0.18291x78+0.09424x79+0.84935x80+0.00000x81+0.08682x82+0.39318x83+0.13964x84

−1.05348x85+0.03237x86−0.12471x87+0.16543x88+0.08003x89+0.07077x90+0.02339x91−0.00371x92−0.03341x93+0.13572x94+0.20409x95+0.01148x96

−0.04107x97+0.14575x98−0.30807x99−0.00354x100−0.69512x101+0.86495x102−0.06458x103+0.02611x104+0.34864x105−0.02176x106−0.02630x107+0.58935x108

−0.02643x109+0.00852x110−0.06558x111−0.00644x112−0.05778x113+0.52099x114+0.00206x115+0.03979x116−0.01654x117+0.01060x118+0.00693x119

+0.07832x120−0.10912x121+0.00012x122+0.16375x123+0.18298x124−0.97580x125+0.28003x126−0.81702x127−0.03862

idea from [1] is to choose the input difference 400000 (taken
from [27, Table 7]), the idea here is to use an input difference
with a low Hamming weight. When this constraint of low
Hamming weight is lifted, as per the authors of [2], the best
input difference turns out to be28000010. Interestingly, this
input difference does not bode well when usedwith the distin-
guisher from [1]. As the authors put it [2, Section 4]: ‘‘In con-
trast, when we do not restrict the input difference, the best dif-
ferential characteristics for 5 rounds is 0×2800/0010→
0× 850a/9520, with probability of 2−9. However, when
we trained the neural distinguishers to recognize ciphertext
pairs with the input difference of 0×2800/0010, the neural

distinguishers performed worse (an accuracy of 75.85% for
5 rounds). This is surprising as it is generally natural for
a cryptanalyst to maximize the differential probability when
choosing a differential characteristic.’’

Not to be deterred by this revelation, we decide to have a
try with the model from [11, Section 3.1]. As the model from
[11, Section 3.1] requires at least one more input difference,
we arbitrarily choose some, pair that with 28000010 and
give it a try with some arbitrarily chosen MLP. Interest-
ingly, basically everything paired up with 28000010 works
as a distinguisher up to 8-round SPECK-32 with accuracy
>0.51. In some cases, the accuracy for 9 rounds is >0.5,

VOLUME 11, 2023 54183



A. Baksi et al.: New Results on Machine Learning-Based Distinguishers

Expression 2 A valid SVM distinguisher for 6-round SKINNY-128 (accuracy 0.54556)

−0.000002458x0−0.00000453x1−0.00001726x2−0.00002808x3+0.00001783x4−0.00000363x5−0.00002760x6
−0.00001677x7−0.00003956x8−0.00000467 x9−0.00001278 x10+0.00000166x11+0.00001986x12
+0.00001712x13+0.00000503 x14+0.00001689x15+0.00002077x16−0.00003732x17−0.00001814x18
−0.00002409 x19−0.00003847x20−0.00006143x21−0.00000067x22+0.00000691x23−0.00000597x24
+0.00000018x25+0.00000000x26+0.00002974x27−0.00000331x28−0.00008007x29+0.00001104x30
−0.00000219x31−0.00000038x32−0.00005310x33−0.00004009x34−0.00002686x35−0.00000967x36
−0.00024361x37−0.00004561x38−0.00007616x39−0.00003045x40+0.00000026x41−0.00001561x42
−0.00000510x43−0.00000569x44−0.00001290x45+0.00000030x46−0.000000976x47−0.00000400x48
+0.00006144x49−0.00003996x50+0.00000411x51−0.00004234x52−0.00000999x53−0.00001662x54
−0.00001821x55+0.00002785x56+0.00016537x57+0.00001928x58+0.00001700x59−0.00006496x60
−0.00011006x61+0.00000138x62−0.00006339x63−0.00005156x64+0.00003192x65−0.00001398x66
+0.00001874x67−0.00012107x68−0.00010488x69−0.00005654x70−0.00005476x71+0.00000765x72
+0.00004549x73+0.00001019x74−0.00000517x75−0.00001394x76−0.00022932x77+0.00001376x78
−0.00002833x79−0.00000946x80−0.00000643x81−0.00000823x82+0.00001040x83−0.00003902x84
−0.00001667x85−0.00000758x86+0.00003016x87−0.00003748x88−1.99938367x89−0.00004061x90
−0.00002421x91−0.00001997x92−0.00008293x93−0.00011033x94+0.00004228x95+0.00000025x96
+0.00002680x97+0.00000691x98−0.00001166x99−0.00003569x100−0.00000056x101+0.00001540x102
−0.00000333x103+0.00001192x104+0.00000612x105−0.00001477x106−0.00001475x107+0.00000492x108
+0.00000779x109+0.00001762x110+0.00001734x111+0.00000166x112+0.00001838x113+0.00003240x114
−0.00000428x115−0.00001534x116−0.00003687x117+0.00001803x118+0.00000481119+0.00003978x120
+0.00001102x121+0.00004022x122−0.00000616x123−0.00000095x124−0.00007751x125−0.00001126x126
−0.00001836x127+1.00047451

and very close to 0.51 (but <0.51), but we refrain from
counting those. As the icing on the cake, we choose some
of the input differences reported in [3], and show the 8-round
distinguisher.

The results with 28000010 as a fixed input difference are
consolidated in Table 4. As it can be seen, we adopt PyTorch
and try pairing 28000010 with various input differences.
Overall, we use various MLPs (by varying the number of lay-
ers/neuron size and activation function), with varying batch
sizes and epochs; and with varying training/testing data sizes.
We present an 8-round distinguisher for SPECK-32, with
some indication that it follows through the 9th round as well.
More specifically; Table 4a uses larger batch size (5000) and
epochs (150) with pairs of input differences; Table 4b uses
smaller batch size (32) and epochs (20) with pairs of input
differences; Table 4c uses triplets of input differences; and
Table 4d uses triplets of input differences which form the
second order differential.

Thus, it is owing to the hard work of the authors of [2],
we could ultimately find the 8-round distinguishers of
SPECK-32 (i.e., by fixing 28000010 as an input dif-
ference. Before that, our best result (with an accuracy of
about 0.59), was up to 7-rounds, with the following pairs of
input differences: (1, 400000), (2, 400000), (8, 400000),

TABLE 5. Accuracy of ML training for reduced round SIMECK-32 and
SIMECK-64. Colored rows correspond to valid distinguishers.

(40, 400000), (200, 400000), (800, 400000), (1000,
400000), (10000, 400000), (400000, 20000000).
Note that 400000 is common – this is the same input
difference used in [1] – though, in our case it is found by
individually trying with all

(32
2

)
input difference pairs of

Hamming weight 1 and thereafter choosing the best pairs.
Granted, our 7-round distinguishers take only a few minutes
(thus considerably faster than probably all the competitors).

C. ASCON
The result for the rate part of ASCON11 [12], which is the
first 128-bits, is presented in Expression 1. For simplicity,
each coefficient is rounded to 5 decimal places. This acts

11The latest version, ASCONv1.2 is used here and denoted as ASCON for
simplicity.
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TABLE 6. Results for SKINNY-128 with SVM.

as a 3-round distinguisher which works with an accuracy of
0.916. It is obtained by using a linear-kernel SVM where all
the hyper-parameters are kept at their default value (except
for kernel which is set to linear instead of the default
rbf) with around 214.96 training data and validated with
212.96 testing data. For the input differences, we choose the
mask value 1000. We then XOR it with the 64-bit register
x0 to get δ0, and XOR the same mask value with the register
x1 to get δ1. For a given output difference, if the expression
results as <0, then it belongs to class 0 (i.e., corresponds to
input difference δ0). Otherwise, i.e., if the expression results
as ≥0, then it belongs to class 1 (i.e., corresponds to input
difference δ1).

1) EFFECT OF TRUNCATION
Note that, taking only the rate part (128-bits, instead of
the full state of 320-bits) does not give us any extra lever-
age. After collecting the output differences the attacker can
employ any method, including truncating a part of it. There-
fore, this falls within the model. Apart from that our exper-
iments suggest that when taking the full state, the same dis-
tinguisher always works with the same/higher accuracy than
that of the truncated case. Thus, we believe that truncating
part of the state may make the attacker’s job more difficult,
but will not make it easy. Indeed, with the full state of
ASCON (320-bits) and keeping everything as-is, the accuracy
increases to 1.00. This is obtained for around 214.96 training
data and themodel is validatedwith around 212.96 testing data.

D. SIMECK
Here we describe our findings for SIMECK-32 and
SIMECK-64 [15]. We take δ0 = 1 and δ1 = 2 for all the
cases. All the results are from an MLP model with the hidden
layers having (128,256,256,256,128) neurons respectively,
and run for 5 epochs. We achieve accuracy of 0.526 for

9-round SIMECK-32, and 0.55 for 14-round SIMECK-64,
both with 215 training data (validation is done with an equal
amount of testing data). More information regarding earlier
rounds can be found in Table 5 (Table 5(a) for SIMECK-32,
Table 5(b) for SIMECK-64).

E. SKINNY
Similar to ASCON SVM (Section V-C), we show the results
for SKINNY-128 unkeyed permutation [14]. Table 6 shows
the summarized results (only training data size and training
accuracy are shown), with two input difference pairs. Fur-
ther, Expression 2 shows an example for input difference
pair (1, 00005900000000000000000000000000) for
6-round SKINNY-128 with linear kernel SVM (that works
with an accuracy of 0.54556). For a particular test case,
if it results as <0 then it belongs to class 0 (i.e., corre-
sponds to input difference δ0 = 1), otherwise it belongs
to class 1 (i.e., corresponds to input difference δ1 =

ffffffffffffffffffffffffffffffff).

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we present several machine learning-based
differential distinguishers for (round-reduced version of)
unkeyed permutations—SPECK-32 andSPECK-128 [13],
ASCON [12], SIMECK [15] and SKINNY [14].
For the reduced-round versions of the ciphers, we show

how an attacker equipped with a moderate understanding of
machine learning can severely lower the search complexity
for distinguishing it from the random scenario while stay-
ing completely within the classical differential attack model.
Indeed, much of our work relies on some ad-hoc ML archi-
tecture and arbitrarily chosen input differences; still, we are
able to out-compete the otherwise computed complexity and
match the same number of rounds as the currently best-known
ML-based attacks (that use more specialized/sophisticated
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architectures than ours) on SPECK-32. As the next logical
step for future work, the extension of the presented distin-
guisher approach should be extended to a full key recovery.

In the long run, we expect the bound for our ML-assisted
model can be increasedwith further research, as our results do
not constitute the upper limit. The coverage of rounds could
likely be extended with more training/testing data, a deeper
network, different choices of hyper-parameters, various acti-
vation functions, etc. Also, the choice of input differences
plays an important role. Therefore, it may be possible to
increase the coverage only by choosing suitable input differ-
ences.
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